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We make an attempt at obtaining the scaling exponents for the anisotropic components of structure functions
of order 2 through 6. We avoid mixing these components with their isotropic counterparts for each order by
using tensor components that are entirely anisotropic. We do this by considering terms of the isotropic sector
corresponding t¢g =0 in the S@3) decomposition of each tensor, and then constructing components that are
explicitly zero in the isotropic sector. We use an interpolation formula to compensate for the large-scale
encroachment of inertial-range scales. This allows us to examine the lowest order anisotropic scaling behavior.
The resulting anisotropic exponents for a given tensorial order are larger than those known for the correspond-
ing isotropic part. One conclusion that emerges is that the anisotropy effects diminish with decreasing scale,
although much more slowly than previously thought.

PACS numbds): 47.27.Gs, 47.27.Jv, 05.40a

[. INTRODUCTION thus determined, for the second-order structure function, the
scaling behavior of the anisotropic parts in addition to that of
It has recently been recognizgt-3] that finite shear can the isotropic part. The conclusion was that the anisotropic
have a profound effect on the scaling of structure functionsparts for the second-order had a larger exponent, implying
At least two attempts have been made to understand thethat anisotropy decreases with scale size. These estimates
quantitatively. The attempt made in REf] used conditional were consistent with classical expectations from dimensional
statistics to guide the extraction of shear-free scaling, thgrounds[4].
conditioning variable being a large-scale velocity representa- Though this procedure was successful, it was somewhat
tive of shear effects. In Ref$2] and[3], we considered a unsatisfactory because the unavoidable mixing of the isotro-
more formal—and potentially more powerful— approach. Inpic and anisotropic contributions and the number of variables
this approach, the experimentally measured structure funder which least-square fits had to be performed. The imple-
tions were considered to be mixtures of the isotropic partmentation of the procedure became increasingly cumber-
and higher-order anisotropic parts. The isotropic part wasome for high-order tensors. In this article we take a new and
extracted by projecting the measured structure functions ontmore direct approach for extracting anisotropic exponents by

the isotropic sector of the 38) decomposition. considering only those tensor components that are explicitly
Specifically, we considered the well-known second-orderzero in the isotropic sector, so that whatever is measured
structure function tensor derives its contributiorentirely from the anisotropic sector.
We can use the present method in principle to examine the
S"(R)={(u*(x+R)—u*(x))(uf(x+R)—Uuh(x))), anisotropic contribution of tensors afy order without re-

(1) quiring the knowledge of the particular mathematical form of
the anisotropic sectors of these tensors. This is a considerable
whereu“ represents the velocity component in the directionadvantage theoretically because the high-order tensors are
« andR is the separation distance between the two positionfontrivial to compute; it is an advantage experimentally be-
whereu® andu” are measured. In this expression, we shallcause, unlike in numerical simulations, one can measure only

represent the vertical axis as direction 1 and the hOI’iZOﬂtégome components for Simp|e geometric arrangements
streamwise direction as 3, in contrast to the usual converof probes.

tion. If the separation vectdR is in the streamwise direction There is also an urgent reason for our interest in the scal-
represented byr= =3, we recover the longitudinal struc- ing exponents of the anisotropic components. As we have
ture function. Purely transverse components result wien already indicated, a point of interest in turbulence theory is
=B=1 with R along the direction 3, or whea= =3 and the rapidity with which anisotropic effects of shear decay
R is along direction 1. Longitudinal as well as certain trans-with decreasing scale size. These effects for passive scalars
verse components of the structure function were previouslylo not seem to vanish at small scales no matter how high the
studied[1-3] in order to extract their anisotropic scaling Reynolds numbef5], but it has been generally thoug[]
behaviors. In general, these functions display a mixture othat they vanish for velocity fields in conformity with dimen-
j=0 (isotropig and higher-ordej (anisotropi¢ components sional expectations. Recent indications from high-order sta-
of the S@3) decomposition with a corresponding mixing of tistics of certain transverse componefit have cast doubt

the scaling behavior of the different sectors. Our proceduren this outlook; they suggest that the anisotropic effects do
involved fixing the known isotropic exponef and varying not diminish at any scale for certain high-order moments,
the fit parameters to solve for the unknown lowest-order aneven at sufficiently high Reynolds numbers. To explore this
isotropic scaling exponeng(zz), from the j=2 sector. We issue further, it is necessary to measure scaling exponents
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TABLE |. Measured parameters of data sets. The large dcédeconsidered to be of the order of the
height from the ground.

