The measurement and interpretation of fractal dimensions of the scalar
interface in turbulent flows

R. R. Prasad® and K. R. Sreenivasan
Mason Laboratory, Yale University, New Haven, Connecticut 06520

{Received 13 July 1989; accepted 6 December 1989)

One of the recently established resulis concerns the fractal-like properties of surfaces such as
the turbulent/nonturbulent interface. Although several confirmations have been reported in
recent literature, enough discussion does not exist on how various flow features as well as
measurement techniques affect the fractal dimension obtained; nor, in one place, is there 2 full
discussion of the physical interpretation of such measurements. This paper serves these two
purposes by examining in detail the specific case of the interface of scalar-marked regions
(scalar interface) in turbulent shear flows. Dimension measurements have been made in two
separate scaling regimes, one of which spans roughly between the integral and Xolmogorov
scales (the K range), and the other between the Kolmogorov and Batchelor scales (the B
range). In the K range, the fractal dimension is 2.36 4+ 0.05 to a high degree of reliability. This
is also the dimension of the vorticity interface. The dimension in the B range approaches
(logarithmically) the value 3 in the limit of infinite Schmidt number, and is 2.7 + 0.03 when
the diffusing scalar in water is sodium fluorescein (Schmidt number of the order 1000).
Among the effects considered are those of (a) the flow Reynoids number, (b) developing
regions such as the vicinity of a jet nozzle or a wake generator, (¢) the free-stream and other
noise effects, {d) the validity of the method of intersections usually invoked to relate the
dimension of a fractal object to that of its intersections, (&) the effect of intersections by
“slabs” of finite thickness and “lines” of finite width, and (f) the computational algorithm
used for fractal dimension measurement, etc. The authors’ previous arguments concerning the
physical meaning of the fractal dimension of surfaces in turbulent flows are recapitulated and
amplified. In so doing, turbulent mixing is examined, and by invoking Reynolds and Schmidt
number similarities, the fractal dimensions of scalar interfaces are deduced when the Schmidt
nuiber is small, unity, and large.

(L INTRODUCTION

The notion that a dynamic interface, which is a concep-
tual surface that separates domains of zero and nonzero vor-
ticity fluctuations, bounds turbulent free shear fiows is quite
old.! One can also define a variety of other surfaces, such as
the scalar interface, which is the surface separating regions
marked by a passive scalar from those that are unmarked.
Isoconcentration surfaces (in reacting or nonreacting
flows), isovelocity surfaces, and isodissipation surfaces are
other examples. It is useful to understand their properties
because of their close connection to processes such as en-
trainment and mixing.>” In this paper, we are concerned
almost exclusively with scalar interfaces.

It appears to have been originally believed that such in-
terfaces are smooth and contiguous, perhaps occasionally
multivalued.* This view has been questioned more recently.’
To illustrate this point and facilitate further discussion, we
show in Fig. 1 a thin section of dye-marked regions of a
turbulent jet obtained at moderate Reynokis numbers. The
image shows a number of interesting features,*® but we con-
centrate here on the interface. It is obvious from Fig. 1 that
the boundary is convoluted on a variety of scales (though,
perhaps, not too fragmented®) and the original concept is

FIG. 1. Two-dimensional laser induced fluorescence image of an axisym-

metric water jet. The region imaged extends from 8 to 24 diameters down-

® Present address: Physics International Co., 2700 Merced Street, San stream of the nozzle. The nozzle Reynolds number is 4000. A discussion of
Leandro, California 94577. relevant experimental techmiques is given in Sec. I1.

792 Phys. Fluids A 2 (5}, May 1990 0899-8213/90/050792-16%02.00 © 1990 American Institute of Physics 792

2




too simple-minded, justified only when some coarse graining
or instrument smoothing is performed.

The complexity of such surfaces makes it difficult to
describe them by means of classical geometry. Mandelbrot®
(see, also, his other publications cited in Ref. 9) has devel-
oped the necessary framework for describing the geometry
of such complex shapes; he also recognized that the seif-
simnilarity expected to hold in turbulence {according to the
conventional wisdom succinctly described by Richardson’s
rhyme'?) could permit the use of fractal description of such
surfaces. There is now ample evidence that such surfaces are
indeed fractal-like!' in nonreacting as well as reacting
flows,'213 but not enough discussion exists of how various
flow features and measurement techniques affect the fractal
dimension obtained; nor is there a full discussion of the phys-
ical interpretation of such measurements. This paper serves
these two purposes by a detailed examination of the specific
case of the scalar interface.

We assume that the readers are familiar with the notion
of fractal dimension. Otherwise we refer them to Mandel-
brot’s original work and, in the particular context of turbu-
lent interfaces, to Ref. 12. In any case, measuring a fractal
dimension involves, in some form or another, obtaining the
slope of a line in a log-log plot, this being one tangible mani-
festation of statistical scale similarity. Dynamical similarity
& la Kolmogorov' usually applies only to scales in the iner-
tial subrange, which is ill-defined except at large Reynolds
numbers. Since resoiution requirements have so far restrict-
ed dimension measurements to moderate Reynolds numbers
with barely discernible inertial range in frequency spectra, it
is necessary to ask whether fractal dimension measurements
are beset with similar difficulties. It turns out, for reasons yet
to be fully understood, that geometric scale similarity {in
certain cases) extends to 2 much wider range of scales than
does dynamical similarity of the inertial type. We thus speak
of a dimension characterizing most (if not all) of the avail-
able scaling range.

For scalars with Schmidt number Sc (the ratio of the
kinematic viscosity v of the fluid to the mass diffusivity of the
scalar) far greater than unity, as is the case of a dye mixed in
water, diffusion effects become important at scales much
smaller than the Kolmogorov scale 57 { = (v*/(g})'*,
where () is the average rate of the turbulent energy dissipa-
tion]. For these smaller scales, the strain field will be effec-
tively infinite in extent, rendering the scale of the strain field
irrelevant; in particular, % plays no role except to act as 3
cutofl scale analogous to the integral length scale L in the
dynamical case. The only important parameter is the turbu-
lent strain rate. Here, two scaling ranges are possible.”>'®
One of them occurs between L and # {to be designated
henceforth as the K range), and the other between 7 and the
so-called Batchelor scaie'” 77, = 5 Sc '/, this latter scale
range, to be designated as the B range, can be expected to
possess a different fractal dimension. The two scaling ranges
and the associated fractal dimensions will be discussed sepa-
rately.

After an initial discussion of experimental facilities in
Sec. II, and of image acquisition and data preprocessing in
Sec. 111, we present the principal results for the dimension
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appropriate to the K range in Sec. IV; in this section we also
discuss procedures for fractal dimension measurements. In
Sec. V, we dwell on the so-called method of intersections,
this being of interest because the scalar interface resides in
three-dimensional space in a2 complex way and the determin-
ation of its fractal dimension by box counting in three dimen-
sions is not always practicable. Furthermore, the method of
intersections allows us to measure, with available instrumen-
tation, the fractal dimension of the vorticity interface'®!
and of the scalar interface in the B range.'® Dimension re-
sults in the B range obtained from finely resolved point mea-
surements are given in Sec. VI In Sec. VII, we summarize
the principal results applicable to fully turbulent flows.

In Sec. VIIL, we discuss several factors, in addition to
those of Sec. IV, that influence dimension measurements.
Some questions addressed are the effect of measuring in re-
gions of a flow that are not fully developed (for example,
closer to a jet nozzle than a certain downstream distance)}, or
at low Reynolds numbers; the effect of instrumentation noise
and other artifacts associated with free-stream conditions;
etc. Another aspect explored is the meaning of results ob-
tained with resolution coarser than is demanded by the
smallest scale present. This is examined by taking thicker
slices of the flow (*‘slabs™) than dictated by the simallest
relevant scale, the extreme case being the projection onto a
piane of the entire image (as in conventional schlieren and
shadowgraph images). This last case is especially relevant
for the measurement of fractal dimensions of natural objects
such as clouds and mountain ranges—ithis being of interest
in geophysics and earth sciences—because they are invaria-
bly obtained in projections and not sections.

