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Abstract

We propose that negative dimensions can be best understood using the concept
of level-independent multiplier distributions and show that, by utilising them,
one can extract the positive and negative parts of the f(a) function with expo-
nentially less work than by using conventional boxcounting methods. When the
underlying multiplicative structure is not known, both methods of computing
negative dimensions can give spurious results at finite resolution. Applications to
fully developed turbulence are discussed briefly.

1 Introduction

Fractal and multifractal concepts [1, 2, 3, 4, 5] are now widely used in the
study of nonlinear systems. The specific idea of decomposing a singular
measure into interwoven sets of singularity strengths «, with dimension
f(a) [6, 7], has turned out to be a useful and compact way of describing
the scaling properties of such a measure.

However, the f(a) analysis of measures constructed from experiments
(e.g. the dissipation field of turbulence) yields two surprising results. First,
the analysis of long data sets yields negative numbers for the f(a) of sets

“of extremal iso-c values [8, 9]. Second, although the data show unambigu-
ous scaling (often over several decades), the actual exponent or dimension
fluctuates from sample to sample by an amount greater than the (least
square) error bars on any one sample [10, 11]. This seems to contradict the
implicit assumption that unambiguous scaling indicates a well-defined and
convergent f{«) function.

The purpose of this paper is two-fold: First, we wish to provide a simple
way of understanding the above observations using the concept of level-
independent multiplier distributions. This has been discussed briefly in [12,
8]. Second, we show that the positive and negative parts of the f (o) function
can be computed by suitably manipulating these multiplier distributions.
We will demonstrate that, for probabilistic multifractals (those generated
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by random multiplicative processes), this method (hereafter referred to as
the multiplier method) is significantly more accurate and requires exponen-
tially less work compared to conventional boxcounting methods. Finally, for
energy dissipation in the atmospheric surface layer, the f(a) deduced from
the multiplier distribution is compared with previous measurements [8] by
conventional boxcounting methods.

In the traditional multifractal formalism, one starts with a singular mea-
sure that may, for example, be the amount of dissipation in various regions
of the dissipation field of fully developed turbulence [10, 13, 14], or the
density of points in regions of phase space [7]. Cover the entire region with
boxes of size € and denote the integrated probability in the i** box of size
€ as P;(e). Then a singularity strength «; can be defined by

Pi(e) ~ €™, )

Denote N(a) as the number of boxes where P; has singularity strength
between a and « + da. Then f(«) can be loosely defined [7] as the fractal
dimension of the set of boxes with singularity strength « [4] and written as

N(a) ~ e /@), (2)

This formalism leads [6, 7] to the description of a multifractal measure
in terms of interwoven sets of Hausdorff dimension f(«) and singularity
strength a. In practice, to compute f(a) directly, one must take into ac-
count the e-dependent prefactors in Eq. 2. The canonical way of doing so
is described in Ref. [15].

An equivalent way of computing f[a{q)] is to use the partition function
and evaluate the average value of < 7(¢q) > via

Z(q) = ZP;I(é) - 6<T(q)>, (3)

and then use the relation

flo)=g<alg) > —-<7(q) >. (4)

The refinement process of a fractal measure can be mapped onto a cas-
cading process where each interval contracts into smaller pieces and thus
divides the total measure among them according to some process. The
scaling properties of measures created by simple models of deterministic
cascading processes have been shown to provide good approximations to
the scaling properties of the low order moments of various intermittent
fields in turbulence [13]. It is believed that for cases like turbulence, a more
realistic model for such cascading process would be probabilistic, where
multipliers are picked randomly from some probability distribution reflect-
ing the underlying physics. We will elaborate on this point to show that
such models can incorporate sample to sample fluctuations as well as neg-
ative dimensions, both of which have been observed in turbulence.
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2 Negative dimensions in random multiplicative
processes

Consider the scaling properties of measures arising from deterministic sys-
tems e.g. period doubling. Every observed « value will by definition occur
at least once and thus f(a), which is the logarithm of the number of times
an « value occurs, will always be a non-negative function. In addition, to
within some small numerical error, the f{«) function should be identical
for two different realisations (of the measure) of the same size.

