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Temperature structure functions for air flow
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We study temperature structure functions of second, fourth, and sixth orders at heights of up to 2 m
above the ground in moderately heated atmosphere. Most of the data come from measurements over
salt flats of the Utah desert, with well-defined wind direction and uniform temperature boundary
conditions. As in high-Rayleigh-number convection in a closed container, a thermal boundary layer
develops near the ground, its thickness here being of the order of 50 cm. We demonstrate the
coexistence of two scaling ranges, one of which corresponds to the classical inertial range and the
other to the buoyant range influenced by thermal convection. The determination of scaling
exponents in the two ranges is facilitated by the use of a scaling function. We present the variations
with height of scaling exponents in both ranges, as well as the crossover scales from one range to
another. ©2002 American Institute of Physics.@DOI: 10.1063/1.1485079#
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I. INTRODUCTION

Multipoint statistics in turbulent flows are of interest b
cause they provide useful geometric information about
spatial structure~see, e.g., Ref. 1!. If, for reasons of simplic-
ity, the consideration is restricted to two-point statistics,
objects studied most are the so-called structure functio2

These are the moments of increments of a field variable, s
as turbulent velocity and temperature, measured over a
tial separation denoted byr . For a scalaru, the nth order
structure function is defined as

Sn~r !5^~u~x1r !2u~x!!n&, ~1!

wheren is an integer andx is the position vector. For large
Reynolds numbers, it is traditionally postulated that th
exists an inertial range of scales defined byh!r[ur u!L,
whereh is the Kolmogorov scale andL a large scale of the
flow, in which the scaling exponents are independent
large-scale forcing and fluid viscosity. Thus, one is expec
to have

Sn5Bnr zn ~2!

where the scaling exponentszn are universal andBn may
depend, at most, on the length and velocity scales of forc
~see Ref. 3 for a general discussion and Ref. 4 for the spe
point on the impact of the velocity scale!. In the inertial
range, Antonia et al.,5 Meneveau et al.,6 Antonia and
Smalley,7 and Moisyet al.8 are among the authors who hav
2431070-6631/2002/14(7)/2439/8/$19.00
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studied the scaling properties of temperature structure fu
tions. These authors have measuredzn for conditions under
which temperature can be treated essentially as a pas
scalar. However, temperature is intrinsically a dynami
variable and there always exists a range of scales in wh
the influence of buoyancy is felt. Buoyancy manifests its
in a number of ways, e.g., in the premature truncation of
upper end of the inertial range, and in a direct influence
large scales. Studies of structure functions in the presenc
substantial buoyancy have been made, among others
Brandenburg,9 Benzi et al.,10 Cioni et al.,11 Celani et al.,12

and Zhou and Xia.13 In much of this work, the difficulties
associated with the small extent of the scaling range h
prevented the direct determination of the scaling paramet
To overcome this problem, some of the authors cited pre
ously have employed the extended self-similarity~ESS! tech-
nique of Benziet al.14 This technique consists of plottin
structure functions of different orders against a struct
function of a chosen order and obtaining a relative scal
exponent. Thus, we have

Sn,ESS5Smzm
n,m . ~3!

An advantage of ESS is that a reasonably convincing sca
of the form ~3! can be found even when structure functio
themselves obey no scaling of the form~2!. We should have
zn,m5zn /zm if there is true scaling, but this cannot be a
serted in general. In addition to this ambiguity of interpre
9 © 2002 American Institute of Physics
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tion, it is not yet clear, despite several interesting efforts,15–18

as to why ESS yields a seemingly extensive scaling eve
low Reynolds numbers.

Here, we shall study the structure functions in turbule
flow over a desert that is flat for some miles, with loc
smoothness on scales of the order of millimeters.19 The
ground was significantly warmer than the flow above
ground, and the turbulence near the ground was driven b
combination of shear and buoyant thermal convection. T
convection layer depth was estimated from measuremen
optical refractive index to be of the order of 100 m. T
temperature and velocity distributions near the ground h
the same character as those in the temperature and vel
boundary layers in a thermal convection flow in a clos
container ~for two experimental studies on this extensi
subject, see Refs. 20 and 21!. In such studies, one defines
thermal boundary layer thickness by the distance from
walls within which most of the temperature drop occurs~see
Sec. II!. This layer is very thin in high-Rayleigh-number e
periments~of the order of tens of microns in the extrem
cases!, and therefore mostly inaccessible to measuremen
the present atmospheric flow, as will be seen in Sec. II,
same measure of the thermal boundary layer thickness
the order of 50 cm, which therefore allows some detai
measurements to be made.