The principal resulis are that the fractal dimension of
the scalar interface in the K range is independent of the fiow
configuration—at least to a very good first approximation—
and that, in the B range, it is almost equal to the dimension of
the embedding space. An explanation for the universality of
this result has been given in Ref. 3, and recapitulated in Sec.
IX. The paper concludes (8ec. X) with a discussion and
interpretation of resulis.

il FLOW FACILITIES AND INSTRUMENTATION

Several flows—turbulent jets, wakes, boundary layers,
and both temporal and spatially developing mixing layers—
were studied, but a large fraction of the results presented is
for jets.

The water jet emerged from a seitling chamber into a
large tank of still water through a nozzle of circular cross
section and diameter 1.2 cm. FThe nozzle was contoured ac-
cording to a fifth-order polynomial to have zero slope and
curvature at the entrance as well as the exit, and it was estab-
lished by running separate air experiments that there were
no internal separations in the nozzle. The exit speed was
about 35 cm/sec, so that the nozzle Reynolds number was
about 4000. The jet was made visible by mixing a small
amount of a fluorescing dye (sodium fluorescein) in the ple-
num chamber, and exciting fluorescence by illuminating a
thin section of the fiow by 2 sheet of laser illumination. The
laser induced fiuorescence {LIF) occurs as a result of the
emission of photons when an excited ion or molecule decays

R. R. Prasad and K. R. Sresnivasan 783




back to its ground state. The lifetime of this process is on the
order of 10~ % sec. The number of photons emitted, or the
fluorescence intensity, is proportional to the number of ex-
cited molecules or tons, which in turn is proportionai to the
number of ground state ions or molecules as well as the iltu-
minating light intensity. If the ground state molecules are
too many, the fluorescence intensity decays as the light tra-
vels through the fluorescing medium. The finorescence is
then saturated; saturation also occurs if the incident light
intensity is not high enough. If, however, the dye concentra-
tion is small, there is no significant change in the light inten-
sity as it traverses the medium, and the fivorescence intensi-
ty is then directly proportional to the concentration of
fiuorescent dye. (For relevant references, see Ref. 5.) LIF
therefore provides a convenient method for mapping quanti-
tatively the concentration field of a scalar. Much care was
taken to ensure that the fluorescence was not saturated. For
instance, this was checked by doubling the dye concentra-
tion and observing that the peak intensity was correspond-
ingly doubled. Saturation could easily be avoided because of
the high power density of the Nd: Y AG pulsed laser {2 107
Jsec™ ! per pulse) and small dye concentration (of the order
of a few parts per million).

A 6.4 mm diam pulsed beam of light emitted from the
YAG laser was directed into the tank of water using two
specially coated mirrors and shaped into a sheet of average
thickness of 250 um using lenses A~E (see Fig. 2). The
lenses A and B configured as a collimator reduced the diam-
eter of the laser beam from the original 6.4 mm to 2.0 mm.
The lenses D and E further reduce, in the plane of the paper
{orthogonal to the jet axis}, the beam to a sheet about 200
pum wide at the focal point. The effective focal length of this
combination is large in order to ensure that the width of the
light sheet changes only slowly with distance from the
lenses. The light sheet thickness, measured using a linear
photodiode array, varied from 200 to 300 gm in the 10 cm
range of interest near the jet axis. The cylindrical lens C,
oriented perpendicular to lenses D and E, expanded the
sheet along the jet axis so as {0 be able to visualize a region
approximately 25 cm high. This covered a jet region extend-
ing 8-24 diameters downstream of the nozzle. Usingan / /1.8
Nikon camera lens of 50 mm focal length, LIF images were
obtained on a Photometrics charge-coupled-device (CCD)
camera (200 series) with a Videk Megaplus [ array of 1320
(vertical) X 1035 (horizontal) pixels. The pixel resolution
turns out to be on the order of 150 gm?®. The CCD camera
incorporates a 12-bit digitizer. Data storage and further pro-
cessing were done on a VAX station 11/GPX. As explained
in Sec. HI, corrections were made for the nonuniform light
intensity in the sheet.

The laser pulse duration of about 10 nsec was small
enough to freeze fluid motion. However, the fastest CCD
camera shutter speed was 0.2 sec. Only a single pulse was
captured on each digital frame by operating the laser at the
repetition frequency of 5 Hz.

Jet sections were also obtained orthogonal to the axis by
rotating the orientation of the laser sheet from along the jet
axis to a perpendicular direction. This was done by rotating
the cvlindrical lenses C, D, and E in Fig. 2 by 90°. The jet
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FICG. 2. Schematic diagram showing the apparatus used for imaging water
jets. The Nd: Y AG laser beam was directed into the water tank using the two
mirrors shown, It was shaped into a sheet of about 250 gm thickness using
lenses A~E. The lenses are A, spherical, focal length f = 160 mm; B, spheri-
cal, f= - 50 mm; C, cylindrical, f= - 6.3 mm; D, cylindrical, f= 100
mm; B, eylindrical, /= — 100 mm. Also shown in the figure are the nozzle
N and the CCD camera.

emerges from the top of the tank and so, to avoid difficulties
associated with imaging vertically downwards through the
nozzle or upwards through the bottom of the tank, a large
mirror was placed at 45° at the bottom of the tank. The cam-
era was then able to image the fiow from the side of the tank
as before.

The wake was created by rigidly mounting a circular
cylinder of aspect ratio 58 and diameter 1 ¢m, and having the
tank of water move past it at a predetermined speed. This
method, rather than moving the cylinder in a stationary tank
of water, was chosen to avoid possible cylinder vibrations
when in motion; it also eliminated the need for elaborate
flow management devices upstream of the cylinder. The
tank motion was facilitated by mounting it on a hydraulical-
1y operated forklift. Typical flow speed was about 15 cm/sec,
yielding a wake Reynolds number of about 1500. The flu-
orescing dye seeped through a thin slot cut along the back
stagnation line. [n another set of experiments, the cylinder
was rotated 180° so that the siot was along the front stagna-
tion line, and the dye wrapped arcund the cylinder before
getting mixed by wake turbulence. Data acquisition was
done as for jets. The streamwise extent of the image was
between 60 and 75 diameters downstream of the cylinder.

The temporal mixing layer experiments were made by
Ramshankar'® using a 2 m long Thorpe-type'® apparatus of
15x 5 cm cross section. A thin dye layer was established
between the two streams. The temporal evolution of the fiow
resulted in the mixing of the dye, and the interface was stud-
ied as a function of time. Essentially the same optical meth-
ods were used to map the dye concentration field.

Further measurements were made in a helium jet issuing
into ambient air. The LIF technigue requires that the jet be
seeded with aerosols of a sclntion of sodium fluorescein in
ethyl alcohol. Ethyl aicohol, instead of water, was chosen as
the solvent to avoid the aggregation of large sized particles
likely to result in water. Aerosols were generated using a six
jet TSI atomizer. To limit the effect of particles on the fiow,
seeding was limited to the abschite minimum consistent with
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FIG. 3. Schematic diagram showing the apparatus used for imaging helium
jets. The laser beam was directed at the jet using the two mirrors as before. It
was shaped inio a sheet of about 100 sm thickness using lenses A-C. The
lenses are A, spherical, f=: 160 mm; B, cylindrical, /= — 100 mm; C, cy-
lindrical, f= — €.3 mm.

a reasonable signal/noise level. A schematic diagram of the
optical arrangement used is given in Fig. 3.