Height U, T 10%(€) 7 A fs,per # of samples
(m) mshH  msH (M3  (mm (cm) R, channel(Hz) per channel
0.11 2.67 0.47 6.6 0.47 2.8 870 5000 xa0°
0.27 3.08 0.48 2.8 0.60 4.4 1400 5000 X 40P
0.54 351 0.50 1.5 0.70 6.2 2100 5000 X 40P

associated with anisotropic effects. This is our goal for thisthe streamwise and vertical components of the velocity. For
article. each of these heights, Table | shows, among other things, the
In Sec. Il we describe the experimental conditions and thenean velocitiesU, root-mean-square fluctuatiam, in the
tensor components are identified, and summarizes the resuligeamwise Taylor microscale, and the mean dissipation rate
of the analysis. The results obtained in the second-order arg hased on assumptions of local isotropy and Taylor's hy-

in close agreement with the result thdf)~4/3, obtained pothesis, given by = 15v(dus/dx;)2. In all cases, the tur-

previously.(In this article, we are not seeking the accuracyy, oo .o intensityJ’/U<20% which allows us to use Tay-
required for obtaining intermittency anomalies in the numeri-__, >3 . .
lor's hypothesis to surrogate time for space, usRigUst in

cal values of the scaling exponent$he anisotropic scaling Il that follows

exponents for objects of order 3 through 6 are presentea '

here. The paper concludes with a summary of results in Sec.

IV. A tentative conclusion is that the effects of anisotropy do IIl. METHOD AND RESULTS
vanish with decreasing scale, albeit more slowly than gener-

) A. The second-order structure function
ally believed.

We first consider the second-order ten&3f#(R). Isot-
ropy implies that this tensor can be expressed as a linear
combination of two terms3“? andR“R?. As is well known,

Three cross-wire probes were arranged at heights of 0.110th terms give nonzero contributions to longitudinal as well
0.27, and 0.54 m above the ground at the Dugway testing sit@S transverse components, correspondingrteg. For «
in the Utah desert. The probes are positioned in the strongly 8 these two terms are identically zercHfis taken to be in
sheared part of the boundary layer, normally thought to bdhe streamwise direction 3. Therefore, we compute the so-
the logarithmic region. The ground was level and smooth focalled mixed structure function
upstream distances of the order of a mile, and the measure-
ments, which were made between 6 PM and 9 PM, corre- SR =((u¥(x+R)—uP(x)) (U (x+R)—u'(x))), (2)

sponded to nearly neutral conditions of the atmosphere. The .
wind conditions were light but steady in direction. The situ-Where’ as already noted, the superscripts 1 and 3 denote the

. . . \1ertical and streamwise components, respectively. This ob-
ation can be considered almost comparable to Wlnd-tunnee t is identically zero in the isotrobic sector. and so. an
boundary layers on smooth surfaces. Each probe measur&tf y P ' - any

II. EXPERIMENTAL CONDITIONS
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FIG. 2. Log—log plot of second-order mixed structure function

FIG. 1. Log-log plots of transverse structure functions at 0.54 mat 0.54 m. X denote data, the solid line is the interpolatiorit
X denote the second-order, O, the-fourth order, and the solid linesisible beyond arR of 10~ m because of the closely packed sym-
represent the interpolation fit. bols), and O correspond to the large-scale compensated function.
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TABLE Ill. Structure function calculated and the anisotropic
scaling exponents for the data at 0.27 m.

Order
n Tensor A, B, C, D, {®=n-2c, ¢
Sis 9.4  0.005 0.44 0.52 1.12 0.7
stit 6940 0.015 0.89 2.78 1.21 1
S8 2.1x10* 0.014 1.23 0.23 1.54 1.26

SHL 59x10" 0.028 1.58 3.52 1.84 1.56
S3331L 2 7% 10 0.038 2.00 0.34 2.00 1.71

o Ok wWwN

Ref. [8] for structure functions of arbitrary order. It has the

form
1Ufo“‘ 1078 1072 107" 10° 10’ 102 N n
A R/
R Stz n(R)= ”B" (R, T (1+Dy(RIL)ZR™,
—+ n
FIG. 3. Log-log plot of second-order mixed structure function at ( n(RI7)%) 3)

0.27 m. The legend is the same as for Fig. 2.