On the other hand, consider measures created by finite realisations (sam-
ples) of a random multiplicative process (hereafter referred to as RMP [4]).
The f(a) curve will fluctuate from sample to sample depending on the
particular collection of multipliers picked from the probability distribu-
tion. One now has two distinct possibilities regarding the averaging proce-
dure. First, one can average the exponents f(a) and « from each sample
(quenched averaging). Since in any single sample, every observed value of «
will occur at least once and hence have a positive dimension, the resultant
f(a) curve will always be non-negative. The second procedure is to average
the partition function (annealed averaging). One adopts the view that f(a)
is the logarithm of a histogram, and defines the dimension [16, 17] by

_log < N(a) >

fla) ~ og(e)

(5)

where the averages are arithmetic (not Boltzmann), taken over various
samples. This procedure has been called supersampling [18]. Now consider
values of a that occur rarely e.g. less often than one per typical sample. The
dimension assigned to these values by Eq. 5 would be negative. One phys-
ical example would be randomly oriented one-dimensional cuts through
three-dimensional turbulent dissipation fields [10, 13, 14]. Events occurring
in three-dimensional space with low probability would be missed in any
given one-dimensional cut. However, they can be recovered by sampling
over many such cuts and using Eq. 5. This enables one to gather informa-
tion about higher-dimensional spaces from low-dimensional measurements.
Mandelbrot [18] thus stressed that the analysis of single samples suppresses
valuable information about these rare events.

On the other hand Cates and Witten [17] recognised that, in princi-
ple, the negative f(a) should be computable from a single sample. To
this end they suggested breaking up the measure into smaller pieces, nor-
malising each such sample and then supersampling or averaging the new
(sub)partition functions (with the correspondingly reduced scaling range).
This reasoning is motivated by the presumed self-similarity of the partition
function. Thus, both ways of observing negative dimensions involve super-
sampling of either different realisations or parts of the same realisation. One
would, however, like to understand the occurrence of negative dimensions
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from a microscopic point of view i.e., from the underlying multiplicative of
refinement process, just as we do for the positive dimensions [7].

The method to be described is based on the view that scaling propertieg
reflecting self-similarity in the measure can be described by a distribution
of multipliers that are level-independent [4, 7, 18]. These multipliers define
how the measure in a given piece will rearrange into smaller pieces. For
stochastic or random multiplicative processes {including randomly oriented
lower-dimensional cuts of deterministic processes) all the scaling properties
of the measure, including f(«) and sample to sample fluctuations can be
understood in terms of the properties of the probability distribution of leyel-
independent multipliers. The multiplier distribution in stochastic systems
is the natural analog of the scaling function [19] in deterministic systems.
For the latter, the scaling function contains information about the level
to level contraction ratios (multipliers) and, in addition, organises them
correctly in time. For RMP, there is no natural ordering in time, but the
multipliers are characterised by their value as well as by the probability
with which they occur.

To understand the relationship between the probability distribution of
the multipliers P(M) and f(«), consider a binary RMP where at every
level of refinement an interval breaks up into two equal pieces, but the
measure is distributed in the ratio M and 1 — M where M is either 0.7 or
1—0.7 = 0.3 [13]. If we assign the larger ratio to any one piece randomly,
then we have two rules [0.7,0.3] and [0.3,0.7], which are applied with equal
probability. If the process proceeds to n levels, the redistributed measure
will consist of 2™ pieces and one can compute its f(a) curve. Clearly the
left extreme of the f(a) curve (a = }2228:3 = 0.514...) will be given by
the box containing the string of multipliers 0.7,0.7,0.7....n times. Since,
in any sample, such a string will occur exactly once (the probability of
such a piece is 27™ and the number of pieces is 2™), the dimension of this
iso-a set will be log(1) = 0. Similarly the iso-« set corresponding to the
string of multipliers 0.3,0.3,0.3... will also occur exactly once and have a
dimension of zero. All the other strings will occur more often and thus
the entire f(«) curve will be positive. Consider a simple generalisation
[20] of the binomial measure, where now we have four sets of multipliers
[0.7,0.3], [0.3,0.7], [0.8,0.2], and [0.2,0.8], which are chosen with equal
probability. Then the smallest singularity strength (o = igigggg = 0.321...)
will correspond to the box containing the multipliers 0.8, 0.8, 0.8....n times.
However, such a box will occur with probability ()™. Since there are 2"
boxes per sample, one expects such a singularity strength to be observed
only once every (2"4™")~! = 2" samples. Using Eq. 5, one finds that the
dimension of the singular set (o = 0.321...) is 1‘;5;2"7;) = —1. The f(a)
function corresponding to this probability distribution now ranges from —1
to 1, with the number f(«) quantifying the relative frequency of observing
a singularity strength « in a given number of samples of finite size [18].
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Consider now a more general process (21, 4] where the multipliers are
randomly picked from a given distribution P(M). To derive a general re-
lation between the f(a) function defined by Eq. 5 and the distribution of
multipliers, average the partition function over K samples (supersampling)
of equal size so that

