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Abstract

An issue to be faced in Direct Numerical Simulation (DNS) of turbulent
flows is the specification of the initial velocity field which resembles
closely the higher order statistics of experimentally observed turbulent
flows. In this article, we report an attempt to generate a divergence-free
artificial velocity field in three dimensions using ideas from the one-
dimensional synthetic turbulence model [1]. A straightforward extension
of the one-dimensional model proves to be computationally expensive,
but we propose a simplified version whose application to the DNS of
incompressible isotropic turbulence yields encouraging results.
Compared to random initial conditions, the proposed scheme leads to a
faster convergence of the derivative flatness and skewness of the
computed velocity field and the total vorticity exhibits a monotonic
decay with time. The simulations were performed on a 64 and a 96° grid
using standard DNS codes.

* This work was supported by a grant from AFOSR, while the first author was in
residence at ICASE.



1 Introduction

Over the last couple of decades, Direct Numerical Simulations (DNS) of the complete
Navier-Stokes equations have emerged as a leading tool for turbulence research (2, 3].
While the current constraints on computational speed and available memory have
limited the use of DNS to low Reynolds number and simple flow configurations, the
importance of DNS lies in its ability to provide new insights to turbulence physics
and guidance in turbulence modeling and control. Consequently simulations of
1isotropic turbulence form an important part of the current DNS work. In this case,
the homogeneity of the flow field allows the use of periodic boundary conditions,
provided care is taken to ensure that the domain is large enough to contain all
unstable Fourier modes. However the specification of an initial velocity field which
resembles experimentally observed turbulent flows remains an important challenge.

The current schemes for initializing the flow conditions commonly employ a
random field which satisfies the continuity equation. Although this random field
can be defined with a desired energy spectra and prescribed root mean square (rms)
velocity fluctuations, the higher order statistics of the flow field take some time to
converge as the simulation progresses and become physically realistic only after an
initial period of adjustment. A related problem is that the total vorticity of the
data field increases initially to a maximum value before starting to decay. This not
only results in a loss of computational time but also in the decrease of the microscale
Reynolds number (R,) of the flow at which meaningful results can be extracted from
the simulation. Further, in the particular case of isotropic turbulence, the decay
history is to a large degree set by the initial flow state. Hence there is the need for
a technique to generate artificial vector fields which can resemble experimental data
including high order statistics of velocity fluctuations.

Recently a scheme for generating artificial velocity signals, which are statistically
similar to velocity fluctuations in high-Reynolds-number atmospheric flows, has been
suggested in Ref. [1]. The technique generated a stochastic field dubbed as synthetic
turbulence. In Ref. [1], the technique was implemented in one dimension. It consists
of the following three ingredients: first, a simple multiplicative procedure is utilized
for generating an intermittent signal which has the same properties as those of
the turbulent energy dissipation rate, e. Second, the properties of the intermittent
signal averaged over an interval of size r are related to those of longitudinal velocity
increments Au(r), evaluated over the same distance r, through a stochastic variable
V introduced in the spirit of Kolmogorov’s refined similarity hypothesis [4]. The
third and final step consists of suitably combining velocity increments at various



scales to construct an artificial velocity signal. Several properties of the synthetic
turbulence signal, obtained both analytically and numerically, were found to be in
good agreement with velocity measurements made in the atmospheric surface layer.
In this report, we propose an extension of the above scheme to generate a vector
field in three dimensions which satisfies the incompressibility condition and can be
used as the initial condition for DNS of isotropic turbulence.

The rest of the paper is organized as follows. In section 2, as a background,
we provide a brief description of the synthetic turbulence technique to generate
one dimensional traces of artificial velocity signals. The extension of this scheme
to form a divergence-free vector field in three dimensions is discussed in Section 3.
It is pointed out that a simple extension of the one-dimensional synthetic turbu-
lence model is not computationally efficient necessitating a simplified version of the
synthetic turbulence scheme. While an artificial velocity field generated using the
simplified scheme has some deficiencies, a DNS of isotropic turbulence, with this
field as its initial condition, yields encouraging results as shown in Section 4. The
DNS scheme employed was developed at ICASE by Erlebacher et al. [5, 6]. The
simulations are performed on a 64° and a 96° grid and are intended to reproduce
the experimental data of Comte-Bellot and Corrsin [7]. Finally, Section 5 contains
a few concluding remarks about the present scheme and scope for future work.

2 Background: One-Dimensional Synthetic Tur-
bulence

A number of models have been proposed in recent literature [1, 8, 9, 10, 11] for
constructing signals which share some properties of turbulent velocity fluctuations.
Of these, only [1] and [9] reproduce the correct skewness of velocity increments
and the scaling of odd-order structure functions. In this section, we present a brief
description of one of the above schemes, the synthetic turbulence model [1], for
generating one-dimensional traces which do not differ significantly from velocity
fluctuations in real turbulence in the sense of one-point and two-point statistics.