where A, B,, C,,, andD, are variable parameters. This
scaling behavior that it obeys should come solely from anformula is an extension of that given in RE®] and includes
isotropy. By computing Eq(2) and examining its scaling, a large-scale term. Such extensions have been attempted ear-
we intend to extract the purely anisotropic scaling behaviolier (e.g., Ref.[10]), but Dhruva[8] has shown that the
in the j=2 sector, uncontaminated by any isotropic scaling,present interpolation formula works extremely well for lon-
in contrast to the case of either longitudinal or transverseyitudinal structure functions of order 2, 4, and 6. To rein-
structure functions. force this point, we test its performance by comparing it to

This statement provides us the motivation for examiningthe measured transverse structure functies,8=1, R in

the measured structure functio®(R) at each height. the direction 3. For each data set, the height of the probe is
However, as we shall see shortly, apart from the expeRfed assumed to be the large-scdle The fit is shown for the
behavior in the dissipative range and saturation at some largeansverse structure function of orders 2 and 4 at the 0.54 m
scale, there appears to be no distinct inertial range scalingrrobe in Fig. 1. The comparison between the formula and the
We suspect that this happens because there is poor scaleta is excellent. Taken together with similar conclusions in
separation, since the probes are fairly close to the ground; if8] for longitudinal structure functions, we conclude that the
fact, the large scalesvhich we expect to be of the order of interpolation formula describes the familiar structure func-
the height of the probe from the ground and larffi may  tions very well. For this pragmatic reason, we shall adopt it
be encroaching significantly into the inertial range. Wefor our purposes here, and test the robustness of the results
would be aided materially in our search for scaling if, some-obtained in the appendix.
how, the large-scale effects can be separated. One way of In the formula(3), the large-scale behavior is given by the
doing this is to write down an interpolation function that factor (1+ D,(R/L))?2"2. If the measured structure func-
models the entire structure function in its three different scaltion is divided by this factor, we should recover the contri-
ing regions—a dissipative range that scales RéevhenR is
of the order of the Kolmogorov scalg, a large-scale behav-  1¢
ior that tends to saturat@éndicating decorrelationas R gets
to be larger tharlL, and the intermediate inertial range for 1¢
n<R>L which may exhibit scaling. Through the use of the
interpolation formula, one can extract the scaling part in a 10
natural way. This is described below. v

.t
A suitable form of the interpolation function is given in Aw
[ae] \
_ _ - Z10%
TABLE II. Structure function calculated and the anisotropic @
scaling exponents for the data at 0.54 m. 10
Order 10°L,
n Tensor A, B, C, D, ¢(®=n-2C, ¢,
i 3.9  0.014 0.39 0.67 1.22 0.7 :
st 2400 0.010 0.93 2.28 1.14 1 1070 S S
S 5200 0.014 1.21 0.27 1.58 1.26 10 10 9 pm ©

S 1.22<10° 0.029 1.59 3.09 1.82 1.56
833111 3 75 10" 0.041 1.93 0.50 2.14 1.71 FIG. 4. Log-log plot of third-order transverse structure function
at 0.54 m. The legend is the same as for Fig. 2.
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FIG. 5. Log-log plot of third-order transverse structure function
at 0.27 m. The legend is the same as for Fig. 2.

FIG. 7. Log-log plot of fourth-order mixed structure function at
0.27 m. The legend is the same as for Fig. 2.

bution of the remaining parts—in particular the inertial rangerespectively. This places the theoretically expected value of
part, with the leading order scaling exponent given by 2~4/3 within 1.5 to 2 standard deviations of the present

—2C,. value. This result is consistent with general expectatfds
Figures 2 and 3 display a second-order anisotropic strucand the findings of Ref.2].

ture function for two heights above the ground. Presumably
because of the finiteness of the Reynolds number and the
relatively large shear effect, the scaling in the intermediate
range n<<R<<L is not apparent. However, by dividing
out the large-scale contribution as described above, we see o
two distinct regions of scaling; the dissipative range-d®? In general, the tensor forms contributing to fre0 sec-
and the extended midrange which scales with exponent hd0r for tensors ofany rankn are composed of linear combi-
tween 1.22 and 1.12. The advantage of the scaling function {&tions of the Kroneckes-and the components @t along
thus evident: it has allowed us to unequivocally extract 4he tensor indices. The following is a list of isotropic tensor
scaling exponent that is most likely to be due to anisotropyCOntributions fgr rank 3 through 6: p

The values of the fitted parameters and the corresponding () N=3: 5aaﬁRy 5+ permutations, aggz“R 5Ry?