_ log < Z{q) > _ log[(%) Z;{=1 Zf; P(e)]
log(e) log(e)

< 7(q) >

(6)

where € = ™™ (27" for binary cascades) and P,; is the measure in the **
box of the jt* sample. But, due to the self-similarity of the measure, this
relation should hold at any n so we put n = 1. We can do this as we are
dealing with a model with no level to level correlations. Thus we have a
collection of K sets of boxes, where the measure in any one box is simply
a multiplier picked randomly from P(M) (subject to the constraint of con-
servation of the measure). Denoting the multiplier by M, and remembering
that for n = 1 the measure in the i*" box is P;; = M;, we can write

log(< M7 >)
= _Dy — -2
<7(q) > 0 oga) (7)
and correspondingly
__O0r(q) . < M%log(M) >
< alg) >=< dq - < M4 > log(a) ®)

with f(q) given by Eq. 4. Note that the averages are over the distribution
of the multipliers P(M).

The explanation for the occurrence of negative dimensions is a little more
complicated here than for the binomial measure. Now we have multipliers
picked randomly from a distribution and multiplied together to create an
effective value of «. In the binomial measure the strings containing an equal
number of 0.7 and 0.3’s would behave like a string of average multiplier
value of v/0.7 * 0.3. The logarithm of the number of ways that such strings
can occur is the dimension of that iso- set. Such an o value and the
dimension of the corresponding iso-c set can also be calculated by using the
parameter g. This is done by evaluating the partition function according to
Eq. 3 at some fixed ¢ to compute 7(g), taking the derivative of the partition
function with respect to ¢ to compute a(q) and, finally, by computing f(q)
using Eq. 4. Similarly, the various random values of multipliers from . P(M)
also multiply to produce different « values. The number of different ways
they can do so depends on the multiplier distribution, and the logarithm
of this number suitably normalised is the dimension of that iso-a set. Once
again a(q) and f(q) can be evaluated by using Eqs. 7, 8 and 4.

These equations provide a recipe for relating the distribution of multipli-
ers with the scaling properties of the measure. The problem of computing
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the positive and negative parts of the f(«) function is thus reduced to the
problem of computing P(M). We will now demonstrate that the f(a) curve
computed using the multiplier method converges exponentially faster to the
asymptotic f(a) curve than that computed from conventional boxcounting
methods using Eqgs. 3, 4 and 5.

3 Advantages of the multiplier method over
conventional boxcounting

For convenience we will elucidate our arguments with a binary RMP. The
simplest way of computing P(M) for such a process is to cover a measure
at the n" stage of refinement, with boxes of size 2~ (™1 compute P
(¢ =1,2,3,..2" ) then subdivide each of these boxes in two pieces and
compute the ratios of the measures in the original box to any one of the
two subdivided boxes. Each subdivided box will give a value for M, and
using the entire measure one can compute P(M). Clearly the computation
of P(M) is helped by considering samples at more levels of refinement
(increasing n), for at the n'* level, we have 2" realisations of M with
which to construct P(M). One gets better statistics by averaging P(M)
over different levels in addition to averaging over different samples (i.e.
supersampling).