The one aspect of this flow that we study here is
behavior of even-order temperature structure functions u
the sixth. The structure functions have reasonable scalin
both inertial and buoyant convective regions, which allo
the determination of the scaling parameters without the
of ESS; indeed, as we shall demonstrate, the use of ESS
mask the existence of two separate scaling regions. E
where scaling is not immediately apparent, the use o
‘‘scaling function,’’ by which is meant a functional relatio
that fits structure functions of any order in their entire ran
of scales, facilitates the determination of the scaling ex
nents. In this way, we shall examine the nature of scaling
heights that extend through the thermal boundary layer
somewhat beyond.

Section II is a brief summary of the measurements, wh
Sec. III demonstrates the existence of two ranges of sca
The scaling function approach is discussed in Sec. IV,
the principal results are summarized in Sec. V. The conc
ing remarks are provided in Sec. VI.

II. MEASUREMENTS

Most measurements were made in the boundary la
above the salt flats of the Dugway Proving Ground in Ut
at different heights above the ground~1–175 cm!. The
ground was smooth for scales of the order of millimeters a
larger, and the homogeneous terrain extended for a num
of miles.19 Temperature fluctuations were measured usin
cold wire mounted on standard TSI probes. The cold w
was operated by constant current anemometer built in-ho
on the basis of a design by Peattie.22 The operating curren
was 120mA. The low magnitude of the current meant th
the velocity contamination was minimal. The cold wir
were made by etching the silver coating on a wire
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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platinum-10% rhodium alloy made by the Wollaston proce
and the etched part had a nominal diameter of 0.6mm and
length of the order of 1 mm. After suitable amplification, th
signals were low-pass filtered at 1 kHz and sampled a
kHz. The signals were digitized using a 12 bit analog-
digital converter. The record lengths varied from 20 min to
h in real time. For these few records in which the tempe
ture was perceptibly nonstationary, a linear detrending of
time series was performed.

Some measurements were also made on the East H
beach in Connecticut when the wind was steadily blow
from the water, but the ground conditions were not as smo
and well-controlled as in the Utah desert. The instrumen
tion was essentially the same. A larger share of the anal
presented here is for the desert data, but the two set
measurements are quite consistent.

Figure 1 shows the variations of the mean temperat
above the ground when the ground is warmer than the
above it. The distance from the ground is normalized byh1 ,
which is given by

h15
DQmax

dQ

dy h50

, ~4!

whereDQmax is a nominal maximum of the~time-averaged!
temperature difference between the ground and the air
side the thermal boundary layer. The heighth1 is convention-
ally employed in most convection studies as a measure of
thickness of the thermal boundary layer, as mentioned in S
I. Another useful measure of that thickness ish2 , defined
somewhat arbitrarily by the position at whichDQ reaches
95% ofDQmax. These heights as well asDQmax are listed in
Table I.

We also measured the velocity fluctuations by operat
an 3-wire on two DANTEC constant temperature anemo
eters. From these data, the Reynolds shear stress was
puted; the friction velocityut was estimated by the square
root of the maximum value of the Reynolds shear stress.

FIG. 1. The mean temperature vsh/h1 .
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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TABLE I. Flow parameters; an ellipsis~•••! denotes absence of reliable data. The Prandtl number is of the order of unity for all cases.

Case
h

~m!
DQmax

~°C!
h1

~m!
h2

~m!
U

~m/s!
ut

~m/s!
e

~m2/s3!
h

~mm!
x

~°C2/s! Rl

2LMO

~m!

1 0.01 1.9 0.083 0.32 5.6 0.67 0.82 0.27 0.064 2330 164.8
2 0.01 0.9 0.066 0.23 4.5 0.58 0.54 0.30 0.027 1712 528.9
3 0.035 4.0 0.10 1.00 2.2 0.27 1.0 0.26 0.76 507 25.73
4 0.095 7.0 0.10 0.81 2.0 0.27 0.23 0.37 0.87 1776 21.19
5 0.20 9.4 0.091 0.65 2.5 0.29 0.079 0.49 0.51 1997 23.80
6 0.32 9.2 0.090 0.64 2.6 0.24 0.071 0.50 0.29 3119 14.66
7 0.45 5.9 0.081 0.63 1.9 0.13 0.017 0.71 0.071 3735 4.34
8 1.40 ••• ••• ••• 2.25 ••• 0.0049 0.91 ••• 2900 •••
9 1.75 ••• ••• ••• 0.72 ••• ••• ••• ••• ••• •••
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mean velocityU was measured using a Pitot-tube and cr
checked against the hot-wire data. These velocities are
listed in Table I.