Measurements were also made in heated air jets where
heat was the passive scalar. The nozzle diameter was 5 cm.
The jet was supplied by compressed air from two large stor-
age tanks pressurized to 8.3 10° N/m” After passing
through the usual setiling chamber, screens and a contrac-
tion of area ratio 10, the jet emerged into a chamber 2.5 m
high, 3.8 m long, and 2.5 m wide. Measarements were made
in this undisturbed chamber. A 3 kW heater mounted in a
section upsiream of the settling chamber could heat the jet to
about 60 °C above the ambient; at the measurement station,
the temperature rise was about 5 °C. Measurements were
made by 2 0.6 pm diam Wollaston wire operated “cold” on a
constant current {90 4A) anemometer designed and built
in-house. The signal from the anemomester was precondi-
tioned using a DANTEC 55D26 signal conditioner and am-
plifier, and digitized with 12-bit precision on the
MASSCOMP 5000 computer at twice the estimated Kolmo-
gorov frequency. The digitized area was transferred to the
VAX station for further processing,

The procedure outlined earlier enables us to obtain well-
resolved, guantitative maps of the dye concentration as a
function of two space coordinates. A study of the time evolu-
tion of the concentration field is also of interest. To do so,
images must be acquired at rapid rates. However, the rela-
tively large format of the CCD array and the slow digitiza-
tion rate (2 X 10° pixels/sec) prevent the acquisition of full
frames of data at a rate faster than one every 6 sec. We sacri-
ficed resolution by binning four neighboring pixels to form a
single pixel and worked with a smailer image of 400400
pixels. This allowed the acquisition of images at the rate of
orie every § sec.

The spatial resolution is limited by the pixel size as well
as the thickness of the sheet of light. In present experiments,
the tatter (about 250 pum) proved to be the limitation. Light
can be focused much better (see the next paragraph), but not
in the form of a sheet of any significant size; this therefore
rules out obtaining pianar images of nontrivial extent if the
goal is to resolve the Batchelor scale, which, in present ex-
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FIG. 4. Schematic of the optical setup used to make point measurements
with scale resolution comparable to the Batchelor scale. The spatial dimen-
sion of the measurement spot is on the order of 4 um. This is achieved by a
combination of lenses and the pinhole in front of the photomultiplier tube.
‘The focal lengths of lenses §.,~Ls are, respectively, - 25 mm, 300 mm, 500
mm, 400 mm, and 1000 mm. Further details are given in the text.

periments, is about 4-5 um. {This assumes™ a Schmidt

number of about 1930. Even though some ambiguity does
exist about the precise value, it is believed that the quoted
valueis of the right order of magnitude. ) We therefore aimed
at resolving the Kolmogorov scale in planar images, and ad-
justed the flow Reynolds number and nozzie diameter such
that the estimated K olmogorov scale was on the order of 150
pum midway in the imaged region. The spatial resolution
could then be taken in all directions to be between one and
two Kolmogorov scales, and we hoped to obtain accurately
the fractal dirnension characteristic of the K range. If we
expressly resirict attention to this range, we may ignore ail
sub-Kolmorogov scales and think of » as the characteristic
thickness of the thinnest section needed. As will be shown in
Sec. V, finely resclved point measurements can be used for
examining scaling properties in the B range. The corre-
sponding experimental setup used for making such measure-
ments is now described.

The optical setup is shown in Fig. 4; also shown is the
orientation of the cylinder () whose wake is the object of
study here. A 5 mm diam light beam from a continucus
argon laser (power output about 7 W) is first expanded into
a thicker beam of 60 mm diameter by the combination of
spherical lenses A and B, and then focused to a spot of 5.5
pm diameter by means of a convex lens C. The optical signal
is collected by a photomultiplier tube (PMT). in the optical
path upstream of the photomultiplier tube is a combination
of lenses D and E that gives an image enlargement by a factor
of 2.5. This combination enlarges the 5.5 pm focal spot in the
flow to a size of about 13 um. Ahead of PMT, a 10 um diam
pinhole (P) is located. This effectively reduces the size of the
spot imaged onto PMT to 4 pm. This is the spatial resolution
of measurement. Concentration fluctuations are detected as
fluctuations in flucrescence intensity, the two being in linear
proportion. The optical signal from PMT is passed througha
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current amplifier before being digitized by the 12-bit A/D
converter on the MASSCOMP 5000 computer. The digitiz-
ing frequency is set at 320 kHz, which is well below the
limiting digitization rate of 1 MHz of the A/D converter.
The photomultiplier tube is quoted by the manufacturer as
having good frequency response up to 50 MHz. So the tem-
poral response of the instrumentation is believed to be much
better than required for present purposes.

i IMAGE ACQUISITION AND PREPROCESSING OF
DATA

A, Considerations for obtaining high-quality images

The remarks below are specific to jets, but apply with
equal force to other flows also.

(1) If the jet is run for iong periods of time the tank fluid
gets contaminated by the dye and develops background Au-
orescence. To remove this source of ““free-siream” noise, im-
age acquisition was begun scon after the jet settled down to
its final state. The tank was flushed out after each run, and
replenished with clear filtered water. For all data acquisi-
tion, the room was darkened to minimize spurious tllumina-
tion.

(i) Two particle filters were used in tandem. However,
filters do not remove all particles, and the imaging system
will detect some scattered light. Since scattering occurs at
the wavelength of the incoming laser and the fluorescence
radiation is of a longer wavelength, 3 long-pass optical filter
was used to remove mmost of the scattered radiation. Figure 5
shows a comparison between the unfiltered and filtered spec-
tra, obtained by the use of a Jarrell-Ash monochrometer
with 0.1 nm resolution. The sharp peak near 532 nm in Fig.
5(a) corresponds to the scattered laser radiation from parti-
cles. The flucrescence itself peaks at a shightly higher wave-
length (545 nm), but is essentially broadband. Hence a filter
that cuts off light below a wavelength of 540 nm is desirable.
A Corin optics long-pass filter with the cutoff at 550 nm was
used. The filter removed all but a fraction of the 532 nm
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FIG. 5. Comparison of optically (a} unfiltered and (b) filtered fiuorescence
spectra.
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radiation. It also removed some fluorescence intensity [ Fig,
5(b) ], but this caused no probiers because the laser intensi-
ty was sufficiently high.

(iit) Digital images were captured directly on the CCD
camera and not by first acquiring photographs and subse-
guently digitizing them. This eliminates uncontrollable er-
rors due to nonlinearities in developing photographic film.
The dynamic range of photographic film is also limited
{roughly 300 gray levels) compared to that of a digitizing
camera (almost 4096 levels on the present camera).

(iv} The CCD array itself has a small amount of dark
noise, i.e., the charge collected on each pixel without photon
impingement. This dark noise was subtracted from the im-
ages.

{v) It is also necessary to take into account variations in
laser intensity across the sheet due to the laser itself, and the
optics through which the beam passes. This was achieved by
uniformly dying the fivid in 2 smalier tank and capturing the
Auorescence intensity without the iet running. (To ensure
that the optical path was identical in the two cases, this
smaller tank was placed in the middle of the big tank used for
other experiments, filled with filtered water in the wsual
way.) This image was subsequently used for normalizing.
The corrected pixel intensity was calculated as

corrected pixel intensity

{CCD intensity for the )nt flow—-noise)

( CCD intensity for the ummrmly dyed ﬂmd_nmse)

(1)

B. Signal/noise levels

Figure 6 shows a jet section along with a trace of the
centerline concentration. There is no indication here of high
frequency noise; this can be verified by computing the wave-
number spectra of one-dimensional cuts of concentration
field, obtained by Fourter transforming signals of the type
shown in Fig. 6 and ensemble averaging over many of them

INTENSITY -

FIG. 6. A two-dimensional LIF image of an axisymmetric jet. On the right
is the concentration of the nozzle fluid as a function of the downstream
distance x from the nozzle exit. The mean trend in the downstream vari-
ation of the concentration is of the type (x — x,) !, where x, is some vir-
tual origin for the self-similar behavior of the jet. The best estimate is
Xy = ~ 2D
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(Fig. 7). This was done also for wakes. Figure 8 shows a
typical temporal record on the flow axis {see inset), obtained
with Batchelor scale resolution, and the correspending spec-
tral distribution in both K and Bregions; the — 1 power law,
expected from Batchelor’s prediction,” is highlighted in
Fig. 8. All these tests confirm the quality of spatial as well as
temporal data. We conclude that there is no significant noise
contamination and that elaborate filtering schemes are
therefore unnecessary. The main point is that sufficient care
rmust be taken from the very first step of data acquisition.