Now, in the conventional boxcounting method described by Eq. 6, given a
single sample at the n'" level (consisting of 2" pieces for a binary process),
one would see only those « values that had a probability greater than or
equal to 27", However, this « value comes from a string of n multipliers,
each of which must (on the average) be picked with a probability of at least
1/2. (In general, for a process that subdivides a piece into a smaller pieces
at each level of refinement, one would only see o values corresponding to
string of n multipliers, each of which (on the average) is picked with a
probability of 1/a.) To see a values consisting of strings of multipliers of
lower probability, the currently used procedure is to supersample [18, 8§].
In this procedure, to observe « values which occur with a probability of,
say, 47" one would need ‘21" = 2" samples; that is, as one refines the mea-
sure more and more, i.e increases n, one needs an ezxponentially increasing
number of samples to see the same « value in that ensemble of samples.
Thus one understands the statement [18] that any increase in the level of
the cascade must be accompanied by an exponential increase in the num-
ber of samples to achieve the same supersampling effect. A mathematically
transparent way of understanding this statement is to notice from Eq. 2
that the number of occurrences of an iso-a set with a negative dimension
will decrease as ¢ — 0. Setting ¢ = a™", one notices that the number of
such a values will decrease exponentially with the level of refinement.of the
measure. This statement, although correct, is paradoxical. If one is inter-
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ested in describing a measure, it stands to reason that refining it should
lead to better information about its scaling properties. However, following
the supersampling procedure one does increasingly worse as the level of
refinement increases. The attempt to resolve this apparent paradox is what
has led us to emphasize the multiplier method.

The multiplier method described by Egs. 7, 8 and 4 assumes that the
scaling properties of the measure arise from the repeated composition of
multipliers from the same distribution. This means that, for each value of
«, there exists a value of the multiplier M* which, when composed n times,
would produce the same «a value. That is,

_ log _ log(M™)
<a>= nlir,{‘xoz Tog (2 = og() (9)

The probability of choosing the multiplier M* is related to the dimension
of the iso-a set by
< f(M?) 5= —lim BN M) > log(PIMY))
e—0 log(e) log(2)
where N (M*) is the number of times a string with the average multiplier
M* occurs at resolution e. Note that P(M*) is a scale-invariant multiplier
distribution that is derived from P(M) but different from it.

In order to compute o and f(«) from the multiplier distribution, one
makes use of the parameter g (see Eqgs. 7 and 8). As ¢ in Eq. 7 moves from
—00 to oo, different multipliers ranging from M, to M., get accentu-
ated, thus reproducing the entire f(«) curve. From Eq. 10 one can see that
< f(M*) > is negative for a binary RMP if P(M*) < 1/2. Now if one
increases the number of levels n (i.e. sample size), then one can better ap-
proximate P(M). In particular, with this method we will be able to detect
any multiplier with a probability of more than 27". Thus as we increase the
number of levels in the cascade, the multiplier method gets better by com-
puting P(M) to a precision of 2", in contrast to conventional boxcounting
which needs exponentially larger number samples to maintain its precision.
Even at a fixed level n, a single sample of boxcounting will see only « values
corresponding to P(M*) > 1/2, while the method of multipliers will pick up
o values corresponding to P(M) > (1/2)". Thus, we expect the multiplier
method to be correspondingly more accurate for computations of positive
dimensions as well. It is because of these two improvements that the multi-
plier method requires exponentially less work and is comrnensurately more
accurate.

To fix these ideas, consider a binary RMP, where the multipliers are
chosen from a uniform distribution [18] (hereafter referred to as a uniform
RMP). One can analytically compute its o and f(a) as

1

CESNT0) (1)

alq) =
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FIGURE 1. Shows that one can extract both the positive and negative parts
of the f(a) curve from a single sample. The sample is generated from a binary
cascade (of 15 levels) where multipliers were chosen randomly from a uniform
distribution (uniform RMP). The solid line is the exact f(a) curve. The circles
are from the multiplier method with —1 < ¢ < 15.

and

q log(gq + 1)

JO= 1% Dl ~  log® 12
i.e, the f(a) curve goes all the way down to —oo with a ranging from
0 to oo [22]). We apply the multiplier method on a single sample (of the
uniform RMP) at n = 15. Fig. 1 shows that it is indeed possible to compute
both the positive and the negative parts of the f(a) curve from a single
sample. Fig. 2 shows the convergence of the exponent f(q = 5) to its exact
value as one refines the box size. Since the box size can only shrink to a
value where each box would contain just one point, to improve accuracy
one should increase the number of levels in the cascade. Also, to decrease
local fluctuations, one can calculate the exponent by averaging multiplier
distributions from several different box sizes.