The other basic parameters listed in Table I, as a func
of the heighth above the ground, are the energy dissipat
rate e and the scalar dissipation ratex, both obtained by
assuming local isotropy, the Kolmogorov lengthh, and the
Monin–Obukhov lengthLMO . Local isotropy is not accurate
close to the ground but provides estimates that are better
other choices~e.g., the application of the Kolmogorov’s fou
fifths law3!. The Monin–Obukhov length is an indicator o
the stability of the atmosphere, and is computed here from
standard definition using the friction velocity~see Ref. 3!. ~In
free convection studies, one often uses the Rayleigh num
as an appropriate measure of buoyancy effects, butLMO is a
more suitable measure for present purposes. For the ext
cases of convective motion considered here, Rayleigh n
bers based on the estimated convection layer height rea
values as large as 1014.) Although our measurement
spanned both stable and unstable conditions of the at
sphere, we shall consider only the unstable conditions~i.e.,
LMO,0) because we want to maintain a semblance of si
larity to thermal convection. The Taylor microscale Reyno
numbers listed in Table I are thought to be sufficiently hi
for the inertial range properties to have attained Reyno
number-independence.

For the analysis to follow, we use Taylor’s hypothesis
convert time separationt to spatial separationr in the stream-
wise direction by usingUt5r . We avoid a discussion of its
limitations here, and refer for some details to Mi a
Antonia.23

III. THE TWO SCALING RANGES

The two scaling ranges are evident for the second-o
structure function in Fig. 2, and are shown by extend
dashed lines. The one toward the smaller scales is the
sical inertial range, while that for larger scales is the buoy
convective range. For the same two sets of data, we sho
Fig. 3 the local slopes in log–log coordinates and confi
that there indeed are two scaling ranges. The scaling e
nents are the same in the two cases for the inertial range
are different for the buoyancy range.~We will return in
Sec. V to a possible explanation for this difference.! The
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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fourth- and sixth-order structure functions, obtained from
same two sets of data, show scaling in the two regions
displayed in Figs. 4 and 5.

We would like to demonstrate that the use of ESS in t
instance—though otherwise very useful—could mask

FIG. 2. The second-order structure function for temperature fluctuations
~a! or 1.75 m above the ground~Utah desert flats!, and~b! 1.4 m~Connecti-
cut beach!. Shown by vertical arrows on the abscissae is the integral s
for the temperature fluctuation,Lu , computed from the integral of the au
tocorrelation function and the use of Taylor’s hypothesis. In all figures up
5, as well as 7, the full line is the scaling function described in Sec. IV.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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fact that there exist two scaling regions. Figure 6 shows
fourth-order structure function plotted against the second
the same two data sets as in Fig. 4. Figure 6 gives the
pression of a single slope through both regionsA and B,
which are the two distinct scaling regions of Fig. 2. T
reason for this is obviously that the ratios of the fourth-ord
exponent to the second-order exponent in both regions
not sufficiently different to show up as two separate lines
the ESS plot. While the data do not fall on perfect straig
lines, it is clear that two distinct slopes cannot be seen
practice.~For stable conditions of the atmosphere, the t
cases appear distinct even in the ESS plots, but we shal
consider them here.!

While the scaling ranges are generally clear in the t
sets of data just discussed, this is not so for every case
sidered here. For example, for the second-order struc
function shown in Fig. 7, the inertial and buoyant ranges
hardly distinguishable, and the plot of local slopes shows
best a glimmer of the two scaling regions nearA andB. It is
therefore useful to find an empirical expression that fits
structure functions in their entire range. From such fits,

FIG. 3. The local slopes for the second-order structure function, for
same data sets used in Figs. 2~a! and 2~b!. The horizontal line segment
correspond to power-law fits for structure functions, and mark the exten
scaling ascribable in the log–log plots.
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underlying scaling can be discerned even when it may no
evident from the primitive structure functions. The point
that, even when the scaling is not obvious from the log–
plots of structure functions, these fits allow us to assig
scaling exponent and determine the cutoff scales. The un
lying belief is that the scaling behavior that exists is bei
eroded on both sides of the scaling range—for example
the dissipation at the low end of scaling. This approach
discussed in the following.

IV. SCALING FUNCTION APPROACH

The present approach is based on an extension of sim
efforts for velocity structure functions in Refs. 7, 24, and 2
Other relevant references of the past include Refs. 26–
One of the principal uses of the scaling function has been
extraction of the inertial range scaling exponents.

