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It is pointed out that, for microscale Reynolds numbers less than about 1000, the passive scalar
spectrum in turbulenshear flowsis less steep than anticipated and that the Obukhov—Corrsin
constant can be defined only if the microscale Reynolds number exceeds this value. In flows where
the large-scale velocity field is essentially isotrofas in grid turbulence the expected 5/3 scaling

is observed even at modest Reynolds numbers. All known data on the Obukhov—Corrsin constant
are collected. The support for the notion of a “universal” constant is shown to be reasonable. Its
value is about 0.4. €1996 American Institute of Physid$$1070-663(96)01801-4

I. INTRODUCTION o
(6%)= fo P(Ky) dK, )

It is well known that the heuristic ideas of Kolmogotov

lead to a simple formula for the inertial-range spectral den; : : .
i . . . be the one-dimensional spectral density of the scalar. Let
sity of turbulent velocity fluctuations. In particular, for the

so-called longitudinal spectrum, one has (x) be the rate of “dissipation” of its variance, given by
=2D 24 2+ 2. 4
¢(kx) — CK< €>2/3k; 5/3, (l) X <(00/5X) (59/3)/) (0’)0/02) > ( )
) o . Inthe inertial-convective range, dimensional analysis shows
where the mean-square velocity fluctuation in the longitudiy,4¢
nal directionx is given by

k) =Cyle) Y x )k >, (5)

2\
(u)= fo bk dk, @) whereC, is the Obukhov—Corrsin constant. The most seri-
ous past attempt in assessing the universalitg pfs that of

k, is the wavenumber component in the directiopnand  Monin and Yaglorfi and Yaglom’ although the issue has
(€) is the mean value of the energy dissipation rate. Thébeen raised periodically by others as wke, for example,
prefactor C,. is the Kolmogorov constant. In a previous Refs. 8—15.
paper’ the experimental support for the notion of “univer- We have examined all the spectra of which we are
sality” of C,—by which is meant that its numerical value is aware. The following few remarks concern the procedure
independent of the flow configuration and the Reynoldsused for determining@C,. First, the data examined here are
number—was examined. The conclusion was tigtwas from single-point measurements in which Taylor’'s hypoth-
roughly universal if the microscale Reynolds number ex-esis has been invoked to relate frequency spectrum to wave-
ceeded about 50: Increasing the Reynolds number increaseember spectrum. The effect of this plausible approximation
the scaling range but does not appear to alter the constaist not known precisely—despite a few laudable eff§rtéto
itself—at least to the extent discernible from the accuracy ofjuantify them—and no further comments will be made on
the data. While this conclusion should be tempered becaugbis matter. Second, all dissipation measurements in shear
the constant in the transverse spectra attains universality onflows have been made by assuming local isotropy for both
at much higher Reynolds numbers, the notion of a universahe velocity and scalar fields. The question of local isotropy
Kolmogorov constant seems plausible at “high enough”of the scalar is a matter of intense discussisee, for ex-
Reynolds numbers. ample, Ref. 18 for a recent summarand the effect of this

Our concern in this paper is the passive scalar mixed bypproximation will be remarked upon briefly. Third, when-
turbulence—for example, small amount of heat injected intaever the authors did not quote the valueQy themselves,
a turbulent flow—and the experimental support for the uni-we have plotted the compensated spectral quantity
versality of the so-called Obukhov—Corrsin constant, named (k,) = k>y (k) (€)*%(x) and determined that there was
after the two people who independently extended Kolmogorindeed a wavenumber region in whi¢h was reasonably
ov's arguments to the passive scatAfor the passive scalar, flat. Fourth, it appears that a consideration of possible inter-
one obtains various scaling regions depending on the ratio ahittency corrections is futle—as we shall see shortly—
the scalar diffusivity,D, to fluid viscosity, v (see, for ex- because the issue of the precise spectral exponent is infested
ample, Tennekes and LumRyWe shall restrict attention to  with even greater uncertainties. Finally, we shall plot the
the so-called inertial-convective range in which the localObukhov—Corrsin constant against the microscale Reynolds
Reynolds and Peclet numbers are large and the direct effeatmimberR, =u’\/v, whereu’ is the root-mean-square of the
of fluid viscosity and scalar diffusivity are unimportant. Let velocity fluctuationu in the direction of the mean velocity