The most stringent way of comparing supersampling using boxcounting
and the multiplier method is to fix both the level of the cascade in each
sample (n) and the number of samples in the ensemble. Let n = 12 and
consider 32 samples i.e. 32,768 points in all. Fig. 3 compares these two
methods with the known theoretical f(a) function for the uniform RMP.
Clearly, the multiplier method is capable of yielding far smaller dimensions
with greater accuracy. If one now increased the level of refinement of the
measure to, say, n = 15 but kept the number of samples (32) the same, for
reasons mentioned earlier, we would expect the results of conventional box-
counting to get worse. This is demonstrated in Fig. 4, where the two arrows
demarcate the minimum dimensions found by the boxcounting method (us-
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FIGURE 2. The quantity f(q = 5) using the method of multipliers and varying
the box size for the same multiplicative process (uniform RMP) as in Fig. 1. The
dashed line is the exact value.

ing —~1 < ¢ < 15). (The multiplier method does not suffer from this defect,
and improves as the number of levels is increased: as more statistics are
gathered, exponents from higher and higher g values become more reliable
as demonstrated in Fig. 2.)

Let us discuss the case where one does not understand how to parti-
tion the measure correctly and covers the measure arbitrarily with boxes
of uniform size. Here one has a trade-off between the number of errors
caused by improper boxing (which increases as the number of boxes) and
the magnitude of the finite-size errors caused (which decreases as the box
size becomes smaller). In the multiplier method with uniform partitioning,
the obvious course is to go to more levels of refinement. In doing so the er-
rors due to improper boxing decrease. One also has the advantage that the
increased number of boxes results in correspondingly improved statistics
for computing multiplier averages. On the other hand, since the number of
boxes increases so do the number of errors. Thus there is a tradeoff and one
may have to go to very fine resolution (a large number of levels) to produce
accurate results. This may not always be possible, especially if one is deal-
ing with experimental data. Fig. 5a shows the results of using the multiplier
method on the uniform RMP (for a single sample at n = 15) with mul-
tipliers computed by comparing measures from boxes one third their size.
Since the underlying structure of the cascade process is binary, one expects
convergence problems and spurious results. Comparing this with Fig. 1 one
notes, however, that the fit is surprisingly good. There is some error in the
negative q region (right-half of the curve corresponding to large o values),
but the positive ¢ region (left-half of the curve corresponding to small o
values) seems, if anything, better at finding the negative dimensions. This
fortuitous result comes from improper boxing, as demonstrated in Fig. 5b,
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FIGURE 3. Comparison between boxcounting (squares) and the multiplier
method (circles) at n = 12 for the uniform RMP described in Fig 1. Both methods
have been supersampled (averaged) over 32 different realisations.

FIGURE 4. lllustrates the degradation boxcounting results with increasing re-
finement level. Diamonds represent data from cascades with n = 10, while the
circles are for n = 15 (for the uniform RMP described in Fig. 1}. The data have
been averaged over 32 samples in both cases.
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where we have performed the same improper boxing (with base 3) on the
generalised binomial measure discussed earlier in the text. From theoret-
ical arguments we know that the minimum dimension for this measure is
—1. Note in Fig. 5b both the existence of spurious dimensions (which are
less than —1) and the increased error for the negative g region. One reason
for the increase in error is that the uniform RMP arises from a smooth
distribution of multipliers so improper boxing computes a slightly shifted
distribution with largely similar scaling properties. This is not true for the
generalised binomial measure whose multiplier distribution consists of four
delta functions. Improper boxing here replaces the true distribution with
a poorly overlapping smooth one. The spurious negative dimensions arise
from the scaling properties of the non-overlapping region which also con-
taminates the negative g portion (large « portion). (One however might
expect that multiplier distributions arising in nature would have smooth
multiplier distributions.) Thus the results of improper boxing vary depend-
ing on the distribution as well as the level under consideration. It follows
that, while attempting to compute negative dimensions for experimental
data with an unknown multiplicative structure, it is highly advisable to
use different bases for the computation of the multiplier distribution and
check the convergence of f(a) with the number of levels in each sample. In
addition, one might also average data over several samples.