As mentioned before, implementation of the one-dimensional synthetic turbu-
lence model requires the following three steps:

(a) A multiplicative procedure is utilized for generating an intermittent positive
signal (or measure) possessing many of the properties of turbulent energy dissipation,
e. Construction of this measure by one of the possible multiplicative procedures,



the p model [12], is shown schematically in Fig. 1. (The measure so generated will
be denoted by the symbol d later in the text.)

(b) The properties of the measure contained in a box of size r are related to
those of velocity increments Au(r) over the same separation distance r. This is
done via a stochastic variable V' introduced in the spirit of Kolmogorov’s refined
similarity hypotheses [4], which relate the probability distribution function (pdf) of
velocity increment Au(r) = u(z 4 r) — u(z) to the dissipation rate in the segment
[,z +r], namely re,(z). Defining a velocity scale at location @ by U, = (re,)'/?
a local Reynolds number Re, = rU, /v, the refined similarity hypotheses state that
for r <« L (L being the integral scale of turbulence)

Au(r) = V(re)Y?, (1)

and

where V is a stochastic variable with a universal form for the pdf when Re, > 1. (See
Ref. [13] for a recent work relating to the statement of the hypotheses.) By choosing
the stochastic variable V randomly from a Gaussian distribution! the properties of
the p model measure can be related to a velocity increment like quantity following
Eq. (1).

(c¢) The third and final step consists of constructing the artificial velocity signal by
suitably combining the velocity increments at different scales. By using a technique
similar to the midpoint displacement method [15] for generating traces of fractional
Brownian motion [16] (shown in Fig. 2), the velocity increments are represented as
the amplitude of skewed tent functions (Fig. 3), and the artificial velocity signal
is a superposition of a large number of these tent functions of varying scales and
locations.

The composite model for generating the artificial velocity signal on a unit interval
can be written as:

N Pmn27%m 1/3 -
w(@)=Us > |V ( > di) 7m) (2"“’”(1‘ — ﬁm)) . (2)

i=fm

Here d; represents the p model intermittent measure; r = 27%m is the scale of the
velocity increment, with a chosen randomly from the following distribution:
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"The pdf of V computed from experimental data [13] is found to be close to a Gaussian (with
variance ~ 2), but not exactly so; consistency with Kolmogorov’s 4/5th law [14] demands (V?) =
-0.8. Hence the pdf has a small skewness of about -0.3.



Omin aNd Qpq, corresponding to the largest and the smallest scale respectively; the
location f3,, is chosen randomly from a uniform distribution on the unit interval; and
the quantity Uy provides the velocity units for the tent functions which are defined
as follows:

w/s fo<pu<s
Ty ={ Q=-p)/(1—s) fs<p<l (4)
0 otherwise
and
p/(l—s) if0<pu<l—s
Ty ={ (1—p)fs ifl—s<pu<l (5)
0 otherwise.

Here, s is the skew parameter? and is equal to 0.88 for the synthetic turbulence
signal to be consistent with Kolmogorov’s 4/5th law [14]. The dependence of TV
(the superscript (V) referring to the sign of the amplitude) on the sign of V,, is
necessary in order to preserve the space reversal symmetry of the Navier-Stokes
equations. Also, the continuous distribution for the scales and locations satisfies the
continuous scale symmetry imposed by the Navier-Stokes equations.

The expression for u(z) (Eq. (2)) has an alternative interpretation as terms of a
wavelet expansion whose coefficients are related to the velocity increments at differ-
ent scales, with the number N (of the tents being superposed) exactly corresponding
to the coefficient count in such a basis. However, both « and f are chosen from a
continuous distribution unlike a dyadic hierarchy of scales of elements in a wavelet
expansion, but the distribution of scales (Iiq. (3)) constitutes a generalization to the
continuous case of a wavelet-basis description of the signal.

All the parameters of the synthetic turbulence signal are shown to be related
to those of real turbulence in [1]. Specifically, relations can be established between
the size of the largest tent function r = 27%mn and the integral length scale L; the
size of the smallest tent function r = 27*me=and the Kolmogorov length scale 7;
Uy and root mean square (rms) velocity fluctuations w,,s; s and the skewness of
velocity increments, p (p model multiplier) and the structure function scaling expo-
nent * ¢, for some n. The properties of the synthetic turbulence model, computed
both analytically and numerically, show excellent agreement with those of velocity
fluctuations in the atmospheric surface layer. Among the properties of the artificial

2Setting s = 0.5 will yield a zero value for the skewness of the velocity increments.
3The structure functions can be defined as (Au?) = {(u(z + r) — u(z))") ~ r¢», where n is the
order of the structure function and ¢, is the corresponding structure function exponent.



velocity signal examined in [1] are its power spectrum, the scaling of odd and even
order structure functions up to the 8th order, Kolmogorov’s refined similarity hy-
potheses, its fractal dimension, derivative skewness as well as the multifractal scaling
of ¢, constructed from synthetic turbulence signal.

