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Abstract.

We have recently conducted a series of experiments on turbulent convection in the
range of Rayleigh numbers between 10° and 10'” (Niemela et al. 1999). The working
fluid is cryogenic helium gas. The eleven decades of dynamic range enable us to make .
a few conclusive observations. Among them, the following aspects are noteworthy.

1. Scaling of the heat transport

‘The Nusselt number, Nu, scales with Ra according to Nu =
0.124 R0-30940.0043 essentially over all eleven decades of Ra (Fig. 1)!.

The data can also be fitted equally well by a 3/10'*S power of Ra
with logarithmic corrections, Nu ~ (Ra®?21n Ra®?)Y/5. The form of
this latter expression is derived from a weakly nonlinear theory for
conditions just past the onset of convection. This theory, due in various
stages to the efforts of Howard, Roberts, Stewartson, and Herring (see
also Toomre et al. 1977) consists of calculating the steepest variation
of the Nu by a single- mode solution of weakly nonlinear convection.
The functional form fits the data very well, but the coefficient in front
is measured to be smaller by a factor of about 4. Regardless of its per-
ceived applicability, we note that the number of adjustable parameters
in this expression is only one (namely the prefactor); even the simple
power-law fit has two unknown coefficients. The Rayleigh number span
of the data is large enough to rule out, for the present convection cell,
the classical 1/3™ power (Malkus 1954, Priestly 1959) and the more
recent 2/7" power (Castaing et al. 1989, Shraiman and Siggia 1990).
In particular, we do not observe a transition to Kraichnan’s (1962)
asymptotic regime (see also Howard 1963, Doering and Constantin
1996). This observation is consistent with the recent finding of Glazier
et al. 1999. Over the Rayleigh number range covered in the experiment,
it is possible to discern the differences between the formula culled from
the weakly nonlinear theory and the upperbound result of Constantin

! The precise value of the exponent depends on how well one knows the physical
properties of helium gas. We have used the most recently available standard data.
Sce Nicmela ct al. (2000) for some details.
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Figure 1. Log-log plot of the Nusselt number versus Rayleigh number. The line
through the data is the least squares fit over the entire range of Ra.

and Doering (1999) for the case of very large Prandtl numbers, namely
Nu < Ra'/3(1 + log Ra)?/?

2. The mean wind

The so-called mean wind is the strong recirculating motion in the con-
vection cell. At low Rayleigh numbers it does seem to exist in the form
of unidirectional circulation, but the situation is complex at high Ra. If
averaged over a suitable intervals of time, a semblance of the mean wind
can be observed in this latter regime as well, but it is small compared
to the free-fall velocity by a factor of 10 to 30 (depending on details of
how the mean wind is estimated). In particular, this mean wind seems
to alternate its direction quite frequently (Fig. 2a). This conclusion
is not based on a direct measurement of velocity, but on correlating
signals from two neighboring temperature probes. By necessity, the
measurement technique does not discern velocity fluctuations whose
time scales are smaller than the averaging time scale. If the averaging
time becomes smaller, the distinctly bimodal nature of the distribution
disappears (see Figs. 2b and 2¢). Thus, a realistic picture may be one
of weak large-scale circulation, upon which strong small-scale velocity
fluctuations are superimposed. This does not necessarily mean that
the theories invoking mean wind are incorrect: for their purposes, the
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Figure 2. A rough measure of the large-scale velocity in the cell. The data are
obtained by correlating the temperature signals from two neighboring probes, al-
lowing for a time delay from one of them so as to maximize the correlation. The
correlation is obtained by averaging the two signals over a certain amount of time.
These time scales are different for the three cases shown here (180s, 60s, and 20s
for {(a), (b) and (c) respectively). By construction, velocities corresponding to time
scales smaller than the averaging time cannot be discerned from these measurements.
The distinctly bi-modal nature seen in (a) becomes less clear as the averaging time
becomes smaller. The conclusion appears to be that the so-called mean wind is a
manifestation of the large scale when small-scales are suitably averaged out.

shearing motion established by the somewhat random large-scales is
perhaps adequate.

3. Prandtl number variation

In general, the Nusselt number depends not only on the Rayleigh num-
ber (the dynamical parameter), but also on the Prandt! number (which
is a fluid property) and the aspect ratio (a geometric property). In our
measurements, the Prandtl number (Pr) was constant up to an Ra
of 10!3 . Beyond this, Pr eventually increased to about 30 (Fig. 3),
staying less than or of order unity for Ra up to 10'% and increasing and
increasing to a maximum value of about 30 at the highest Rayleigh
number. Using the first seven decades of the Rayleigh number avail-
able in the regime of strictly constant Prandtl number, we obtained
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Figure 3. The Prandtl number corresponding to different Rayleigh numbers mea-
sured. The Nusselt number data for the first seven decades of Rayleigh number,
over which the Prandtl number is strictly constant, are fitted by a power law in this
figure. This power-law is given by Nu = 0.132Ra%3%

the Rayleigh number scaling at fixed Prandtl number;this power-law
fit is given by Nu = 0.132Ra%3%, This does not differ significantly
from the fit obtained earlier (Fig. 1) for the entire range of Ra. This
means that the Prandtl number effects are relatively weak for Pr in the
range considercd here. These small cffects can be estimated, assuming
that no other transition occurs, by plotting the variation of the ratio
Nu/0.132Ra%3% against Pr. Thisis done in Fig. 4. The Nusselt number
ratio decreases weakly for increasing Prandt]l numbers. If this decrease
is fitted by a power law, even if less than convincingly, we obtain the
Prandtl number effect to Pr=%9, Taking these results in conjunction
with an earlier study of Verzicco et al. (1998) at low Prandtl numbers,
we suminarize the Prandtl number variation as follows:

Nu~ Pro%  for Pr<0.1
Nu~ Pr for 0.1 <Pr<5b
Nu~ Pr~90 for Pr>5.