What about the effects of improper boxing in the supersampling method?
Here one runs into an even more serious problem. As one increases the
number of levels (to reduce errors due to improper boxing) one must su-
persample over an exponentially larger number of samples to observe the
same negative dimensions. However, this has the consequence of increasing
the number of errors exponentially (due to improper boxing), which in turn
can easily be mistaken for real events. Let us note, generally, that the idea
of negative dimensions is to describe rarely occurring events. Boxcounting
with boxes of arbitrary size creates errors, which in turn can be mistaken
for precisely the events we are seeking to quantify. The reason that these
spurious values (errors) scale with box size (just like the real exponents),
is that their number is proportional to that of the boxes, which in turn
increases exponentially with increasing levels of refinement. Thus the spu-
rious values also increase exponentially with some smaller exponent. The
occurrence of such spurious dimensions for boxcounting is shown in Fig. 6a
and Fig. 6b, where the 10,000 samples of the generalised binomial measure
(at n = 5) have been boxcounted using several different box sizes. The
canonical method for computing f(a) and « directly [15] has been em-
ployed, and the entropy and energy of the measure have been plotted with
increasing box size. The slopes yield f(q = 25) and a(g = 25) respectively.
In both figures the lower solid line is the correct exponent (to within a per-
cent) obtained from the least squares fit using box sizes of the form 27".
The upper solid line is the least square fit obtained from box sizes other
that 2. These data from incorrect box sizes also scale but with spurious
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FIGURE 5. (a) Demonstrates the effect of using the wrong base for the multiplier
method on a single sample of the uniformm RMP at n = 15. The multipliers were
computed by computing the ratio of the measure in boxes with those in boxes a
third of the original size (base 3). The figure demonstrates that the computed f(c)
is still reasonable. The solid line shows the analytical solution.(b) Demonstrates
the effect of using the wrong base (base 3) for the multiplier method on a single
sample of the generalised binomial measure at n = 10 (squares) and n = 15
{diamonds). Notice the spurious dimensions (f < —1) and the large error in the
negative ¢ region. The solid line is the theoretical curve.
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exponents. Here improper boxing yields f(g = 25) = —2.24 which is clearly
incorrect. The dashed line in the two figures is the least square fit to all the
data (from proper and improper boxing) and is incorrect for both f and «.

4 Applications to turbulence

We will now apply the multiplier method for the determination of the
negative dimensions [23] for the distribution of energy dissipation in the
atmospheric surface layer several meters above the ground [10, 8].

To obtain negative dimensions in the atmosphere using the supersam-
pling method, one needs an enormous amount of data. For example, to be
able to observe a dimension of —2 in the atmospheric dissipation field one
needs to distinguish multipliers that have a probability of occurrence 1/8.
Following Ref. [8] we estimate an integral length scale to consist of ~ 10*
data points (sampled at about 6000 Hz). Thus assuming a binary cascade
we can estimate from the appropriate Reynolds number that n ~ 12 and
solve (1/8)12 % ( number of samples ) * (21?) ~ 1 which gives us an estimate
of about ten million samples. Remembering that each sample is about 10*
points we arrive at an estimate that one needs roughly 10! data points
which at the sampling rate of 6000 Hz. would require several years of data
acquisition alone. So, we conclude that supersampling ill-suited for the
purpose of measuring negative dimensions in atmospheric (or other high
Reynolds number) flows.

On the other hand, the measurement of their scaling properties is rather
important in order to be able to make statements about universality. In
addition, the examination of the multiplier distribution itself may be quite
useful in understanding the underlying fractal structure of turbulence.