Several cother interesting aspects of power specira in
Figs. 7 and & will not be discussed here because they are
secondary to our present purpose.

C. Deafining the boundary

The definition of the boundary usually entails some edge
enhancement techniques. We have investigated standard
edge enhancement methods in Ref. 7. One of them, based on
the gradient and the Laplacian of the pixel intensity, works
well if the intensity change across the edge is sharp (as wouid
be the case if the pixel intensity is zero in some regions and
large in others). However, the intensity in turbulent flows
does not simply alternate between two fixed values, and even
moderate fiuctuations within the boundary produce false
edges. This problem can be handled in an o4 koc manner by
using a quantity analogous to the holding time common in
turbulence practice,* but its arbitrariness cannot always be
justified. Another family of techuiques involving spatial fil-
tering”®? has the problem of smoothing small scale convo-
lutions important to our considerations.

A primary conclusion of Ref. 7 was that, as long as the
images were relatively noise-free {as has been demonstrated
to be the case here), simple procedures of setting a proper
threshold on the pixel intensity is adegunate to mark the
boundary. The threshold can be set more or less by visual
inspection, or can be done by the histogram method of Ref,
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FIG. 7. Wavenumber spectrum of concentration fluctuations in the jet ob-
tained by ensemble averaging 15 realizations, each obtained by Fourier
transforming line intersections as in Fig. 6. The smallest wavenumber re-
sofved is comparable to the Kolmogorov scate. The slight upward tendency
on the right end is probably caused by the — 1 power law inherent to scalar
fluctuations (see Fig. §). The saturation due to the digitizer occurs at much
lower levels.
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FiIG. 8. The frequency spectrum of concentration fluctuations in the wake
measured from temporal signals with fine resolution on the wake centerline
(x/D=-75). The -- | power law characteristic of the B range is marked by
a dashed line to the right of the Kolmogorov scale.

7. Under certain conditions, the histogram of intensities over
the entire image could be bimodal and the minimum point
between the two peaks could serve as a proper threshold.
Under certain other conditions, it is better to use the change
of slope in a graph of thresholded average intensity (i.e., the
average intensity over the entire image calculated using only
pixeis of intensity above a chosen threshold) against the
threshold itself. The conditions under which one or the other
of these two schemes works have been described in Ref. 7
and will not be repeated here. For large signal to noise ratios
a threshold chosen mercly on visual inspection is adequate
for most purposes. The computer-drawn boundary of Fig, 1
is shown in Fig. 9; this was obtained by setting the threshoid
at a brightness fevel that seemed satisfactory by visual in-
spection. It s clear that the boundary is guite realistic but,
since some minor ambiguities do remain, measurements
need to be made for a nomber of nearby thresholds, We shall
presently show these results and mention the effect of using a
patently incorrect threshold for interface determination.

V. DIMENSION RESULTS IM THE K RANGE
A. Algorithms for fractal dimension measurements

One can now apply several technigues to determine the
fractal dimension of the boundary so marked. We have used
box counting as well as codimension methods. It is worth
mentioning that the computer programs for both methods
have been checked extensively on several mathematically
generated fractal sets of known dimension, and subsequently
used by several other investigators eisewhere, The codimen-
sion method described in Ref. 12 involves computing the
smallest distance from each pixel in the plane to the bound-
ary marked in Fig. 9. The number of pixels ¥_ (») within a
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FIG. 9. The two-dimensional jet image of Fig. { and the computer generated
boundary representing the scalar interface (shown in white).

distance » from the boundary are then counted as a function
of 7. if the boundary is a fractal, an extensive straight part is
expected in log~log plots of N, (#) vs r. The slope of this
straight region is the codimension B, of the boundary; its
fractal dimension is 2 — D, . In the box-counting methods,
also briefly described in Ref. 12, one covers the whole plane
of Fig. 9 with square area elements of varving sizes, and
counts the fraction of eiements containing the boundary. If
the boundary is a fractal, a plot of log A(#) as a function of
the logarithim of the “box" size r should show a straight part,
whose negative siope is the fractal dimension.

In the case of a square image of size n* pixels, n, of
which are interface pixels, the number of computations re-
quired to calculate the dimension in the codimension algo-
rithm is #°(#, + m), where m is the number of different
values of #'s chosen. The first term corresponds to comput-
ing the shortest distance from each point to the boundary,
and the second to counting the number of pixels within a
radius 7 of the boundary. In box-counting algorithms, how-
ever, only n°m computations are required, Digital images in
most of the present experiments contain about 1.5 % 10° pix-
¢ls, the interface pixels being typicaily around 1.5 10* and
m being typically around 50; the box-counting algorithm is
thus far more efficient than the codimension algorithm and
is used in almost all measurements described here. The codi-
mension method can be made more efficient by evaluating
distances essentially along a vertical or horizontal line (in-
stead of interrogating every pixel in the image). This ap-
proximate procedure usually yields acceptable results for ob-
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jects that are not too highly convoluted. For interfaces in
turbulent flows whose geometry is idl-understood, this ap-
proximation—even though it appears reasonable g priori—
cannot always be recommended.

These are not the only methods possible. One can in
principle follow the boundary and use dividers of varying
segment lengths and obtain the apparent length for various
divider lengths. Again slopes in log-log plots yield the frac-
tal dimension. This method is usually difficult for multival-
ued and fragimented boundaries, but one can use suitable
coarse graining at various scales. One such effort® has yield-
ed good agreement with present resuits. If a boundary is
evolving dynamically, one can obtain the area swept by the
boundary at different closely spaced times, and use the codi-
mension method. We know of no estimates made by this
method.

B. Resuils

Figuore 10{a) shows a typical log~log plot of N(r) vs ;
we emphasize that the result is typical in that the straight
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FIG. 10. (a) A typical log-log plot of the number N(r) of square area ele-
ments {“boxes”} of size 7 containing the interface versus the box size ». The
negative slope of the straight part gives the fractal dimension of the interface
section ( == 1.36). (b) The fractal dimension plotted as a function of the
threshold chosen to determine the interface. The abscissa ranging from O to
4096 is the dynamic range of the CCD camera. Also shown in the graph
(dashed line) is the variation of the fractal dimension with threshold in
digitized photographs, rescaled to match the dynamic range of the CCD
camera. Over a large fraction of this range the dimension is essentially inde-
pendent of the threshold. (¢) The scaling range in decades for each thresh-
old. Fer the Reynolds numbers based on nozzle diameter and velocity in the
prusent set of experiments (about 4000) the typical inner/outer scale ratio
is about 200. See the text for remarks on the data within the vertical bars.
The different symbols in {b) and (c¢) correspoud to different realizations.
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part extending from the smallest scale resolved here to 2p-
proximately a scale of the order of the nozzle dizameter holds
provided images are taken carefully as described earlier;
sloppier images yield rounded curves and ambiguous results.
The slope gives a fractal dimension of 1.36 for the boundary.
Figure 10(b) shows the dimension of the boundary as a
function of the threshold on the intensity.

It appears from Fig. 10(b) that a wide range of thresh-
old levels exists over which the fractal dimension of the
boundary is essentially independent on the threshold. How-
ever, Fig. 18{c) shows that the range of scale similarity (that
is, the range of scales over which the log-log plot has a
straight part) varies with the threshold, and is decidedly
smaller for intermediate thresholds. While thresholds near
those marking the boundary as in Fig. 9, and those marking
regions of intense concentrations, yield log-log plots with
unambiguous straight parts, intermediate thresholds (such
as close to the average intensity computed over the entire
picture) produce log-log plots with reduced scaling, often
small enough to be of uncertain value; the range between
vertical lines in Fig. 10(c¢) should therefore be viewed with
some caution. On the other hand, in sections perpendicular
to the axis, we see no strong variation of the scaling range
with the threshold, tempting us to conclude that the behav-
ior seen in Fig. 10(c¢) is due to inhomogeneities in longitudi-
nal sections. This issue, to which we return briefly in Sec.
V B, needs further examination.