The success of the one-dimensional synthetic turbulence model in duplicating the
statistical properties of experimentally observed velocity fluctuations in turbulent
flows suggests that the physical elements which go into the construction are good
abstractions of the reality, and further that the statistical ordering in turbulence can
be approximated relatively simply for most practical purposes. However, in order
for a model to be useful for work with simulations, we need to generate the complete
velocity field in three dimensions. This is attempted in the next section.

3 Artificial Velocity Field in 3-dimensions

We begin this section by outlining the changes that need to be implemented for a
simple extension of the one-dimensional synthetic turbulence model to generate a
divergence-free vector field in three dimensions. Such a model however requires an
inordinate amount of computer time for grids which are 1282 points or larger. Hence
we propose a simplified model which employs a hierarchical (instead of random)
construction scheme for the artificial velocity field. While this artificial velocity
field does not duplicate all the properties of velocity fluctuations in real turbulence,
it will be seen in the next section that a DNS of isotropic turbulence which uses this
field as its initial condition yields encouraging results.

The simplest extension of one-dimensional synthetic turbulence to generate a sin-
gle component of velocity in three dimensions involves the following changes. First,
a three-dimensional version of the p model is employed to generate an intermittent
measure resembling turbulent energy dissipation. Briefly, the three-dimensional p
model builds up an intermittent measure by dividing a cube of linear size r into
eight smaller cubes of linear size r/2 such that half of the smaller cubes (randomly
assigned) share a fraction p of the parent measure, while the other half share a
fraction 1 — p of the parent measure. Similar to the one-dimensional case, the value
of p = 0.7 yields a measure (denoted by d; ; later in the text) whose statistical
properties are similar to those of turbulent energy dissipation. Hence, at any scale
r and location /3 = (i, 5, Pr), the quantity analogous to re, in real turbulence can



be expressed as
1 Bi+r Bi+r Br+r

g~ Z Z Z dij (6)
1=0 j=B8; k=0x
The properties of D j can then be related to velocity increments across a scale r, via
the stochastic variable V' in the spirit of Kolmogorov’s refined hypotheses (Eq. (1)) as
before. The final modification of the one-dimensional model involves the definition of
tent functions (whose amplitude represent the appropriate velocity increment) which
are now modified to have a three-dimensional support in the following manner:

5 a,b,¢) = TH ) (a) x TH D (b) x TH ) (¢) (7)

for0 <a<1,0<b<1,and 0 < ¢ < 1. Here the function 7+/=) is the same
as one defined in Eqgs. (4) and (5). A scalar field in three dimensions can then be
formed by a superposition of a large number of these tents of varying amplitudes,
scales and locations. The composite model for generating the scalar field on a unit
cube can be expressed in a form similar to Eq. (2) except that in this case x and ﬂ
are vectors.

N

1/3 m(Vm — O 3
u@)zubgjﬁ%(Dm) ]15)(2 (x = Bm)) . (8)
m=1
Here r = 279 represents the linear size of the three-dimensional support for the

tent function; the a’s being picked from the same distribution as before (Eq. (3)).
Each of the three components of ﬁ are chosen from a uniform distribution on the
unit interval and the quantity Dz is computed using Eq. (6). The number N of
the tent functions being superposed corresponds to the number of coefficients in a
three-dimensional wavelet-basis expansion.

In order to generate a divergence-free vector field, one further detail is necessary.
First, the scheme outlined by Eq. (8) is used to generate three independent scalar
fields ', v' and w', which together define the vector field uf = (u/,v’,w'). Next, uf
can be decomposed into the sum

F(x) =u(x)+ uc(x) (9)

where

V-ou=0, Vxu®=0. (10)



This decomposition is unique and can be accomplished in Fourier space according
to the prescription

A k-a N
a=af - 0

=af —a. (11)
The final divergence-free vector field in three dimensions can then be formed by
transforming & back to physical space.

We generated a vector field using the above scheme on a 643 grid. Figure 4(a)
shows a plot of the pdf of the three components of u, while Fig. 4(b) shows a
one-dimensional power spectrum of one component of the velocity. Figure 5 shows
the scaling of the second, third and fourth order structure functions. As can be
observed, there is not much of a scaling regime in the plot due to very small inertial
range. However, to a rough approximation, the scaling exponents seem to be in
agreement with experimental results. In order to document the fact that taking the
solenoidal projection to define the divergence-free velocity field does not appreciably
alter the scaling properties of the velocity field, we present in Figs. (6)-(8), the
PDF of individual velocity components, three-dimensional energy spectra of the
velocity field, and the longitudinal structure functions before and after the solenoidal
projection.