This last formula is not inconsistent with the theory of Shraiman &
Siggia (1990).
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Figure {. An estimate of the effects of variable Prandtl number. The ordinate is the
measured Nusselt number divided by 0.132Ra®3®, the latter being the fit to the
data in the region of constant Prandt] number. If the variability scen in the data is
attributed to Prandtl number changes, we obtain, roughly, something like P00

4. Aspect ratio variation

The present experiments pertain to a fixed aspect ratio of 1 /2. In order
to get a sense of the effects of the aspect ratio, we collected various
data on how the Nusselt number varies with aspect ratio, keeping both
Rayleigh and Prandtl numbers fixed. This issue has been discussed by
others (e.g., Castaing et al. 1989) before, but we carry it one modest
step further. Figure 5 shows the results. To the lowest approximation,
the Nusselt number decreases with increasing aspect ratio; the aspect
ratio ceases to be important probably when it is as high as § to 10.
Perhaps the increase for smaller aspect ratio is related to the increased
importance of side-wall boundary layer. In detail, however, the Nusselt
number dependence appears to be non-monotonic (see the dashed line
in Fig. 5). That particular behavior is not understood, but is perhaps
related to the accommodation of the most efficient heat transfer modes
(largest scales) by the finite geometry. If so, it must vanish in the limit
of very large aspect ratio, as it indced scems to do.
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Figure 5. Effects of aspect ratio on the Nusselt number by fixing the Rayleigh
number and the Prandtl number. (The latter is not strictly constant but does not
vary over a large range, and the Pr variation over that range is small.) The data arc
normalized to those at Ra = 108, and are extracted from the following references:
Rossby (1969), Garon & Goldstein (1973), Chu & Goldstein (1973), Threlfall (1975),
Tanaka & Miyata (1980), Wu (1991), Chavanne (1997), and Niemela et al. (1999).
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5. The dissipation rate

A few comments can be made on the dissipation rate in the convec-
tion cell. By integrating the equations of motion satisfying the Boussi-
nesq approximation,it is possible to derive an exact equation for the
turbulent cnergy dissipation averaged over the cntire cell. The rcle-
vant expression for the non-dimerisional dissipation rate is (Nu —1)Ra
(Howard 1963). This quantity is plotted in Fig. 6. There scems to be a
unique power law for all Rayleigh numbers, as could have been guessed
from Fig. 1. This power-law exponent is measurably distinct from 3/2
the latter being the expectation from Kolmogorov-type dimensional
arguments.

Grossmann & Lohse (1999) have split the energy dissipation into a bulk
contribution and the boundary layer contribution. Another parameter
to contend with is the ratio of the thermal boundary layer to that of
the momentum boundary layer. Depending on which effect dominates,
these authors propose different power laws for the Nusselt/Rayleigh
number relation; they note that, in a phase plane of Ra — Pr, differ-
ent areas can be expected to have different scaling exponents. This
is depicted in Fig. 7. The present experimental data are overlaid on
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Figure 6. The product (Nu-1)Ra, which is the average energy dissipation in the
whole convection cell, as a function of Ra. It is fitted essentially by a single power
law, this being different from the 3/2 power expected by dimensional argument of
the type employed by Kolmogorov in his 1941 theory.

that diagram. Although linear combinations of different power laws can
mimic a single power law relationship over many decades (as noted by
Grossman & Lohse 1999), no statistical advantage is gained over fitting
the data with just one value of the power-law exponent, and the lat-
ter’s simplicity makes its use somewhat more compelling. One possible
explanation for why a single power law distinct from 3/2 can correctly
describe the data is that the energy dissipation contained in the bound-
ary layer never becomes unimportant (as would have to be the case
beyond some Rayleigh number if the Kolmogorov scaling werc to be
valid). If, on the other hand, the boundary layer contribution remains
the same fraction of the overall dissipation at all Rayleigh numbers,
the power-law cannot be estimated by dimensional argnments. This
may well be the case because, although the boundary layer becomes
progressively thinner and occupies smaller volume at increasingly large
Ra, the relevant velocity gradients within the boundary layer become
correspondingly larger. It is thus conceivable that the boundary layer
contribution to the dissipation never ceases to be important.

In order to test this idea, it is necessary to measure the boundary layer
in detail. This has not yet been done. For a partial explanation, one can
turn to the case of turbulent boundary layer flows, and inquire if the
so-called wall region carries increasingly smaller or larger fraction as
the Reynolds number is increased. Relegating details to another place,
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Figure 7. The different scaling regimes proposed by Grossmann & Lohse (1999) in
the Pr-Ra plane. The darker regions are prohibited. The theory assigns a separate
scaling exponent to each of the other regions. The interpretation is that the power
law observed in an experiment is a superposition of morc than one of those basic
power laws. The present data are superimposed on this phase plane. They show that

- the data span more than one of the scaling regions of Grossmann & Lohse (1999),
implying that the present power law is possibly a superposition of more than one of
the basic power-laws. This exercise yields a reasonable fit to the data, but does not
necessarily verify the basic tenets of the theory.

we simply note here that the basic idea presented here appears to be
borne out roughly.

6. Concluding remarks

We have considered some aspects of high-Rayleigh-number convection.
These aspects include the scaling of heat transport, the so-called mean
wind, the effects of variable Prandt]l number and aspect ratio, and the
scaling of the energy dissipation rate. The problem of convection is
extremely rich, and we have merely added to the existing knowledge
on a few of its facets. Not all data acquired in our apparatus have been
analyzed at this date. In particular, temperature fluctuation data from
multiple probes have not yet been analyzed. We hope to be able to do
this socon.
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