One form of the scaling function incorporating both di
sipative and inertial range of scales is given by

S25
A2r 2

S 11S r

r 1
D 2D p1

. ~5!

e

of

FIG. 4. The local slopes for the fourth-order structure function. The d
sets are the same as in Figs. 2~a! and 2~b!.
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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Here, A2 is the mean-square temperature gradi
^(]u/]x)2& ~see Ref. 24!, r 1 is the crossover scale for th
dissipative to the inertial range, andp15(22z2)/2. To de-
scribe a second scaling range, we extend this form as

S25
A2r 2

S 11S r

r 1
D 2D p1

1

S 11S r

r 2
D 2D p2

. ~6!

The exponentp2 is related to the second-order scaling exp
nent in the buoyant convection range andr 2 represents the
crossover scale between inertial and buoyancy ranges
nally, we incorporate the property that the structure funct
asymptotes to a constant value for large scales, as follow

S25
A2r 2

S 11S r

r 1
D 2D p1

1

S 11S r

r 2
D 2D p2S 11S r

r 3
D 2D p11p221

.

~7!

FIG. 5. The local slopes for the sixth-order structure function. The data
are the same as in Figs. 2~a! and 2~b!. While the scaling function does not fi
the dissipative range of scales well in~b!, it adequately fits the inertial and
buoyant convective regions, these being the objects of attention here.
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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FIG. 6. The fourth-order structure function for temperature as a function
the second-order structure function. The data are the same as Figs.~a!,
circles, and 2~b!, crosses. To avoid clutter, data for the former are multipli
by 10. The scaling ranges marked in Figs. 3 are shown here as intervA
andB.

FIG. 7. The second-order structure function for temperature and its l
slope as a function of the scale separation for the height of 3.5 cm from
ground.
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Here r 3 is the crossover scale from the buoyancy range
where the structure functions become independent of
separation distance.

It is easy to see that Eq.~5! is equivalent forr @r 1 to

S2;r 2~12p2!, ~8!

while Eq. ~6! is equivalent forr @r 1 and r !r 2 to

S2;r 2~12p1!. ~9!

Similarly, Eq. ~6! is equivalent forr @r 2 and r !r 3 to

S2;r 2~12p12p2!. ~10!

In addition, forr @r 3 , Eq. ~7! yields

S2;constant, ~11!

which is consistent with the behavior in Fig. 7. In practic
this constant region shows up only when the data records
sufficiently extensive.

Formula~7! can be generalized for thenth order struc-
ture functionSn as

Sn5
Anr n

S 11S r

r 1n
D 2D p1n

1

S 11S r

r 2n
D 2D p2n

3S 11S r

r 3n
D 2D p1n1p2n2n/2

. ~12!

The local slopes of the structure functions in log–log plo
based on models~5!–~7!, are given, respectively, by

d~ logS2!

d~ log r !
5222p1S r

r 1
D 2 1

11S r

r 1
D 2 , ~13!

d~ logS2!

d~ log r !
5222p1S r

r 1
D 2 1

11S r

r 1
D 2

22p2S r

r 2
D 2 1

11S r

r 2
D 2 , ~14!

d~ logS2!

d~ log r !
5222p1S r

r 1
D 2 1

11S r

r 1
D 2

22p2S r

r 2
D 2 1

11S r

r 2
D 2 12~p11p221!

3S r

r 3
D 2 1

11S r

r 3
D 2 . ~15!

For thenth order structure function formula~12!, the local
slopes are
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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d~ logSn!

d~ log r !
5n22p1nS r

r 1n
D 2 1

11S r

r 1n
D 2

22p2nS r

r 2n
D 2 1

11S r

r 2n
D 2 12S p1n1p2n

2
n

2D S r

r 3n
D 2 1

11S r

r 3n
D 2 . ~16!

Full lines in Figs. 2–5 and 7 correspond to the fits just d
cussed. The curve fits follow the data more or less faithfu
~with the largest discrepancies arising only in the dissipat
range for the sixth order!, thus enabling a reasonably trus
worthy determination of the scaling exponents and cut
scales for both scaling ranges. These results are prese
and discussed in the following. They are obtained by fitti
the structure functions themselves, but fitting the local slo
does not produce very different results.