Figure 7a shows the probability distribution of the multipliers for the en-
ergy dissipation at several levels of the cascade process in the inertial range.
This was obtained by assuming that a random multiplicative binary cas-
cade in one dimension models the scaling properties of the one dimensional
signal. In addition it was assumed that box-averaging the energy dissipa-
tion duplicated the splitting process in reverse. To compute the multiplier
distribution, the data (a component of the energy dissipation [10, 8]) were
divided into bins of m points each. Each bin was then subdivided into two
bins of m/2 points each and the ratio of the the dissipation contained in
the smaller bin to that of the larger bin was computed. Since a conservative
binary cascade was assumed, the multipliers from the two bins must add
to unity and hence the resulting multiplier distribution is symmetrical. Ex-
tension to cascade of bases other than binary is trivial and has been done,
but will not be disussed here. The multiplier distributions shown here were
obtained from a record length of 409, 600 points of the atmospheric dissipa-
tion field obtained by hot-wire measurements. In spite of the scatter in the
data, it appears that there is rough self-similarity in the cascade process.
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FIGURE 6. (a) Spurious scaling of negative dimensions that should not exist,
arising from improper boxcounting of a generalised binomial measure at n = 5
averaged over 10° samples. Plotted is the entropy of the measure, whose slope
with respect to different box sizes yields f(g = 25). The lower solid line is the
least square fit to data obtained from using boxes of 27" and is the correct value
within a percent. The upper solid line is a least square fit obtained from box sizes
other that 27" (boxes consisted of 5,10, 15,20, 25 points each). The data from
these box sizes also scale but with incorrect exponents. The dashed line is the
least square fit to all the data (from proper and improper boxing) and also gives
incorrect results. (b) The same as Fig. 6a but plots the internal energy of the
measure to compute a(q = 25).
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FIGURE 7. (a) The multiplier distribution P(M) obtained by assuming a bi-
nary cascading process on the data (409,600 points) from the dissipation field of
an atmospheric surface layer. Different symbols correspond to different levels of
coarse-graining of the data. The symbol + represents multipliers determined by
comparing the total dissipation in boxes of 50 points each with those contain-
ing 100 data points. The other symbols are as follows (O )100 : 200, (< )200 -
400, (V)300 : 600, (x)500 : 1000. The joined solid circles are the mean distri-
bution. The symmetry about 0.5 is a consequence of assuming a conservative
binary cascade. (b) Comparison between conventional boxcounting (combined
with supersampling) (diamonds) and the multiplier method (joined -circles) for
the dissipation field of fully developed turbulence in the atmospheric surface layer
using 409, 600 data points.
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In addition Fig. 7a shows the mean multiplier distribution (continuoug
line). From this mean distribution, we obtain the f(«) curve as discussed
in the earlier sections. For the present, we show in Fig. 7b only the sin-
gular part of the curve (o < 1). Box-counting methods using the same
length of data yields only positive dimensions (diamonds), whereas both
the positive and negative dimensions (circles) are easily obtained using
the multiplier method. Furthermore, the negative dimensions obtained for
this atmospheric flow are in good agreement with the negative dimensions
obtained by supersampling data from laboratory flows at lower Reynolds
numbers [8]. (Note that supersampling becomes a feasible method at lower
Reynolds numbers; even so, Meneveau & Sreenivasan [8] had to use record
lengths containing ten million points to obtain reliable results.) We con-
clude that the multiplier method is much more economical for computing
negative dimensions, and that the concept of universality in the multiplica~
tive process is a reasonable one for turbulence.

5 Conclusions

We have discussed a simple way of computing the scaling properties of
fractal measures arising from probabilistic processes. The only assump-
tion concerns the existence of a scale-invariant probability distribution
of multipliers, which in any case is always necessary for the existence of
self-gimilarity. In cases where the underlying multiplicative process is un-
derstood, the multiplier method requires exponentially less work than the
boxcounting method. Where one does not know how to partition the mea-
sure, the reader is strongly warned about the pitfalls of quantifying such
events. However, if there exists other information that allows one to check
against spurious scaling, the accuracy of the multiplier method will improve
as the refinement gets finer. On the other hand, conventional boxcounting
methods are inherently doomed in the search for such rare events.

In this paper, we have not touched upon the important case where level
to level correlations exist. One then has to compute these correlations and
incorporate them into the relevant equations for calculating dimensions.
Alternatively one can increase the base of the process (thus effectively in-
creasing the amount of coarse-graining per level) to decrease these correla-
tions.

We hope that this paper will motivate examination of such scale in-
variant multiplier distributions whenever one observes sample to sample
fluctuations in the dimension of objects or measures - as indeed one does
in turbulence and growth models like DLA. The application of these ideas
to turbulence has been discussed briefly under the assumption that a binary
multiplicative process occurs. More details will be discussed elsewhere.
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