0 be the concentration of the passive scalar andjlds,), and \ is the Taylor microscale. One could plot the data
definedvia against Peclet number instead, but this will not be attempted
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tailed experiments of Jayestt al3* These last-mentioned

authors emphasize that, in grid turbulence, a 5/3 scaling in
109 . va, temperature spectra occurs even when there is no such scal-
o ing for the velocity. Even earlier, Venkataramani and
o Chevray* had found that the temperature spectrum displays
s better scaling than the velocity field under the same condi-
tions.
§ 10° . . The situation appears to be the same even if the tempera-
0 10 % ture field is not homogeneouas long as the velocity field is
F 107 5 107 St 5 nearly isotropi¢. For example, the spectra measured by
= ° Bu% ° Jayeshet al3* in grid turbulence with linear mean tempera-
04 52 o % ® ture gradient show an unmistakable 5/3 region at modest
B D”u Reynolds numbers. It therefore follows that one can define,
105 4 103 B ,ﬁ' %, in grid turbulence, the Obukhov—Corrsin constant even at
10?2 1077 10° 10" 10° ® modest Reynolds numbers, and discuss the question of its
10°6 ' . ' universality.
102 107" 10° 10’ 10°

kg, cm-1

B. Shear flow turbulence
FIG. 1. The temperature spectral densifk,), and the compensated com- . . .
pensated quantity’(k,) (see insatplotted against the wavenumber com- The scalar spectrum in shear flows behaves quite differ-

ponent k, for one of the heated grid experiments of Lin and #n, ently. Although this was pointed out originally in Ref. 18 and
R, =150. The_flat region in the inset indicates that a reasonable, albeit smalpighlighted again’*f‘ it bears repetition here. Figurega and

5/3 region exists. 2(b) show the temperature spectra in two different shear
flows. While a credible power-law region exists in each of
the spectra, the roll-off rates are unambiguously less steep
than 5/3. As in grid turbulence, the scaling is better-defined
than that found in velocity spectra for the same conditions. A
plot of the spectral slope as a functionRf is shown in Fig.

3. We have included the spectra for all shear flows in a single
with au/ax replaced by—(1/U)(du/dt) according to Tay- Plot because a suitably defined non-dimensional shear rate is
lor's hypothesis. When the authors do not repRyt, as is comparable in all of them. To the extent that one can draw
the case for some atmospheric data, it is estimated from oth@ny conclusions from these scanty data, it appears that the
means and the manner of estimation is indicated. slope is a monotonic function d®, and asymptotes to the
expected value of 5/3 only foR,>1000 or so.(In lower
Reynolds number shear flows, it is conceivable that details of
generation of the flow are important to different degrees de-
ding on the manner of generation.

For these reasons, it was suggested in Ref. 18 that a

consider grid turbulence and shear flow turbulence sepad—igeml expectation for the scalar spectrum is of the form
Pk =C* (&)™ "Xk Xkl 72, (7)

rately.

here. In the literature to be examined beld®, is often
provided by the authors themselves, who usually obain
from the relation

A= (U2 /{(aulax)?))*2, (6)

Il. THE SCALAR SPECTRUM IN THE
INERTIAL-CONVECTIVE REGION

i . — . en
The first question to consider is whether the passive scaLz

A. Grid turbulence whereL is an integral scale of turbulenc€* =C0R;35/4

Temperature fluctuations can be produced in grid turbuand § are Reynolds-number-dependent constants)aisdhe
lence either by heating the turbulence-generating grid itselisual intermittency exponeffivhich is being ignored heye
(e.g., Refs. 19-27 or by heating a secondary device made  The conclusion is clearly that theealar spectra in shear
of fine wires or ribbon elements situated behind theflows cannot be used to define the Obukioerrsin con-
grid28252° (This latter scheme was used first by stant except at high Reynolds numbers,R000 and
Kellogg®®>—see also Ref. 31—for producing a spectrally lo- larger). This is so for yet another reason. In nearly all esti-
cal disturbance in grid turbulengdf the wires or ribbons, mates of scalar dissipation, one uses local isotropy and re-
with which the heating device is constructed, are operated ailaces the full expression in Ed4) by 6D{(d6/dx)?),
low enough Reynolds numbers, they shed no vortices of theiwhere the space derivative is approximated, as usual, by Tay-
own and add little turbulence to that generated by the gridlor’s hypothesis. This procedure is known to yield significant
There are other unconventional possibilities of the type use@rrors® in moderate-Reynolds-number shear flows.
by Lin and Lin3?In all these cases, the temperature spectrum We shall thus consider, among shear flows, only data
has a modest 5/3 regime for microscale Reynolds numbers iobtained in geophysical flows; even though geophysical
excess of about 50. This can be seen, for example, in Fig. flows are not well controlled, practitioners generally pick
constructed from the data of Lin and Lin, the concentrationconditions which are nearly steady—and thus provide valu-
spectra of Gibson and Schwatin water and the more de- able high-Reynolds-number data. One cannot, however,
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LOG. § FIG. 3. The variation of the spectral slopa,, from scalar experiments in
o0 . ! . various shear flows. For detalils, see Ref. 18 from where the figure is taken.
0 i 2 3 4 The spectral exponent approaches the expected value of 5/3 orfj foir
LOGye £ (f IN Hz.) the order 1000 or so. The smooth fit through the data is drawn chiefly as a
visual aid.