A major drawback of such a straightforward extension of the one-dimensional
model is that it is not computationally eflicient. The amount of CPU time required
to generate the divergence-free vector fields ranges from 140 seconds on a 64 grid
to about 6000 seconds on a 128 grid. This renders the three-dimensional syn-
thetic turbulence model to be essentially useless for DNS work. So simplifications
to the above scheme are necessary. Part of the computational complexity of the
three-dimensional synthetic turbulence model arises from the random locations and
scales of the tent functions while some of it stems from the requirement of peri-
odic boundary conditions at the domain boundaries (by this we mean that if a part
of tent function overshoots the domain boundary then it is placed beginning from
the opposite face of the domain). Hence a possible simplification to the synthetic
turbulence scheme involves utilization of a hierarchical construction process with-
out enforcing periodic boundary condition. One such simplification of the synthetic
turbulence model is discussed below.

In this instance, we start by considering a cube of linear size L on which a measure
is defined to be uniform; the total value of the measure equals ( L>(¢)). (This
is analogous to the zero-th step in the three-dimensional p-model construction.)
The information about the total value of the measure in the cube is then used to



determine the quantity L(e). Following Eq. (1), the quantity L(¢), is converted into
a velocity increment across the scale L using a stochastic variable V' picked from a
Gaussian distribution. Next, this velocity increment is represented as the amplitude
of a three-dimensional tent function (defined by Eq. (7)) whose scale and location
correspond to that of the cube itself. In the second step of the construction, the
cube of size L is divided into eight non-overlapping equal parts (cubes of linear
size L/2), while the measure itself is divided such that half of the smaller cubes
(chosen randomly) share a fraction 0.7 of the parent measure while the remaining
cubes share a fraction 0.3 of the parent measure. The information about the total
measure in each of the eight smaller cubes is again related to velocity increments
across a scale /2. These velocity increments are next represented as the amplitude
of the 3-d tent functions whose scale and location correspond exactly to those of the
eight smaller cubes. This process is repeated for n number of steps, at the end of
which a scalar field in three dimensions can be generated by a superposition of the
3-d tent functions defined at each stage of the construction process. Note that this
scheme can be expressed in exactly the same form as Eq. (8), except that the scales
and locations are no longer determined from a continuous distribution. Also the
quantity Dg is now simply T% of the total measure contained in the cube (of linear
size 1) of interest. Once again a vector field u¥ can be defined by generating three
independent scalar fields (v, v/, and w') using the simplified scheme. We can then
define a divergence-free artificial velocity field by taking the solenoidal projection of
the complete vector field following Eqs. (9), (10) and (11).

A look at the statistical properties of the artificial velocity field generated using
the simplified scheme on a 64° grid reveals some differences from those obtained
using the complete synthetic turbulence model. Firstly, the power spectrum of
the artificial velocity exhibits spikes (although the background has the right slope),
indicating a lack of continuous scale symmetry. The reason for this is that during
the construction process a cube is rigidly divided into eight equal parts at each
step, which imposes a fixed grid on to the field. However this is not a serious
problem, and can be overcome by artificially removing the spikes in Fourier space
without affecting any of the other statistical properties. Alternatively, one can use
the untampered field as the initial condition; it can be readily seen that the first
few time steps of the simulation quickly smear out these spikes. The second and
more serious problem relates to the convergence of statistics and arises due to the
small grid size of the computational domain which limits the number of steps in the
construction process to a maximum of just four. Also since the tent functions are no



longer located randomly in the domain with periodic boundary conditions, the large
fraction of points near the boundary to the total number of points in the domain
for a small grid size, result in the velocity being close to zero at many points in the
domain. To alleviate this problem, a further modification in the simplified technique
is necessary. Instead of defining a single component (v, v/, or w') of the vector field
uF to be one realization of the simplified model, we shall superpose a number of
these realizations (between 10 and 20) to form v/, v" and w’ *. This superposition
can be achieved by either placing the realizations atop one another, or by locating
them randomly in the computational domain and wrapping them around (similar
to imposing periodic boundary conditions). It is observed that the first approach
(of placing realizations atop one another) leads to a better convergence to correct
values of higher-order statistics. In Fig. 9(a) we show a plot of the pdf of the three
components of the artificial velocity field. In this case, u’, v" and w’ were formed by
a superposition of twelve realizations of the simplified scheme atop one another. Fig.
9(b) shows the power spectrum density of a single component of the final velocity
fleld. As mentioned before, the power spectrum has spikes because of the imposed
grid in the generation scheme. The observed scaling of the second and fourth order
structure function (plotted in Fig. 10) using the simplified technique is as good as
that for the complete synthetic turbulence model (Fig. 5). However the scaling of
the third order structure function is not as good and this problem is related to
the poor convergence properties of the velocity field using the simplified scheme.
One last observation in this regard is that if one generates a field with non-skewed
velocity increments, some fourth order statistics (for example the derivative flatness)
converge faster to the correct value compared to the case when the artificial velocity
field has the correct skewness for velocity increments.