Threshold levels correctly marking the scalar interface
show log-log regions extending from approzimately the
large scaie L to approzimately the Kolmogorov scaie . In
general, one can expect on the basis of usuai dynamical simi-
larity arguments that only a proper subset of this range,
namely, the inertial subrange, exhibits scale similarity. For
the present Reynolds numbers, this inertial subrange is
small. It is not entirely clear why the geometric scaling is as
extensive as observed, but it is this property that enables cne
to measure the fractal dimension with a high degree of confi-
dence. We shall come back to this issue in Sec. X and take it
up in detail elsewhere,

As already remarked, using images obtained on photo-
graphic film rather than directly on the digitizer diminishes
the threshold range within which the fractal dimension
shows reasonable insensitivity. The dashed curve in Fig.
18(b) shows the resuits of analysis on one of the LIF images
acquired through the intermediary of photographic film.
{The range was rescaled to match the larger dynamic range
of 4096 of the CCD cameras. ) Clearly, this procedure intro-
duces undesirable features.

. Fractal dimension measurements at higher Reynoids
numbers

One possible source of concern is that the flow Reynolds
number is not high enough. We have obtained LIF images of
Jets up to Reynolds nambers of about 15 000 and analyzed
them in a similar fashion. The scaling in log-log picts was
reasonable and slopes were comparable. However, the inter-
pretation of this resulf is not straightforward because the
resolution in these images is poor compared to the Kolmo-
gorov scale, the primary counstraint being the thickness of the

799 Phys. Fluids A, Yol. 2, No. 5, May 1990

Downloaded.21.Eeh.2009.19.140.1.05.16.64.. Redistribution.subject. to. AR licens e.0s.capysghiy-saahts/lpofaip.o rg/poHeo Ry GRS Brmmarmm .

fight sheet. Further discussion is best relegated to Sec.
VI B.

V. THE METHOD OF INTERSECTIONS
A, The additive law

We may now ask how the fractal dimension from planar
intersections is related to the fractal dimension 2 of the sur-
face itself—this being our major interest. The general prob-
lem of relating the dimension of a fractal object F to that of
its intersections has been discussed in the literature, and
some results are available for special cases (see Ref, 25,
whose theorems have been generalized in Ref. 26). The
equivalent resuli in the present context, as stated in Ref. 9 (p.
366}, relates to the additive properties of codimensions of
intersections. 8pecifically, if S| and §, are two independent
sets embedded in a space of dimension &, and if codimen-
sion{.S,) + codimension(S,) < d, the codimension of the in-
tersection: of S, and §, is equal to the sum of the codimen-
sions of 5, and S,. If F is embedded in three-dimensional
space and intersected by a plane, the above statement implies
that the dimension of the intersected set is one less than that
of F.

By making measurements of the fractal dimension in
two- and three-dimensional images, we have empirically
shown elsewhere® that the additive law works well for inter-
faces in turbulent flows. However, a more convenient
way'#?7 of measuring the fractal dimension of such surfaces
is to measure the dimension D, of its two-dimensional sec-
tion by a thin plane, and use the additive law: The fractsl
dimension of the surface is simply D, + 1. For this tc be
correct, the interface must be such that its intersections in
different orientations must have the same fractal dimen-
sions.?%2°

The results so far have shown that the fractal dimension
of the boundary in longitudinal (that is, streamwise) sec-
tions of turbulent jets is 1.36. Figure 11 shows several or-
thogonal sections of the jet. The log~log plot analogous to
Fig. 10(a} is shown in Fig. 12 for one of the orthogonal
sections at an x/0 of 21, The slope is essentially the same as
that in Fig. 10(a). The scaling range is also as extensive and,
as before, the result is sensibly independent of the threshold.

FIG. 11. Eight LIF visualizations orthogonal to the jet axis, from a se-
quence of 16, obtained 4.6 diameters downstream of the jet axis. The time
difference between images is 4/5 sec.
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FIG. 12. The log-log plot of the number of boxes N(r) containing the
boundary in an orthogonal section (x/2? = 21} versus the size r of the box.
Ashefore, the slope of the straight region in the plot gives the fractal dimen-
sion of the boundary. The value of the dimension is the same as that calcu-
lated from longitudinal sections.

Figures 13(a) and 13(b) are two independent longitudinal
jet sections obtained one and two diameters off axis. The
fractal dimension of the boundary in these images is also
about 1.36 [Fig. 14{a) ], and is independent of the threshold
[Fig. 14(b)] in a certain range. It thus appears that the
method of intersections should hold, implying that the di-
mension of the scalar interface in the K range is about 2.36.
(The error bars on this number are discussed in Sec. VIL )
It may be useful to remark briefly on why the fractal

{a}

dimension is independent of the orientation of the iniersec-
tion piane. This can be expected intuitively to be so for frac-
tally isotropic objects, but flows considered here have a pref-
erential direction. However, strong anisotropic properties of
the interface will be confined essentially to the largest scales
in the Row—these being on the order of the flow width and
larger—and the smaller scales for which fractai-like behav-
jor has been found are expected to be more or less isotropic.
One effect of anisotropy appears through unequal ranges of
scale similarity in two orthogonal planes, but not on the frac-
tal dimension itself.

B. Line intersections

The principle of additive codimensions also implies that
the dimension of line intersections is two less than that of the
surface. By using box-counting methods as before, one can
compute the fractal dimension of the set of discrete points
corresponding to a line intersection of the interface. Figures
15¢a) and 15(b) show typical log-log plots for axial and
perpendicular sections; Figs. 15(c) and 15(d) show that the
dimension does not vary with respect to the position of the
fine cuts. Figure 15(e) shows that the results are essentially
insensitive to the orientation of the line cut. Typical scaling
ranges are shown in Fig. 15(f). The mean value of D from
these considerations is not far from 2.36 (by making use of
the additive principle}.

It must be stressed that one-dimensional intersections
suffer from Iack of sufficient data for obtaining stable statis-

(b}

FIG. 13. Two-dimensional Jaser induced fluorescence visualization along a plane (a) one diameter off axis and (b) two diameters off axis.
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FIG. 14. (a) The log-log plot showing the fractal dimension results for the
off-axis sections. (b} The effect of varying the threshold on the fractal di-
mension estimated from the slope of the log-log plots.

tics, this being evident from the scatter in log-log piots as
well as from occasional instances where larger box sizes
seem to contain a smaller number of points. For very small
records it is easy to construct examples where this latter ef-
fect is genuine, but it could also arise spuriously depending
on the particular way in which the end of data records has to
be treated. We have, in most instances, ignored an end piece
of the data record if it is not long encugh to house an entire
box of a given size.

It is difficult to obtain much more data in a single line
cut. Sections perpendicular to the flow axis are naturally
limited by the flow width, and cannot yield longer records.
Data extents of more than a few tens of integral scales in the
streamwise direction introduce strong inhomogeneities
whese effects remain unknown at present. Long temporal
records can be obtained with ease, and interpreted as spatial
cuts by invoking Taylor’s hypothesis (according to which
turbulence patterns convect without distortion). This proce-
dure stabilizes statistics, but it also introduces uncertain-
ties”® whose meaning is unclear. This issue was examined in
Ref. 12 where it was concluded that single-point time re-
cords lose their fractal-like properties when viewed on very
long time scales. It was also concluded that short-time re-
cords show fractal-like behavior. The recommended proce-
dure for computing the fractal dimension from one-dimen-
sional temporal records is thus to consider many relatively
short segments of data and ensemble average the slopes.
Cne-dimensional data also have the property that a thresh-
old at levels comparable to the mean concentration produce
log-log plots with ambiguous or no straight parts. (The situ-
ation is worse than that for two-dimensional images dis-
cussed in Sec. IV B.) Thus, while one-dimensional data play
a supportive role to two-dimensional measurements, care
must be exercised in tnterpreting them in isolation.