not the same, and we cannot discern from measurements any
simple order as to which of the two is the larger. We plot in
Fig. 5 the smaller of the spectral slopes of the normal and
transverse velocity components as a functiorRgfin vari-
ous shear flows. Despite the scantiness of data and large
scatter, it is clear that the transverse spectra do not possess
the 5/3 slope except, again, at large microscale Reynolds
numbers of 1000 and larger. It follows that Kolmogorov's
formalism applies to the whole velocity field, not just selec-
tively to a component, only wheR, is of the order 1000.
3
:

10°° 4

power spectral density

Stewart and Townsefitias well as Corrsiff® had in fact
estimated that comparable Reynolds numbers would be re-
quired for local isotropy—a precursor of universality—to be
observed.
10-1 100 1o 102 10° 10 We do not have a full understanding of why the longitu-
dinal velocity component possesses Kolmogorov spectrum at
requency, He far lower Reynolds numbers than transverse components.
The following remark might shed some light on the issue.
FIG. 2. The one-dimensional temperature spectmifh,), and, in the inset,  Consider two shear flows at about the same moderately large
the quantityk “y(k,) in two shear flows at moderate Reynolds numbers. microscale Reynolds number, say of the order 250, one of

(@ The flow is the wake of a circular cylindeR, =175, m,=1.33. The  which is homogeneou@with constant mean velocity gradi-
figure is essentially taken from Ref. 1@) The flow is the boundary layer

in an air-sea interaction wind tunneR, =616, m,=1.49. Data taken enb_ and the other is inhomogeneous, say m_the IOg?‘mhmIC
from Ref. 14. region of the boundary layer. Such comparative studies sug-
gest that, while the latter shows a 5/3 slope in the spectral
density of the longitudinal velocity componefsee, for ex-
overemphasize the need for high-Reynolds-number measurgmple, Fig. 6 of Ref. 38 the corresponding slope in the
ments of velocity and temperature under controlled condiformer case is less than 5(8ee, for example, Figs(@® and
tions. 2(b) of Ref. 46. In fact, this latter value is not inconsistent
with our expectations based on Fig. 4, and it stands to reason
that the spectral exponents would asymptotically attain the
expected value of 5/3. The main point is that, in homoge-
Even though the question of velocity spectra is not cenneous shear flows where there is no strong large-scale over-
tral to the paper, a brief digression is worthwhile because iturning and mixing, the moderate-Reynolds-number spectra
puts in perspective the behavior of scalar spectra. It wasf all velocity components possess exponents smaller than
indicated in Refs. 2 and 18 that, while the inertial-range5/3. The principal difference between the log-region of the
spectral slope for the longitudinal velocity in shear flowsboundary layer and the homogeneous shear flow may well be
attains the value of 5/3 foR,~50, the slope in the trans- that, in the former, the shear effect tends to be mitigated by
verse spectra does not asymptote excepRior 1000. Two  the large-scale transport which does not seem as significant
examples, one in a pipe fl6W[Fig. 4@] and another in a in the latter.
mixing layef’ [Figs. 4b)], will suffice to make the point. Be that as it may, it is easy to see that Figs. 3 and 5 are
Further, the slopes in the normal and transverse spectra aggite similar. This similarity, which we believe is not coin-

-9
1077 1 104 T T s
1001 10% 101 102 103 104

C. Velocity spectra
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FIG. 5. The variation of the spectral slops,, for transverse velocity
components in various shear flows, obtained from figures l{lag ahd (b).
The data were obtained from the following sources: Klebatfoffoundary
layer, normal velocity componerR, =230, m,= 1.49; Champagnet al.,*’
mixing layer, normal velocity component,R,=330, m,=1.55;
Comte-Bello® channel flow, normal velocity componenR, =370,
m,=1.44; Laufer® pipe flow, azimuthal velocity componenR, =450,
100 N T T T m,=1.41; Saddoughi and Veeravéifiboundary layer, normal and span-
wise velocity componentsR, =500, m,=1.45 (not a good power lay

10!