To summarize, the best compromise for generating a divergence-free vector field
in a reasonable amount of computer time, employs a hierarchical construction scheme
to generate one realization of a scalar field. Several realizations of the scalar field thus
formed are superposed to yield a single component of the vector field uf. Finally,
by taking a solenoidal projection of u¥, one can define an artificial velocity field
u, in three dimensions which satisfies the incompressibility condition. In the next
section, we will use this velocity field as the initial condition for DNS of decaying
isotropic turbulence.

“This is in some sense equivalent to extracting statistics from the field by averaging over a
number of largest eddies, since in each case the size of largest eddy is equal to the size of the
domain itself

10



4 Results from DNS

The simulations presented in this section are performed using the DNS code for
compressible turbulent flows developed at ICASE by Erlebacher and colleagues.
This code can be used for simulations of incompressible flows by a judicious choice
of the input parameters and this will be discussed later. The DNS code was run
with the simplified synthetic turbulence initial conditions as well as random initial
conditions to match the experimental observations of Comte-Bellot and Corrsin [7]
on isotropic turbulence. The results from these simulations are summarized at the
end of the section.

We shall provide only a brief outline of the numerical scheme here and refer the
reader to [5, 6] for more details. The compressible turbulent flow of an ideal gas
is governed by the continuity, momentum and energy equations (see, for example,
Ref. [17] for complete equations). These equations are first expressed in a non-
dimensional form, with the time derivative in the energy equation written solely
in terms of pressures. Next, in order to alleviate the severe stability requirements
immposed at very low Mach numbers by acoustic waves, a splitting method is adopted,
with the second fractional step containing most of the effects of the acoustic waves.
The spatial derivatives in the first fractional step of the equations are approximated
by a Fourier collocation method (see for example Ref. [18]). The second fractional
step 1s integrated analytically in Fourier space so it does not contribute to time
step limitations. The numerical anisotropy is reduced by performing an isotropic
truncation during the acoustic fractional step by setting all Fourier coefficients for
which kik; > (N/2)? equal to zero for each variable (p, pu and p).

The input parameters of interest are the reference Mach number, initial ratio
of compressible to solenoidal energy, initial value of root mean square (rms) den-
sity fluctuations, velocity fluctuations, temperature fluctuations and mach number
fluctuations. By using a very low value of the reference Mach number (~ 0.05) and
setting the initial rms density fluctuations and the ratio of compressible to solenoidal
energy to be zero, one can use the DNS code for simulations of incompressible flows.
Care is taken to ensure that the divergence of the velocity field remains close to
zero, as also the ratio of the compressible to solenoidal energy during any step of
the simulation.

In order to compare their relative merits, we generated two artificial velocity
fields using the simplified technique. In the first instance, the derivative skewness
of the velocity field was set close to zero, leading to a better convergence for the
value of the derivative flatness. The second artificial velocity field had the correct
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value of the derivative skewness but the derivative flatness was a little higher than
its equilibrium value. Both these velocity fields were used as the initial condition
for a DNS of incompressible isotropic turbulence. For purposes of comparison, a
DNS with random initial conditions was also performed. The simulations were
intended to reproduce the experimental data of Comte-Bellot and Corrsin [7] on
isotropic turbulence, hereafter referred to as CBC. The computational domain is a
cube of size 20/27 em. The reference length (Lo), velocity (Up) and pressure (F)
are respectively 20/27 c¢m, 1 ecm/sec, and 1 gr/em-sec*. The kinetic energy of the
initial velocity field was scaled to match the measured CBC energy spectrum at a
non-dimensional time of 240. With the chosen non-dimensionalization, the Reynolds
number Re = UplLy/v is 22.74 based on a kinematic viscosity v = 0.14 em?/sec.
Table 1 summarizes the parameters of the initial conditions and the corresponding
CBC observations.

CBC | Rand-64 | Skew-64 | Flat-64 | Flat-96

Vems | 6.7 6.75 6.75 6.75 6.75

E - 68.3 68.3 68.3 68.3

€| 462 374 364 369 428
Ttr(Sk) : -0.01 0.26 | -0.03| -0.03
~ir(Fl) - 3.0 4.5 3.75 4.8
A1 | 0.26 0.28 0.35 0.30 0.26

Aoo 0.20 0.20 0.20 0.17

Az3 - 0.19 0.19 0.20 0.17
Ry, | 381 12.6 53.1 46.1 12.5

Table 1: Summary of the Initial Conditions for the DNS run based on the CBC
experiment