The ratio of a typical fiuctuation velocity to convection
velocity in jets is about two orders of magnitude larger than
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FIG. 15, Typical results from one-dimensional cuts: (&) vertical (that is,
axial) and (b) horizontal (that is, perpendicular to the jet axis); (¢) and
(d} indicate typical variability of the inferred dimensicn D and the scaling
range (in decades} in figures such as (a) and (b) as a function of the posi-
tion of the one-dimensional cut. The vertical cuts in {c) range from three
diameters to the left of the jet axis to five diameters to the right. The hori-
zontal cuts in (d) vary from 12 to 23 diameters downstream of the nozzle;
(e} shows typical results from one-dimensional cuts passing through a fixed
point as a function of the orientation of the intersecting line. Different sym-
bols correspond to cuts passing through different points in the jet; (f) shows
the observed scaling range of cases shown in {e).

that for far wakes. Thus Taylor’s hypothesis might @ prioribe
expected to work better in wakes than in jets; our experience
is consistent with this expectation but a thorough study re-
mains to be made. But the observation that Tayior’s hypoth-
esis preserves geometric scaling on short time scales is both
interesting and useful. In particular, it has been shown®” that
the dimension D is the same for temperature interfaces and
dye interfaces (as long as one is restricted to the K range)
even though heat diffuses about three orders of magnitude
faster in air than does dye in water. We conclude that D is
independent of the scalar diffusivity. Furthermore, one-di-
mensional technigues have enabled us'>!” to infer that the
dimension of the vorticity interface is the same as that of the
scalar interface in the K range.

Vi. THE SCALING IN THE B RANGE

The fact that Taylor’s hypothesis is usefut for dimension
measurements, albeit with the qualifications mentioned, al-
lows us to obtain from finely resolved point measurements
the dimension characteristic of the B range. The experimen-
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FIG. 16. A typical log-log plot of the number N(r) of line elements
{“boxes”) of size 7 containing the interface versus the box size ». The flow is
the cylinder wake. The negative slopes of the straight parts give, in the re-
spective scaling regimes, the fractal dimensions of one-dimensional inter-
sections of the boundary. The dimension, corresponding to the slope of the
line drawn, in the B range, is about 2.75. That in the X range is about 2.36.

tal details for making such measurements were described in
Sec. II. Figure 16 shows the usual plot of the logarithm of the
number of “boxes” containing the intersection points from
one-dimensional cuts through the interface as a function of
the box size; the data are from a wake experiment. There are
two distinct power law regimes here, one in each of the two
ranges. As expected from earlier measurements of Sec. 1V,
the slope in the latter region is around -- 0.36, giving the
expected value of 2.36 for the fractal dimension in that scale
range. ( The relatively large scatter is due to the limited dura-
tion of the signal, which did not contain too many intersec-
tions comparable to bigger boxes. ) The B region has a slope
of about — 0.75, giving the fractal dimension of 2.75. The
average slope from several realizations, including from jets,
i8 2.7 + 0.03. In Sec. IX we argue that the dimension in the B
range 1s expected to be 3 in the Iimit of infinite Schimidt
number, and that the observed deviation from 3 is a finite
Schmidt number effect.

Vil. RESULTS FOR OTHER FLOWS AND SUMMARY

Similar experiments in various other flows have been
made and fractal dimensions computed as before.'2'®?” The
principal results are summarized in Table 1. We should em-
phasize that, within the uncertainty of measurement, we
cannot attach much significance to differences in values esti-
mated from one- and two-dimensional sections, or to varia-
iions from one flow to another. It then follows, to a good first
approximation, that the fractal dimension of scalar inter-
faces in the K range is 2.36 5- 0.05 for all fully turbulent
fiows. Further, this value is the same as the dimension of the
vorticity interface. This general result demands an interpre-
tation based on broad considerations. A similar inferpreta-
tion is necessary for the resnlts in the B range. Before at-
tempting this in Sec. IX, we briefly examine several
additional factors influencing fractal dimension measure-
ments.

802 Phys. Fluids A, Vol. 2, Ne. §, May 1890

TABLE L. Summary of fracta} dimension measurcments in classical turbu-
lent flows.

Flow The K range The B range®
Mecthod of measurement
D euts® 2-D images 3-D images
Round jet 2.36 2.36 236 2.7 (Sc= 1930)¢
Plane wake 2.40 2.36 2.36 2.7 (5¢ = 1930)
Plane mixing 2.39 2.34 e e
layer
Boundary 2.40 2.38
layer

* All measurements are from one-dimensional cuts, with Taylor’s hypothe-
sis.

® These measurements for jets and wakes wese made both with and without
Taylor’s hypothesis. Note that one-dimensional measurements often yield
slightly higher values for the fractal dimension, but the statistical error
bars, deduced from many measurements, are 2.36 + 0.05. The slight dif-
ference from one flow to another may or may not be significant; the present
thinking is that they are not.

“ According to Ref. 20.

¥ill. ADDITIONAL FEATURES INFLUENCING
DIMENSION MEASUREMENTS

A. Fractal dimensions in developing regions and at low
Feynolds numbers

Figure {7 shows an axial section of a water jet at a Reyn-
olds number of about 2000. The laminar part of the jet close

FIG. 17. A typical longitudinal section of the jet at a lower Reynolds num-
ber of about 2000 explicitly showing the developing region.

R. R. Prasad and K. R. Sreenivasan 802




][.
1.4 b J
. o © o ¢ Q © )
i - *
g |
W {— J
s i
1.0 to ° e J‘
]

0 10 20

DOWNSTREAM POSTTION

FIG. 18. Measured fractal dimension as a function of the downstream dis-
tance normalized by the nozzie diameter.

to the nozzie is clearly visible. At such low Reynolds
numbers, the jet is circular in cross-sectional shape as it
emerges from the nozzle, and the common sense expectation
is that its dimension will be 1. Far enough downstream, how-
ever, the jet becomes turbulent and, as we have shown, the
cross section there attains a fractal dimension of about 1.36.
It is of interest to ascertain the variation of the dimension
with axial distance. Typical experimental resulis are shown
in Fig. 18. Low Reynolds number wake data, not shown
here, display similar variation along the streamwise direc-
tion. This sudden jump in: the dimension should, however, be
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FIG. 19. The variation of the dimension as a function of Reynolds number.
(a) Two-dimensional wake, measured by a fixed probe located in the near
field. (b} Countercurrent mixing layer, measured from two-dimensional
sections (from Ref. 18). The initial rise of the fractal dimension in (b) is
closely approximated by a half-power law.
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interpreted in a qualitative sense. The reason is that in that
transitional regime, the flow at any given distance from the
nozzie changes its characteristics from laminar to turbulent
in an apparently random way from one realization to an-
other.

Conversely, at a fixed distance from the wake generator,
the variation of the fractal dimension as a function of Reyn-
olds number follows the pattern shown in Fig. 19(a). Simi-
lar resuits'® for the countercurrent mixing layer are given in
Fig. 19(b).

An important characteristic of these variations is the
abruptness with which the dimension rises. Figure 19(b)
shows that the variation is initially, according to a half-pow-
er law, reminiscent of typical critical phenomena.

B. Fractal dimensions from thicker sections

As previously remarked, the fractal dimension of scalar
interfaces is related to those of sections only when the latter
are appropriately thin. From a practical point of view, it is
important to establish the effect of taking thicker sections or
“siabs” because one cften does not have the required instru-
mentation to obtain thin encugh sections—as in the case of
the high Reynolds number experiments mentioned in Sec.
IV C. An extreme case is one in which no sections are possi-
ble and only projections can be obtained. Atmospheric
clouds are one good example.