{® are given in Tables Il and Il for the probes at 0.54 and__ () n=4:a5ﬁ o7 o permutations5*"RYR” + permuta-

at 0.27 m, respectively. The error on the measuremeft,of tions, andr*R RZBR ;5 . B s

at 0.54 m is about 0.05 while at 0.27 m it is about 0.08. This  (il) n=5: & 5752 ;’ 5pir.mutat|ons, ORIRRE
gives an error on the estimates & of 0.07 and 0.11, + Permutations, an®*RFR7R'R";

B. Higher-order structure functions
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FIG. 6. Log-log plot of fourth-order mixed structure function at

0.54 m. The legend is the same as for Fig. 2.

FIG. 8. Log-log plot of fifth-order transverse structure function
at 0.54 m. The legend is the same as for Fig. 2.
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FIG. 9. Log-log plot of fifth-order transverse structure function  FIG. 11. Log-log plot of sixth-order mixed structure function at
at 0.27 m. The legend is the same as for Fig. 2. 0.27 m. The legend is the same as for Fig. 2.

(iv) n=6: §*As795"" + permutations, 5*#57°R+R”  functions we use the moments of thbsolute valueof the

+ permutations, §*’R’R°RFR” + permutations, and Velocity differences in order to obtain better convergence. In

RRPRYR°R“R". using the interpolation function we assume that the inertial
Based on the above considerations, it can be expected th@nge scaling of these anisotropic components is given by a

the structure function components that are zero injth@  single exponent(’ where the superscript denotes an isotro-

sector are: pic exponent without reference to the precjssector. The
compensated functiorf@ith large-scale effects removedre
(i) n=3: St (transversg S*3% shown in Figs. 4—11. The errors on the valug/3? obtained
are about 7% at 0.54 m and about 9% at 0.27 m. For com-
(i) n=4; S*3Lg3iL parison, the last column in Tables Il and Il gives the isotro-
pic scaling exponent of the same orfig}. The entries in this
(i) n=5: S (transversg S3311Lg3333L column are measurably smaller than the corresponding
nonisotropic exponents. This suggests that the isotropic com-
(iv) n=6; S383111g311111 5333331 ponent alone survives at very small scales.

IV. SUMMARY AND CONCLUSIONS
Note that the odd-order transverse structure functioaldis We h ted thod of extracti f anisotroi
wayszero in the isotropic sector. The functions we shall now € have presented a method of extraction of anisotropic
consider are given in the second column of Tables Il and |1 8Xponents that avoids mixing with the isotropic sector. We

For the case of the third- and fifth-order transverse structure
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R (m) FIG. 12. Log-log plot of the shear-stress cospectriapg(ks)

computed at 0.54 m. The inset shows a log—log pIdt30E 15(ks)
FIG. 10. Log-log plot of sixth-order mixed structure function at vs. k. The flat region indicates a region of scaling with exponent
0.54 m. The legend is the same as for Fig. 2. -2.1.
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TABLE IV. Second-orderz$?)=1.25+0.05. TABLE VI. Fourth-order:£{?)=1.61+0.13.

C, 0.35-0.1 0.35:0.05 0.3%-0.02 0.38-0.05 0.38-0.07 C, 1.21+0.07 1.12:0.09 1.15-0.03 1.29-0.1 1.2x0.08
(22) 1.31+0.2 1.30:0.10 1.21-0.04 1.24-0.10 1.23-0.14 512) 1.58+0.14 1.76-:0.18 1.70.06 1.42-0.2 1.58-0.16