The columns in Table 1 correspond to experimental measurements of Comte-
Bellot and Corrsin at t = 240 in their units (CBC) (cf. Table 4 in [7]), random initial
conditions on a 643 grid ( Rand-64), simplified synthetic turbulence initial conditions
with correct derivative skewness on a 64% grid (Skew-64), simplified synthetic tur-
bulence initial conditions with zero derivative skewness on a 64° grid (F'lat-64), and
simplified synthetic turbulence initial condition with zero derivative skewness on a
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96° grid (Flat-96). In the table, the Taylor microscale length A is defined by

1/2
2
v ,
Ao = __% (12)
%)
(G2))
and the dissipation € by
€= 2#/ Si;Siud, (13)
where 5;; is the stress tensor
L [0v;, Ov;
Spi=— [ =— 4 2. 14
The Taylor microscale Reynolds number is
Y
R/\u = vll/“' (15)

The velocity derivative skewness and Flatness tensors Sk and Fl are the third and
fourth moments of the velocity gradient and are defined by

Skij = ZE(—%L)—E% (16)

Fl;; = Lﬁiﬁ - (17)

((a))

We can observe from Table 1 that there is some discrepancy between the exper-
imentally observed dissipation and that computed from initial conditions. This is
especially true on the smaller grid, suggesting a 64° grid has a marginal resolution,
at best. Table 2 provides a comparison of the experimentally measured parameters
with those from the numerical simulations at a nondimensional time ¢ = 0.11 (in
our units) which corresponds to t = 375 (in CBC units). '

Figures 8 through 11 summarize the time evolution of some properties from the
simulation performed on the 963 grid with Flat-96 initial conditions. These plots
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are representative of all the three simulations which employed simplified synthetic
turbulence initial conditions (Skew-64, Flat-64 and F'lat-96). Figure 11(a) shows
the spectral density of the initial velocity field (¢ = 0) while Fig. 11(b) shows the
spectral density of the velocity field at a nondimensional time ¢ = 0.11. The decay of
total energy and dissipation with time is plotted in Fig. 12. Figure 13 plots the time
evolution of Asy (3-D Taylor microscale) and Ry,, (Reynolds number based on A3d).
Figure 14(a) shows a plot of the integral of squared vorticity as a function of time,
while Fig. 14(b) plots the integral of divergence of velocity squared as a function
of time. The last plot provides some confirmation about the success of the DNS
code for quasi-incompressible flows. This was also checked by computing the ratio
of the compressible to solenoidal energy (which remained constant near zero) and
the Mach number of the flow (which decayed slightly from 0.05). Another quantity
of interest is the evolution of (e)L/u® with time. Figure 15 shows a plot of (€)L/u?
as a function of the microscale Reynolds number and this is in good agreement with
Figure xx of Sreenivasan [19] which plots data from experimental measurements.
Next, we take a closer look at the time evolution of the trace of derivative skew-
ness and flatness tensors computed from the velocity fields from simulations using
all four of the initial conditions mentioned above. Figure 16(a) shows a comparison
of the trace of derivative skewness from a DNS employing random initial conditions
(Rand-64) and a DNS employing F'lat-64 initial conditions (artificial velocity field
generated from simplified synthetic turbulence model with non-skewed velocity in-
crements). The derivative skewness is observed to equilibriate similarly fast in both
cases. However the trace of the derivative flatness tensor (Fig. 16(b)) shows better
convergence properties for the DNS employing F'lat-64 initial conditions compared
to random initial conditions. In the first case, the trace of the derivative flatness
quickly settles down around the initial value of 3.8, while in the second case (using
Rand-64 initial condition), it displays a slow monotonic rise from an initial value of
3.0. The DNS using F'lat-64 initial conditions was carried out for a longer period of
time to confirm the convergence values of derivative skewness and flatness deduced
from I'ig. 16 and the results are shown in Fig. 17. It is observed that the trace
of derivative flatness stays around 3.8, while that of derivative skewness remains
around -0.3. On the other hand, using an artificial velocity field from the simplified
synthetic turbulence model with a correct value of skewness of velocity increments
(Skew-64) does not do any better than random initial conditions, as shown in Fig.
18 - while the derivative skewness first oscillates before settling down, the derivative
flatness exhibits a slow decay from an initial value of 4.5. Figure 19 presents the
results from a DNS on a 96 grid using F'lat-96 initial conditions (artificial velocity
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field generated from simplified synthetic turbulence model with non-skewed velocity
increments) It is observed that the derivative flatness quickly settles down near its
initial value. For purposes of comparison we reproduce in Fig. 20 a plot from Ref.
[6] (Fig. (6)) where the derivative flatness seems to be still evolving at the end of
the simulation. Here, the DNS was carried out on a 96% grid using random initial
conditions which were scaled to match the observed CBC spectrum.