A typical thin section possesses an irregularly shaped
boundary with internal holes; the boundary may zlso be
fragmented. The internal foldings and holes get smoothed
out in slabs; in the limit of a projection image, we have an
object whose interior is perhaps completely filled. The exter-
nal boundary, however, remains as sharp as that in an inter-
section—equivalent to viewing the horizon, say, of moun-
tain ranges: One may think of a projection image as being
made up of 2 large number of overlapping thin sections.
However, as far as we are aware, no useful mathematical
results on this aspect exist; nor, from conversations with
many people, do they appear easy to obtain. We therefore
present without much comment experimental resulis on the
dimension of the boundary in thick slabs of scalar-marked
regions in round jets and plane wakes. A slab of desired
thickness is obtained by intersecting the flow by a laser sheet
of that thickness. The boundary in each case is marked and
its fractal dimension determined; similar analysis is also per-
formed on the projection image. The Reynolds numbers are
moderate and comparabie in jets and wakes.

A typical visualization of the jet with a § mm (20%)
thick laser sheet is shown in Fig. 20; alsc shown is the com-
puter-generaied boundary (marked in white) of scalar-
marked regions. Similar slabs of different thicknesses were
obtained. A projection image was obtained (Fig. 21) by illu-
minating the fiow with two xenon flash lamps (16° sec/
pulse duration) mounted perpendicular to the optic axis of
the CCD camera. In all these images, the dimension of the
boundary was determined by box counting. Regardless of
slab thickness, moderate scaling was observed {over 1.5t0 2
decades) in the usual log-log plots. The dimension results
summarized in Fig. 22 show that the fractal dimension de-
creases as a Gaussian from the “thin sheet” value and
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FIG. 20. Visualization of the jet using s 5 mm {20%) thick laser sheet. Also
shown is the computer-generated interface, marked in white.

FIG. 21. Projection image of the axisymmetric jet. The jet was visualized
using two flash lamps perpendicular to the CCD camera optic axis.
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asymptotes to that of the projection image. The least squares
fit to the Gaussian through the data is

D =Dy + aexp( — h?/20%), (23

where Dy is 1.22, a is 0.147, £ is the thickness of the slab
nondimensionalized by the Kolmogorov thickness, and
o= 6.82.

To see if this behavior is cominon, two other flows were
studied: the cylinder wake and a buoyant round jet of heli-
um.”” The wake data shown in Fig. 22 corroborate the same
behavior. Although helium jets were not studied extensively,
the results were consistent with Fig. 22.

MNormalization by the Kolmogorov scale may not pro-
duce a universal curve valid for all fiows, and the reason it
seems to hold for flows studied here may well be that their
Reynolds numbers are comparable. While more detailed in-
vestigations are needed, it is clear that the dimension ob-
tained with a relatively thick slab will be smaller than the
true value, and that the asymptotic value for the projection
tmages is about 1.22 independent of the fiow Reynolds num-
ber (as long as it sufficiently high).

These observations help us explain the fact that log-log
plots at higher Reynolds experiments vielded dimension es-
timates marginally lower than 2.36, although quantitative
assessment would be difficult because of possible nonunique-
ness of Fig. 22. They also explain our measurements on cu-
mulus clouds. Photographs of cumulus clouds were taken
from the ground with the camera optic axis perpendicular to
the grovnd; appropriate filters were vsed to eliminate back-
ground radiation. The boundary of cumulus clouds, deter-
mined by the threshold method, had a fractal dimension of

1.23 + 0.03, coinciding with that measured for projection
images in laboratory flows. We thus infer that the dimension
of the boundary of clouds in intersection, if one knew how to
obtain it, would be about 1.36. This number is close to the
value obtained for clouds by entirely different methods.®®
We infer, at least for cumulus clouds of the size of a few
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FICG. 23, Schematic variation of the surface arca for a fractal-like surface as
a function of the resolution. (a) Unity Schmidt number; (b) Se> 1; (¢)
Sc<l.

kilometers,”! that the fractal dimension of the surface is
2.36 + 0.05. This result is consistent with the laboratory
data for fully turbulent fiows, again suggesting that a broad
principle must be at work. We shall now turn to its discus-
sion.

IX. PHYSICAL INTERPRETATION OF THE INTERFACE
DIMENSION

A. The inner and outer cutofis and the meaning of the
fractal dimension

For fractals, the surface area S increases with the resolu-
tion of measurement » according to the relation®

S~ P , {3)

For a “true” fractal, the area is therefore undefined. In all
practical circumstances, the scale range over which (3)
holds is bounded by cutoffs on both ends {Fig. 23{a)}. In
Sec. I, we designated such surfaces as fractal-like. We have
already shown that the outer cutoff for surfaces in turbulent
flows is expected to be comparable to the integral scale L of
turbulence, while the inner cutofl occurs at the smallest rel-
evant scale. For vorticity interfaces, the relevant inner scale
is 7. The same holds for scalar interfaces when the Schmidt
number is unity; we shall consider the nonunity Schmidit
number effects shortly. The existence of a finite inner cutoff
means that, as the surface area gets measured by covering it
with increasingly finer arez elements, a point is reached at
which convolutions of even finer scales no longer exist, so
that, thereafter, the area does not increase with increasing
fineness of resolution; instead, it will saturate (abruptly in an
ideal situation) at the maximum value corresponding essen-
tially to the inner cutoff. The area S, of a fractal surface with
finite inner cutoff is thus given (to within a constant) by the
knowledge of the fractal dimension, and the inner cutoff %
which theoretically truncates the power-law behavior. Thus
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Sy =8,(n/L)* "7, (4

where S, is some normalizing area. If the area levels off at L
and beyond, S, becomes the surface area measured with the
resolution equal to L; then S, = L.~

We have already remarked that for scalars with Schmidt
number greater than unity the relevant inner cutoff occurs at
the Batchelor scale 17, . We have also discussed that there are
two scaling regimes in this case. Equation (4) therefore
needs to be modified. The relation between the apparent area
and the resolution of measurement for such surfaces is
shown in Fig. 23(b}. If S, is the area measured with resclu-
tion L, S, the area measured with resolution %, and S is the
“true” area measured with resolution 7, we can write

SI:SO(?’/L)2> Dy (5)
Sp =80, /)"0 =Sy(/LY Py, /my P

where the fractal dimension characteristic of the B range is
D*, For Schmidi numbers less than unity, the inner cutoff
accurs at the so-called Corrsin scale®” 7, = Sc¢™ **5, which
islarger than %, and the only relevant exponent is D | see Fig.
23(cy}. The true area in this case is given by

Sy = Sy(y./Ly" . (6)

It is in this sense that the fractal dimension finds a useful
role.

B. Mixing of passive scalars: The case of unity Schmidt
number

Ft was shown in Ref, 3 that the characteristic concentra-
tion gradient across interfaces is of the order C*/#. Here, C'
is a concentration difference characteristic of large scales,
such as the root-mean-sguare value. From these consider-
ations, an expression for the flux of momentum across the
interface can be written as

v (C' /7). (7)

Defining the characteristic Reynolds number Re = U_ L /v
(U. being the characteristic velocity), we may note that
7/L~Re ** and use Eq. (4) for the interface area Sy to
write (after a little aigebra) that the

flux = ch’Uc Re3(i) -7/’3)/4' (8)

Note that L, C', and U, are all independent of Reynolds
number.

Now, it is well known that all fluxes (mass, momentum,
energy) must be independent of Reynolds number in fuily
turbulent flows—the so-called Reynolds number similarity.
( This is simply a statement of the observed fact that growth
rates of turbulent flows of a given configuration are indepen-
dent of fluid viscosity.) From Eq. (8), Reynolds number
simifarity requires that

D=1, (9)
in rough zgreement with measurements (Table I). The same
argument carries over o the vorticity interface, vielding the
identicai result.