T T

102 10! 109 10! 102 R, =600,m,=1.53 and 1.58R, =1450,m,=1.62 and 1.67. GibscH,jet,
4 normal velocity componenR, = 780, m,=1.57; Grant and Moillief? tidal
Kx.cm channel, normal velocity componenR, =3000, m,=1.67. Everitt and
s Robbing® observe a similar behavior in plane jets, although it is hard to
to 3 determine the correct slope from their data. The smooth line through the
R e (b) data is drawn chiefly as a visual aid.
F e
103 _ _
% [ different Reynolds numbers. For example, the fractal dimen-
4 - . . . .
m; 102 sion of the scalar interface seems to att@hleast in some
S o E flows) an asymptotic value at far lower Reynolds numbers
5 i . than does the spectral density;indeed, Hunt and
el L) ™ . .
g 100 3 ., Vassilicod® have shown, using model calculations, that one
w0 F K can expect the fractal dimension to attain its asymptotic
? Ky value at lower Reynolds numbers than the spectral exponent.
102 f K On the other hand, there is some evidéfcBto suggest that
ottt el the scalar derivative skewness does not attain its expected
10-1 100 101 102

value of zero even at a microscale Reynolds number as high
ky, cm! as a few tens of thousands, which makes one wonder if all
aspects of the scalar field ever attain strict universality!
FIG. 4. Part(a) illustrates the fact that, at moderate Reynolds number, the

spectral density of the azimuthal component of veloeityjs less steep than
5/3 while the longitudinal component has the expected slope. The data arw' THE OBUKHOV-CORRSIN CONSTANT

from Laufer’s pipe flow’® R, =450, 68% of the radius away from the wall. Two preliminary comments are worthwhile. First. sev-
The normal component also has a smaller slope than 5/3, and is intermediate ’

between the two shown here. Pén} also illustrates the same feature in a eral a_Uthors define the Scalar Qissipation rat_e by half that

plane mixing layer measured by Champagreal®” The continuous line, ~used in Eq«(3), and so obtain twice the numerical value for

which parallels the longitudinal spectrutnot shown herg has the 5/3 the Obukhov—Corrsin constant. We have taken some care to
slope in a reasonable range of wavenumbers. The spectral density for ”ﬁresent data consistently. Second, one often denotes by

normal componenty, does exhibit a power law but with smaller slope. . ) ! .

R, =330, y/x=—0.015, Obukhov—Corrsin constant the prefactor in the three-
dimensional spectral density in wavenumber magnitude as
well as that in the second-order structure function for tem-

cidental, clearly suggests thain inhomogeneous shear perature increments. If local isotropy holds, the former is

flows the scalar field attains a semblance of universality onlyequal to 5/3C, and the latter is about 4.0€, (see, for

if the velocity field in its entirety is universahot just one of example, Ref. B

its components Table | presents data collected from grid flows where the

It should be stressed, however, that no unique value ofelocity field is essentially isotropic. If we ignore the data of

the Reynolds number can be specified for all aspects of thein and Lin2? where—as already emphasized in Ref. 23—

scalar field to attain approximate universality in shear flowsthe isotropy of the velocity field may be in some doubt be-

Indeed, it is conceivable that different aspects of the scalatause of the unusual grid configuration, there seems to be

field may attain different approximations to universality atremarkable consistency among the data: the Obukhov-—
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TABLE 1. Sources and Reynolds numbers for the passive scalar spectrum iROte that different authors use different methods to obtain
grid-generated turbulence experiments. Except for Gibson and Schwargcalar dissipation rate. Wyngaard and Godtebtained the

data®® which were obtained for salinity fluctuations in water, all other data temperature dissipation by measuring all other terms in the
correspond to temperature fluctuations in%air.

Remarks

Source Ry Cy
Gibson and Schwaf? 40-60 0.33—
0.44
Jayeshet al3* 30-130 —
Kistler et al1®20 26 —

Lanza and Schwa??Z 53 0.4

Lesieur and Rogalfd — 0.4

Lin and Lin* 150 0.60

Warharft and Lumle$f 45 —

Yeh and Van Att¥ 35 0.38

The favored value

seems to be about 0.35.
Authors do not quotg,,
but state consistency with
previous atmospheric data
from Ref. 50(and the
numerical data from Ref. 51
No 5/3 region was found
These data were available
for some time at the Johns
Hopkins University in the
form of an unpublished
report.