We summarize our findings in Tables 3 and 4, which present information related
to the amount of CPU time required to generate Simplified Synthetic Turbulence
(SST) initial conditions and the number of iterations required to get converged
values of derivative skewness using different initial conditions.

The results presented in this section indicate that a DNS employing simplified
synthetic turbulence initial conditions (with non-skewed velocity increments) yields
better results than a DNS employing random initial conditions, in terms of the
decay of total vorticity and the convergence of derivative flatness and skewness.
The simulations also underline the importance of specifying an initial velocity field
having the correct initial value of the derivative flatness since it takes much longer
to converge otherwise. On the other hand - no matter what the starting value - the
derivative skewness equilibriates quickly to its correct value.

5 Conclusions

We report on an attempt to generate an artificial velocity field in three dimensions,
which can be employed as initial condition for DNS work, using ideas from the
one-dimensional synthetic turbulence model. It is observed that a straightforward
extension of the one-dimensional scheme to generate a velocity field in three dimen-
sions is computationally ineflicient in order for it to be useful. Consequently we
outline a simplified version of the model which compromises the convergence prop-
erties of certain higher-order statistics. A DNS employing the artificial velocity field
(generated using the simplified scheme with non-skewed increments) as its initial
condition leads to a much faster equilibriation of statistics of the computed veloc-
ity field compared to using random initial conditions. Presently, we would not like
to place much emphasis on the success of the scheme, because the real validation
will come only when the scheme is used for DNS in larger computational domains
(256° or 512%). Moreover, there is room for improvement in the simplified model to
yield better convergence of higher order statistics. Finally, a model which builds in
the correct dissipation-range properties alongwith the inertial range properties, may
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prove to better for work with simulations.

The importance of developing a good model to generate an artificial velocity fields
resembling turbulence is not limited to its use as initial condition for DNS work.
Another application of such a model lies in its ability to provide inflow conditions
for studying the decay of isotropic turbulence using DNS, by using planar slices
from a single realization of the artificial velocity field in three dimensions. Further,
the ingredients used to construct artificial velocity fields also allow us to obtain
an expression for an effective viscosity needed to define a subgrid-scale model for
Large IEddy Simulations (LES). Similar models can also be developed for scalar
fluctuations in isotropic turbulence as well as for velocity fields in shear flows.
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Figure Captions

Fig. 1: The p-model for generating an intermittent measure d(z) on a unit interval
(z € [0,1]), employs unequal multipliers (p; = 0.7 and p, = 0.3) to refine an initially
uniform measure according to a binary scheme. The outcome of the first three steps
and that at the end of nine steps are shown.

Fig. 2: Construction of fractional Brownian motion using the midpoint addition
method. At each successive stage the increment across a scale 7, AX(7) (see Eq.
(10) is represented by the amplitude of the tent function T'(¢), whose base is equal
in size to the scale 7. The {Bm is formed by superimposing tent functions of all
scales (up to some level of refinement), illustrated for the first three steps in (a), (b)
and (c); (d) shows the superimposed signal X (t) after 8 steps in the construction.

Fig. 3: Basic tent functions T and T(-) used in the synthetic turbulence models.
As T will always appear in the construction multiplied by a negative number, we
have plotted —7'(-).

Fig. 4: (a) The probability distribution function of the three components (u, v,
and w) of the artificial velocity field generated on a 64% grid using a straightforward
extension of the 1-d synthetic turbulence model. The solid line in the plot represents
a Gaussian distribution. (b) The power spectrum of a single component (u) from
the artificial velocity field described above. The dashed line whose slope is roughly
—5/3 gives an indication of the inertial range.

I'ig. 5: The scaling of the second, third and fourth order structure functions for a
single velocity component w in the @ direction; u being the component of the same
artificial velocity field as Fig. 4. The dashed lines in each of the plots represent
a least squares fit in the inertial range of scales yielding {, = 0.69, (3 = 1.0, and
(4 = 1.29. However this should not be taken very seriously as the scaling regime is
extremely limited.

Fig. 6: The probability distribution function of the three components (u, v, and w)
of the artificial velocity field (a) before and (b) after taking the solenoidal projection.
The solid line in the plot represents a Gaussian distribution.

Fig. 7: The three-dimensional energy spectrum of the artificial velocity before (solid
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line) and after (dotted line) taking the solenoidal projection. The dashed line in the
plot has a slope of approximately -1.7.

Fig. 8: The scaling of the second, third and fourth order longitudinal structure

functions for different velocity components (u - solid line, v - dashed line and w -
dotted line) (a) before and (b) after taking the solenoidal projection.

Fig. 9: (a) The probability distribution function of the three components (u, v, and
w) of the artificial velocity field generated on a 64> grid using the simplified version
of the complete synthetic turbulence model. The solid line in the plot represents a
Gaussian distribution. (b) The power spectrum of a single component (u) from the
artificial velocity field described above. The presence of spikes is due to the imposed
grid in the hierarchical construction process.