We have assumed above that it is appropriate to use a
common characteristic concentration gradient everywhere

aiong the interface. This is not strictly true, at least because
the interface thickness varies from place to place because of
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the spatial intermittency of the dissipation rate £ {which
thus produces 2 fluctuating strain rate). Furthermore, it is
implied that the globally averaged dissipation rate is the
same as that averaged in the neighborhood of the interface
alone. These two issues were addressed in Ref. 3—and, in
full detail, in Ref. 33—by resorting to a multifractal repre-
sentation of the energy dissipation field. The primary result
is that Eq. (9) will be modified in the following form:

D=142(3-D,,;)/3. (10)

Here, D, 5 is the so-called generalized dimension of order 1.
In general, g-order “generalized dimensions” D, are defined

as34

SE, ~r T, (an

where E, is the integral of the dissipation contained in 2 box
of size 7, and the summation on the left-hand side of Eq. (11)
is carried over all nonempty boxes of sizes r. Elsewhere,*>3°
we have measured the generalized dimensions for the energy
dissipation, and in particular shown that D, is sbout 0.96;
Dis therefore about 2.36, in excellent agreement with experi-
ments.

C. The case of nonunity Schmidt number

If the Schmidt number is small, diffusion effects become
important at scalar scales greater than the Kolmogorov
scale, and the arguments put forward above do not change
except that Eq. (6) must be used instead of Eq. (4) for the
surface area. For large Schmidt numbers, the appropriate
relation is given by Eq. (5). The flux of a species is then given
by

flux = L2(U,-AC)RM P 779/4 g, (12)

where ¥y =0.5 (D* - 3), for Sc> 1, and 3(D—7/3)/4,
when Sc < 1. Since the fluxes are expected also to be indepen-
dent of Sc in fully turbulent flows, Eq. (12) implies that
D * = 3 when Sc> 1. This means that interface convolutions
on scales between 5, and 7 are essentially space-filling. No
new result is obtained for Sc < 1.

The infinite Schmidt number result gets modified when
Sc remains finite (though large). To quantify the effect, we
recapitulate that an essential argument used in Ref. 3 is that
the concentration gradient across the interface is of the order
of C'/n,—C ' being a large scale feature. It turns out'® that
the time taken by the scalar to diffuse down to the Batchelor
scale increases fogarithmically with the Schmidt number.
There is also a corresponding pileup of fluctuation intensity
in the scalar patches as the straining by the velocity field
continues unabated. The effective concentration gradient is
then given by C’ (InySc)/7,, and the expression (7) for the

flux gets muitiplied by the factor Iny/Sc. It is then easy to
show that the Schmidt number similarity requires that

D* =3~ 21In(InySc)/In Sc. (i3)

In the limit of infinite Schmidt numbers, (13} reduces to
D% =3, For a Schmidt number of 1930, as is believed to be
the case for the fluorescing dye,?’ Eq. (13) yields D * = 2.65,
quite close to the measured value of 2.7 (Sec. VIJ.
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We reiterate that the present arguments hold in circum-
stances where the amount of mixing is determined by the
large scale, and the surface adjusts itself accordingly. For
large eddies to be the controiling factor at infinitely large
Schmidt numbers, it is necessary that the Reynolds number
must be correspondingly large, the precise condition being
that (In Sc)/Re'?> 1. As expected on physical grounds,
this condition never lets the characteristic gradient across
the interface exceed AC /v, where AC1s the maximum con-
centration difference in the flow.

X. DISCUSSION AND CONCLUSIONS

We have experimentally measured one simple geomet-
ric feature, namely, the fractal dimension, of scalar inter-
faces in turbulent flows. We have used various imnaging tech-
niques and a good part of the paper is devoted to describing
the nature of experimental measurements; the belief is that
they contain information useful in several contexts in turbu-
lence. In the process, we have established the validity of the
method of intersections (at least from three to two dimen-
sions).

In contrast to the scaling range in frequency spectra, the
scaling in boz-counting methods extends (in two-dimen-
stonal images ) over most of the available range; for example,
in the K range, it extends almaost all the way from the Kol-
mogorov scale 77 to the integral scale L. Experiments at very
high Reynolds numbers will be required to make more pre-
cise statements, but such measurements are still lacking and
are unlikely to be made with adequate resolution in the near
future. Our own unpublished experiments at higher Reyn-
olds number jets confirm the main result on the dimension,
but shed little light on the scaling range as a result of resolu-
tion problems. One-dimensional measurements at high
Reynolds numbers using Taylor’s hypothesis have con-
firmed the main result, but we must emphasize that they call
for cautious interpretation unless backed by two-dimension-
al measurements. At any range, it is clear that the scaling for
the interface is more extensive than the classical inertial sub-
range in the frequency spectra of the longitudinal velocity
spectrum, the latter generally extending from about 20f, to
almost £, , where £, and f; are the Kolmogorov and integral
scale frequencies, respectively. The primary difference in the
interface measurements is not at the large scale end but at the
small scale end, where it approaches the Kolmogorov scale
inn the K range. Two possible explanations of what seems to
be the merger of the inertial and dissipative ranges are the
following.

(a) We have considered only flow extents of linear size
of order L, and not many hundreds of L ’s characteristic of
spectral measurements. Thus any nonscaling sampie-to-
sample fluctuations included in the latter do not influence
the scaling in the present method. The source of these fluctu-
ations and their relevance t{o overall flow dynamics are cur-
rently being examined.

(b} The scaling is invariably better in two dimensions
than in one, and it is possible that two- and three-dimension-
al spectra display better scaling than do one-dimensional
spectra.

These notions are at present based only on preliminary
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work, and much needs to be done before they can be consid-
ered established.

In spite of these remarks, we believe that the dimension
results presented here are solid. For passive scalars of unit
Schmidt number, the interface dimension is 2.36 4 0.05 in-
dependent of flow configuration as long as the flow is fully
turbulent. From Refs. 12 and 17, the fractal dimension of the
vorticity interface is also 2.36. The fact that the two inter-
faces have the same dimension is consistent with the notion
that the scalar is dynamically passive, and that its geometric
features are set by turbulence dynamics. If the Schmidt num-
ber is small, the same fractal dimension is believed to hold
except that the inner cutoff cccurs close to the Corrsin scale
1. instead of close to %. For large Schmidt numbers, the
dimension in the K range is 2.36 also, but a different scaling
occurs between % and the Batchelor scale »,, and is charac-
terized by its own dimension. The scalar convolutions in this
range are essentially space-filling (that is, the dimension is
3), but finite Schmidt number corrections reduce the dimen-
sion to about 2.7 even when the Schmidt number is of the
order 1000. Gn the basis of Reynolds number and Schmidt
number similarities, these results have been given some phe-
pomenological explanation in terms of turbulent mixing.

This explanation is essentially heuristic, and it is useful
to ask if the main dimension results can be deduced from
some generic properties of the equations of motion. If the
effect of viscosity and diffusivity are benign and appear only
through the imposition of cutoffs, these resuits must be asso-
ciated with the inviscid and nondiffusive equations rather
than the Navier-Stokes equations and the corresponding
scalar equations including diffusivity. In spite of important
lines of inquiry,”””® things remain unclear.

The fractal dimension is a useful entity™ in the context
of turbulent mixing and entrainment of the ambient fluid. it
gives, however, and incomplete information on the surface.
This is iltustrated graphically in Fig. 11, which shows several
images in a temporal sequence taken perpendicular to the jet
axis. The variety of shapes seems endless, and yet all of them
have practically the same dimension. A more detailed de-
scription of the interface is via multifractals,*****! briefly
introduced through the g-order moments in Sec. 1X. Such
measurements on the interface are possible in principle be-
cause the information is already contained in the images ac-
quired here but, as shown by a preliminary effort,® several
practical difficulties surround their accurate determination.
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