Obtained from Fig. @) of
authors’ paper. They quote
a slightly larger value of
0.53, but 0.4 seems to fit
their data better. Result from
large-eddy simulations.
The grid configuration
was unusual.

Heating introduced by
a secondary screen; no
good 5/3 region exists.
Same as Sepfi.

Ve have not listed the value of,Grom the data of Ref. 24 because our

energy budget of #?)—a procedure potentially subject to
some uncertainties; Paquin and Ptndbtained their tem-
perature data by a platinum resistance thermometer which
did not resolve fine-scale temperature fluctuations. Gibson
et al1° and Boston and Burling) Champagnet al.>° Will-
iams and Paulsof?, and Bradleyet al®® made temperature
measurements with fine coldwires and obtained temperature
dissipation from the well-resolved data, either by spectral
integration ofki;,//(kx) over the entire wavenumber range or
by directly obtaining((#6/x)?). Such measurements may
be expected to be more precise, but they disagree among
themselves. Data from Refs. 13, 50, and 60 yield a value of
C, of about 0.4 while those from Refs. 59 and 10 are two
and three times bigger, respectively. After presenting a care-
ful discussion of the data available at the tifRefs. 13, 50,
and 60 were not yet published at the timélonin and
Yaglon? puzzled over the peculiarity of the results of Refs.
10 and 59 but could not settle the issue. The resolution of
this paradox lies in noting that the measurements of Refs. 10
and 59 were made over the ocean while the others were
made over land, and that the spray of salt from ocean waters
contaminated the probes significantly. This issue was ex-
plored in Ref. 66, whose conclusions are best noted by the
following quote:

...surfaces of small temperature sensors (thermistors,

estimate from that reference leads to an absurdly low value of the ordethermocouples and resistance wires) commonly used in ma-
103, which clearly implies that something is amiss.

Corrsin constant is about 0.4, not too different from that
obtained in the very first set of measurements by Gibson and®
SchwarZ® or from that cautiously recommended in Ref. 7.
Before turning attention to the atmospheric measure-
ments summarized in Table 1l, some older Soviet literature’
reviewed in Refs. 6, 7, and 8 has to be considered brief
The principal source of those data appears to be Tsvaig’s
atmospheric measurements; some other early data, admit-
tedly of dubious value, have been discussed by Yadlom.
Gurvich and Zubkhovskif analyzed Tsvang’s data and ob-
tained a value of 0.34 fo€, for several stability conditions.

Gurvich and Zubkhovskii also evaluated, from short
records of their own atmospheric data, and obtained a value A petter sense for the behavior @, can be had by
of 0.44. The early measurements of TatarSkishich yielded
a substantially higher value, were deemed unreliable by Mogy R,. As already remarkedC, can be defined for grid
nin and Yaglorfi and Yaglom' Besides these data, there arerhylence at low Reynolds numbers and, for shear flows,
other spectral measurements of passive scalars in stabgmy past anR, of 1000 or so; for the latter, we have con-
stratified boundary layet$ and clear air turbulenc¥. The
scatter in these data} is so large that it is pointless to computg)| the relevant data plotted agairf. We find that there is

C, from them. Mention may also be made of ozone concenremarkable consistency between the grid data and the high-
tration variations due to atmospheric dispersfomhich do
not show a 5/3 region. As suggested by the authors of Repetween 0.3 and 0.5, suggesting a mean value of about 0.4.
58, this situation is akin to scalar mixing in two-dimensional compining this conclusion with the recommendation of Ref.

turbulence.

rine boundary layer experiments become contaminated with
salt spray when used over the ooea. thespray will exist as
saline drops on the probe surface. Thelatent heat of
porization associated with [the saline drop] evaporation
and condensation processes will cool and heat the sensors,
and therefore generate erroneous temperature signals
. most of the anomalous temperature results observed over

| he ocea ... may be due tepray-induced humidity sensitiv-

ity of such temperature sensors.

This remarkable study leaves little doubt that tGg
results of Refs. 10 and 59, pioneering as they were in the
implementation of cold wire technology to marine boundary
layer research, should now be disregarded.