Fig. 10: The scaling of the second, third and fourth order structure functions for a
single velocity component u in the = direction. u being the component of the same
artificial velocity field as Fig. 9. The dashed lines in each of the plots represent
a least squares fit in the inertial range of scales yielding (; = 0.7, {3 = 0.95, and
(4 = 1.23. The scaling of the second and fourth order structure functions seem to
be slightly better than IMig. 5, while that of third order structure function is not as
good.

Fig. 11: (a) The 3-d energy spectrum of the initial velocity field (F'lat-96) used
for DNS of decaying isotropic turbulence on a 96° grid. The velocity field was gen-
erated using the simplified synthetic turbulence model (with non-skewed velocity
increments) and then its energy spectrum was scaled to match the experimental ob-
servations of Comte-Bellot and Corrsin [7]. (b) The energy spectrum of the velocity
field from the DNS at a non-dimensional time ¢ = 0.11.

Fig. 12: The decay of (a) energy and (b) dissipation as a function of time from a
DNS employing Flat-96 initial conditions.

I'ig. 13: A plot of (a) 3-d Taylor microscale Azq and (b) Reynolds number based on
Asq as a function of time from a DNS employing F'lat-96 initial conditions.

Fig. 14: A plot of (a) integral of squared vorticity and (b) integral of squared
divergence of velocity field as a function of time from a DNS employing Flat-96
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initial conditions.

Fig. 15: The dependence of the quantity (¢)L/u® on the microscale Reynolds num-
ber. See Fig. XX in Ref. [19] for a comparison with experimental measurements.

Fig. 16: Comparison of the trace of (a) derivative skewness tensor and (b) derivative
flatness tensor from simulations performed on a 64° grid. The dashed line represents
results from a DNS with random initial conditions (Rand-64) while the solid line
represents results from a DNS with simplified synthetic turbulence initial condition
with non-skewed velocity increments (Flat-64). The derivative skewness equilibri-
ates similarly fast in both cases, while the use of Flat-64 initial conditions lead to
faster convergence of derivative flatness.

Fig. 17: A plot of the trace of (a) derivative skewness tensor and (b) derivative
flatness tensor as a function of time. The results are from a DNS employing F'lat-64
initial conditions carried out for a longer period of time to confirm the convergence
values of the respective statistics.

Fig. 18: Comparison of the trace of (a) derivative skewness tensor and (b) derivative
flatness tensor from simulations performed on a 64° grid. The dashed line represents
results from a DNS with random initial conditions (Rand-64) while the solid line
represents results from a DNS with simplified synthetic turbulence initial condition
(Skew-64). The Skew-64 initial conditions do not seem to perform any better than
random initial conditions.

Fig. 19: A plot of the trace of (a) derivative skewness tensor and (b) derivative flat-
ness tensor as a function of time, from a DNS employing F'lat-96 initial conditions.
The results indicate that an artificial velocity field with the correct initial value of
the derivative flatness leads to better results than a artificial velocity field with the
correct initial value for derivative skewness.

Fig. 20: The trace of the derivative flatness from a DNS on a 96 grid employing
random initial conditions. The plot is reproduced from Ref. [6].
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CBC | Rand-64 | Flat-64 | Skew-64 | Flat-96

Vims | 5.03 5.32 5.29 5.29 5.29

E| 38.6 42.5 41.5 41.9 41.4

€| 154.4 183.8 167.2 171.5 153.7
Iir(SK) T 030 025] 0.26] -0.46
T (F) : 3.45|  3.90 10| 4.90
A1 0.34 0.31 0.34 0.32 0.34

A22 0.23 0.23 0.22 0.24

As3 - 0.22 0.23 0.22 0.23
Ry, | 36.6 38.1 39.8 36.2 39.9

Table 2: I'inal Conditions (t = 0.11 seconds) from the simulations as well as the
CBC experiment

Box | CPU time (sec)
Size | to generate SST
on CRAY 2
64° 25
96° 40
1283 75
Table 3: CPU time required to generate similplified synthetic turbulence velocity
field.
Box CPU time (sec) per time Number of iterations for
Size step iteration on CRAY-2 converged derivative flatness
Velocity | Pressure | Energy | Scalar | RANDOM 1.C. | SST MODEL
64° 6.3 2.5 7.4 9.2 950 200
967 26.5 10.5 31.5 57.5 1600 330

Table 4: CPU time required on a CRAY-2 for different subroutines of the DNS code
for each itretation, and the number of iterations required to get convergent value of

the derivative skewness using different initial conditions.
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Fig. 6 Time history of one third the trace of Fl for My of 0.0, 0.1, 0.4 and 0.6. Direct
simulation was performed on a 96 grid. CBC initial conditions.
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