V. PRINCIPAL RESULTS

Figure 8 shows the variation of the scaling exponen
for both ranges, as functions of the height from the grou
There is an increasing trend with height forh/h1,5 ~say!.
The exponents approach constant values far away from
ground. These basic features for all orders are the same,
though, perhaps not surprisingly, the scatter increases
the order of the exponent.~The scatter may also reflect th
effects of other flow features not accounted for in this d
cussion.! For comparison, the Kolmogorov exponents app
priate to the inertial range are 2/3, 4/3, and 2, respectiv
The measured exponents are substantially smaller, even
away from the ground. The degree of anomaly~i.e., magni-
tude of the departure from the Kolmogorov values! agrees
with what is known from the literature, e.g., Refs. 5, 6, a
8. It is often thought~see, e.g., Ref. 11! that the buoyant
convective range is governed by the considerations du
Bolgiano29 in stably stratified atmosphere~see, also, Ref. 3
for a description!; indeed the second-order exponent aw
from the ground is close to the predicted value of 0.4. B
the asymptotic exponents for fourth- and sixth-order str
ture functions are substantially smaller than the Bolgia
values (50.2n, wheren is the order of the scaling expo
nent!. There is strong anomaly also in the convective regim
At present, there is no theoretical understanding of this
sult.

It is now useful to return to a brief explanation of th
differences in the scaling exponent in the convective regi
in Figs. 2~a! and 2~b!. We have shown in Fig. 8~a! that this
exponent depends on the distance from the ground when
distance is small~i.e., h/h1 less than about 5 or 10!. On this
basis, the data of Fig. 2~a! can be expected to correspond
h/h1 of 5 or larger, while Fig. 2~b! to h/h1 of about 3. The
sparse mean temperature data obtained at the two sites
cate that this is likely to be the right explanation.

We now examine the variation of crossover scales a
function ofh ~Fig. 9!. The scaler 1 varies nearly as a quarte
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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power of the distance above the ground, indicating that
cutoff scale between the dissipative and the inertial range
a multiple of the Kolmogorov scale.~This is so because
log-region present in the atmosphere implies an inve
linear variation of the energy dissipation and a quarter-po
variation of the Kolmogorov scale.30! The two points that lie

FIG. 8. The scaling exponents for the two ranges for structure function
order 2~a!, order 4~b!, and order 6~c!. The two pairs of values for the sam
height correspond to two different probes at the same elevation,3, inertial
range; circles, convective range.
Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP
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above the mean line correspond to nearly neutral conditio
suggesting perhaps that the stability of the atmosphere
some bearing on the cutoff scaler 1 as well, but we do not
have extensive enough data to analyze this suggestion c
fully. The cutoff scaler 2 , marking the boundary between th
two scaling regimes, seems to scale onh1 . The present un-
derstanding~see, e.g., Ref. 11! is that this cutoff scale migh
correspond to the Bolgiano scale.29 We cannot, however
confirm this assertion. The cutoff scale marking the up
end of the convective region increases with the height fr
the ground. We have attempted to scaler 3 by the integral
scale and the Monin–Obukhov length but cannot decide
the proper scaling.

VI. CONCLUSIONS

We have explored the scaling character of tempera
fluctuations within about 2 m from the ground over a h
desert. In many respects, the flow conditions here corresp
to the high-Rayleigh-number convective flow in a clos
container, with the difference that the thermal boundary la
can be explored in detail. We have observed two sca
ranges for the second-, fourth-, and sixth-order struct
functions of temperature fluctuations. Both ranges are
served even close to the ground. High-order structure fu
tions could not be analyzed for reasons of inadequate c
vergence. The classical inertial range seems to remain in
~except perhaps for a slight modification of the inner cut
scale,r 1), and the exponents approach values appropriat
the intermittent case of isotropic turbulence. The behav
for the buoyant convective range is consistent with the
servations of Zhou and Xia13 for the thermal convection in
closed containers. The exponents in this range are
strongly anomalous~i.e., significantly smaller than plausibl
dimensional estimates would suggest!.

of

FIG. 9. The variation of the crossover scalesr 1 , r 2 , and r 3 against the
height from the ground. The slope of the fitted line forr 1 is 0.26 and forr 3

is 0.54.
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We have also obtained the variation of the crosso
scales with the height from the ground. The scaler 1 , which
marks the crossover from the dissipative to inertial ran
seems to scale with the Kolmogorov scale, though the
merical value may depend on the strength of convection.
scaler 2 scales withh1 , while r 3 increases withh, and ap-
pears to be influenced by buoyancy in some undeterm
manner.

Finally, we wish to note that the use of ESS would d
minish the distinction between the two scaling regimes, t
leading to incorrect conclusions.
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