do this by explicitly constructing the tensors that are zero inl© avoid duplication, we simply state the result that this
the isotropic sector. An operational step in the extraction oforrelation coefficient rolls off at the rate of —1/2 instead
the scaling exponents is the use of an interpolation formul@f the expected—2/3. It must be recalled that the dimen-
in the spirit of a “scaling function.” This method has al- Sional analysis assumes Kolmorogdd] scaling and there-
lowed us to examine anisotropic effects in structure functiofore does not account for possible intermittency corrections
tensors of order greater than 2 for the first time. The resultind the anisotropic sectors. o
anisotropic exponents are consistently larger than those The expectation in the light of the $8) formalism is that
known for isotropic parts at all orders. This strongly suggest& hierarchy of increasingly larger exponents, corresponding
that anisotropy effects decrease with decreasing scale. HoWe increasingly higher-order anisotropic sectftg], would
ever, the rate of decrease is much slower than expected frofi¥ist. This expectation appears to have been true in the case
dimensional argumentsvhich yield 4/3, 5/3, 2, 7/3, and 8/3 ©f the passively advected vector fielti3] where a discrete
for orders 2 through 6 spectrum of anisotropic scaling exponents is obtained theo-
Our conclusions are based on the use of the interpolatiofgtically for all anisotropic sectors. In the present experi-
formula, Eq.(3). However, we have shown that the formula Ments, the fact that the anisotropic effects can be fitted rea-
works very well in describing the measured structure func-sonably well by power lawgas seen from Figs. 2—11
tions. We have also performed tests of the robustness of ti@iggests that the high-order effects may be small. It is per-
formula by fitting it to smaller sections of the data in order tohaps true, however, that the power laws described here may
detect changes in the exponent. A discussion of these checkgntain high-order corrections, and that the exponents de-
and their results are presented in the Appendix. To the lowegtuced for the behavior of anisotropy may indeed undergo
order, the results are independent of Bysegment to which SOme revision when contributions from the other sectors of
the formula is fittedexcept, perhaps, when the fit is entirely the S@3) decomposition are also considered. In spite of this
for the dissipation range or the large-scale rangay other ~ Possibility, we wish to emphasize that the anisotropy effects
formula that works equally well will yield similar results. for each order of the structure function appear to be well
Even so, the formula is empirical, which is why we have notdescribed by something close to a power law with a single
paid much attention to the fact that the scaling exponent§xponent. This observation requires further investigation,
obtained for the two probe positions are slightly different,Poth theoretically and experimentally. Our main conclusion
and that the second-order exponent for 0.54 m is slightlys that the magnitude of the anisotropic exponents in each
larger than that obtained for the third-order. On the whole0rder indicate that the falloff from isotropy happens less
the trend is that the exponents become larger for larger ogharply than previously thought, but that they fall off never-
ders of the structure function. theless. The higher-order objects considered here have not
The most interesting conclusion of the present work isPeen studied extensively in the light of anisotropy. We hope
that the anisotropy effects vanish with decreasing scale mordat the present experimental results will provide an impetus
slowly than expected. That anisotropy effects persist at small? this direction.
scales can be seen already at the level of second-order sta-
tistics. To illustrate this point, we consider the one-
dimensional cospectral densitgr shear-stress cospectrum
E13(ks), which is zero in the case of isotropy. From dimen- ~ We wish to thank Brindesh Dhruva, Christopher White,
sional considerations, the scaling exponent for this object iand Itamar Procaccia for their continued collaboration.
—7/3 (see Ref[4]). Figure 12 shows the cospectrum com-
puted for 0.54 m. The inset shows that the cospectrum com-
pensated with a scaling exponent f2.1 is flat. To the ~APPENDIX: TESTS OF THE ROBUSTNESS OF RESULTS
extent that this is numerically smaller than 7/3, the decay of |, orqer to test the robustness of the interpolation formula,
anisotropy is slower than expected, even for second-ordefe performed the following additional calculations. We con-
quantities. The same conclusion can be drawn from the COligered the data from the probe at the height of 0.54 m. For
relation coefficient spectrum defined by each ordem of the structure function, we defined a “win-
dow” of data extending over two decades of the separation
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—Eyo(ks) scale,R. We first placed the lower edge of the window well
Ris(ks)= ) (4) inside the dissipation range and fit the interpolation formula
[Eq4(Ks)Eaa(kg)]H? to the data in the first window. We then moved the lower
edge of the window by half a decade and fit the formula to
TABLE V. Third-order: {)=1.14+0.11. the data in the next window. In this manner, we proceeded

until the upper edge of the last window corresponded to the
C; 0.99+0.03 0.95-0.04 0.88-0.07 0.910.04 0.96-0.08 largestvalue oR The entire range dRyields five windows.
() 1.01+0.06 1.16-0.08 1.3-0.14 1.2-0.08 1.r-0.16 We thus obtained five values of the paramelgrand calcu-
late the scaling expone@ff]z):n—ZCn in each case, giving




2212 SUSAN KURIEN AND KATEPALLI R. SREENIVASAN PRE 62

some indication of the robustness of our result. It is found that the mean value in each case is in close

Tables IV-VI present the results of performing theseagreement to the value of the exponents presented in the
checks on structure functions of the second-, third-, andnain text which were obtained by a fit to the entire range of
fourth-order. The mean and standard deviation of the expodata. This gives us some confidence in the use of the inter-
nent values are given in the caption for each table. polation formula.
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