IV. CONCLUSIONS

plotting the experimental data in their entirety as a function

sidered only high-Reynolds-number flows. Figure 6 shows

Reynolds-number shear flow data. They lie mostly in a band

2 thatC, is about 0.5, the turbulent Prandtl number, defined

The atmospheric data from Table Il seem to suggest, ifs the ratioC,/C,, is approximately 0.8.

one momentarily sets aside the data of Boston and Bdrling

The low Reynolds number measurements in shear flows,

and Gibsoret al, ™" thatC, lies in the range between 0.3 and sych as they are, do not contradict these conclusions; for
0.5. Before commenting on these two references, we Sho“'é’xample, see Ref. 67. Furthermore, Kairaghl 12 [see their
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TABLE II. Sources and Reynolds number for temperature spectra in geophysical flows.

Flow Source Height R\ Cy
Atmospheric Boston and 4 m above 4400- 0-8109°
Surface layer Burling tidal mud flat. 5500

Bradleyet al® Different heights 3800— 0.400.1°
from the ground. 9600
Champagne 4 m above flat land. 6200— -4102°
et al 9900
Gibsonet al® Different heights 2620 1.2
over water.
Kaimal et al1? Different heights. Not 0.4%10.04°¢
specified.
Paquin and Pord A few meters o(10% ¢ 0.41+0.06°
above water.
Williams and 2 m above rye grass. 1310 0.50
Paulson® 1410 0.44
1780 0.45
2130 0.45
2250 0.51
2600 0.47
3280 0.55
3960 0.53
4150 0.57
4170 0.51
4280 0.55
Wyngaard and Different 1800- 0.4M.05
Cote? heights. 10006
Tidal channel Grantet al® 9 Depths of 15 and 90 m 14,000- 0:80.06
below surface. 41,000

#The values quoted correspond to the mean and standard deviation over nineteen stes of data, all taken for
nominally the same conditions.

bThere were 14 sets of data in all with only one of thenRat=6600 showing a large deviation from others,
contributing most to the standard deviation. Parts of these data have been reported also by?Antonia.

“The authors obtained a very low value of the order 0.015 for the analogous constant in the spectrum of
humidity fluctuations.

9The authors do not provide adequate data for estimating the Reynolds numbers. From the familiarity with
similar conditions elsewherd, can be ‘guessed’ to be of the order of a few thousands. The Kolmogorov
constant quoted is the average over 16 runs.

€The authors also measured the prefactor in the humidity spectrum and obtained an identical value. This would
be the expectation from considerations of universality. See, however, footnote ¢ above.

This paper does not quote the microscale Reynolds number range covered in these experiments, and the
information has been taken from Wyngaard and Tenn&k@&he data analyzed by Wyngaard and Cdtre

subsets of the data analyzed by Kairaahl,'? according to this latter reference. The data were taken at heights

of 5.66 m, 11.3 m and 22.6 m from a 32 m tower and encompassed different stability conditions.

9Grantet al® did not quoteR, . Those given here are estimated by assumingRhat4(Uz/v)/?, whereU

is the mean velocity and is the probe depth below the surface. This seems a plausible result in the atmo-
spheric surface layer, see for example Ref. 66, but its validity for present circumstances is not clear. The square
root dependence in the above equation is probably correct, but the prefactor is uncertdi,. vithees vary

sizeably from one realization to another, and the average value given here applies to the entire range. One does
not have enough confidence in each set of data to plot them individually.

Fig. 1) and Bradleyet al®®[see their Fig. )] obtained data

100 for several stability conditions in the atmosphere and showed
. o8 that the effect of stability is negligible on the Obukhov-
c " o s Corrsin constant. This conclusion is consistent with the
e ® [ e ]

analysis of the less detailed measurements of TsVamg
Gurvich and Zubkovskif (see Fig. 83b of Monin and

107 r . . Yaglon?).
10" 102 10° 104 10° There is, in general, a larger moral to this story. It ap-
R, pears that there is enough reason to believe that approximate

FIG. 6. The Obukhov—Corrsin consta@, plotted againsR, . Diamonds _spectra! universa“_ty Ob_tains at high Reync’lds numbers. It !S
are for grid data, from Table |, squares for geophysical flows, from Table llinteresting that this universal behavior is already present in
(omitting data from Refs. 10 and 60, as explained in the)teMbst data ~ moderate Reynolds number grid turbulence. Thiusne is
form a band between 0.3 and 0.5, with 0.4 as a sensible average over th ; T ; :

entire Reynolds number range. A reasonable supposition is that the Reynolé@teres’[ed In q“‘?m'fy'”g unlvergal properties of turbulence
number trend, if it exists at all, is weak and difficult to discern with any Measurements in a grid experiment at a moderately large

certainty from these data. Reynolds number, say &R, of about 250, would be more
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