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Multifractal Nature of the Dissipation Field of Passive Scalars in Fully Turbulent Flows
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We present measurements of the curve of f vs a from two-dimensional sections of the “dissipation”
field of concentration fluctuations, and from one-dimensional sections of the dissipation field of passive
temperature fluctuations, in turbulent jets. The results confirm the universality of the dissipation rate X
of scalar fluctuations and the applicability of Taylor’s hypothesis, and show that the curve of f vs a is the
same for different components of X, that the additive properties of f(a) apply to intersections, and that
the intermittency exponent of X is considerably higher than that for the turbulent kinetic-energy dissipa-

tion.

PACS numbers: 47.25.Gk, 05.45.+b

It has been recognized'™® that intermittent quantities
or measures naturally lend themselves to be character-
ized as multifractals. In this picture, local singularities
of different strengths a are distributed on interwoven sets
of varying dimensionality f(a), while moments of order
g obey power laws involving the so-called generalized di-
mensions* Dy,. For a general review, see Refs. 1-4, and
Meneveau and Sreenivasan.” These ideas have been ap-
plied to turbulence!%*>"7 and the curves of D, vs g and f
vs a for the dissipation of turbulent kinetic energy, e,
have been measured,’ and shown to be universal features
of fully developed turbulence. Another quantity of prac-
tical interest is the “dissipation” of passive scalar fluc-
tuations ¥ =I"(d6/8x;) 2, where x; represent spatial coor-
dinates and @ is a passive scalar (e.g., concentration C of
a contaminant or temperature T), and I the correspond-
ing molecular diffusivity. ¥ does not involve cross terms,
and contains only three components (of which we mea-
sure two) instead of nine components in € (of which only
one component was measured’). Extensive measure-
ments of ¥ have been made®® for the case when the pas-
sive scalar is the temperature, and the results on the
probability densities® as well as the scaling properties of
the temperature structure functions'® were shown to be
at variance with a log-normal'' distribution, as well as
with the B model.'? In conformity with our previous
findings on ¢, it seems natural to conjecture that x is dis-
tributed according to a multifractal distribution, i.e., X,
the local average of X over a domain of size r centered at
X, obeys a power law X~ri"la being a function of x.
This Letter describes measurements of the curves of D,
vs ¢ and f vs a for X using both one- and two-dimen-
sional slicing of the three-dimensional scalar dissipation
field, and presents conclusions related to questions of
isotropy, intersections of ¥ with lower-dimensional sub-
spaces, and intermittency.

For two-dimensional slicing, the concentration C of a
contaminant was used as the passive scalar. A water jet
seeded with sodium fluorescein dye flowing into a tank of
quiescent water was illuminated by a sheet of a pulsed

laser light of thickness 200-250 um and duration 8 ns.
The diameter D of the nozzle was 12 mm and the exit
velocity U was 0.3 m/s. These conditions lead to a
Landau-type estimate of about 330 for the ratio of the
large scale L to the Kolmogorov scale n, and an 7 itself
of about 250 um. Images of the “instantaneous” tu-
bulent concentration field (proportional to the intensity
of laser-induced fluorescence) were obtained with a
charge-coupled-device camera consisting of 1400x 1035
pixels, and digitized with twelve-bit resolution. Figure 1

FIG. 1. Digitized image of the concentration field in a tur-
bulent water jet, illuminated by a thin laser sheet. The box
shows a region typically used for the calculations, which is fully
contained within the jet fluid (see text).
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FIG. 2. Dissipation of concentration fluctuations X(C)/{x)
as a function of x, and x», within the box of Fig. 1.

shows an image, which is an instantaneous graph of C as
a function of two spatial coordinates x| and x,, x| being
the streamwise direction. Also shown is a square region
of 150% 150 pixels that is fully contained within the tur-
bulent jet. All computations explained below were made
in such regions.

As mentioned earlier, the quantity 2(C) consists of the
three terms:

2(C) =r1(8C/dx,) 2+ (8C/dx,) 2+ (8C/dx3) 2]

Two of these terms are accessible from the digitized im-
ages by differentiation of C with respect to x; and x,.
Figure 2 shows x(C) (divided by its average {x)) calcu-
lated with those two terms within the square region
shown in Fig. 1. The high intermittency and qualitative
resemblance to multifractional measures is immediate.

In order to make quantitative statements about the
distribution of ¥(C), the set of generalized dimensions
D, was obtained by division of an appropriately chosen
interior jet region into smaller square regions of size r,
and by the identification of the power laws®=> of the type

> (X,/X,)i~ra~ Dy (1)

Here X, is the integral of X(C) over a box of size r, X, is
the total dissipation, and the sum is taken over all
squares of size r contained in the domain. This is repeat-
ed for twelve different values of r ranging from 1 pixel,
corresponding roughly to » =n, up to r =150 pixels. Ac-
cording to Eq. (1), if log-log plots of [X(X,/X,)91"/@~1
vs r present linear regions for r within the scaling range
(observed in Ref. 5 to be n.SrSL), then the slopes cor-
respond to D;. When the regions used to measure the
‘“generalized dimensions” were completely inside the tur-
bulent jet (as in Fig. 1), straight lines were observed for
close to 2 decades from r=1 pixel to =80 pixels, per-

FIG. 3. Typical log-log plots of [X(X,/X.)91@~" ys r for
g=—4,—-2,0,2,and 4.

mitting accurate determination of D, (see Fig. 3). Jet
regions which were not entirely turbulent were not used,
because the interpretation of such results is not clear:
Recalling that the dye interface is a fractal,!’ we then
have a multifractal measure bounded by a fractal
interface—a more complex object. For such regions, no
convincing scaling was observed for ¢ <0. This will be
discussed elsewhere.

From the D, curves obtained, the f(a) curves were
computed with the Legendre transforms® (with d =2 for
two-dimensional sections of the flow)

a=(d/dg)l(g—1)D;1+1—d, (2a)
fla)=qla—1+d)—(g—1)D,. (2b)
Figure 4 shows the f vs a curves for five different regions
in different realizations of the flow. The continuous

curve represents the f vs a curve obtained with Egs. (2)
on the averaged D, curve. The scatter of the data is

e e e e

FIG. 4. f vs a curves obtained from five different regions
like Fig. 2. The continuous curve is the f vs a curve obtained
from the averaged D, curve.
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FIG. 5. Comparison of average f vs a curve for X~ (38C/
9x,)? (the x curve), ¥~(dC/dx;)? (the y curve), and
X~(3C/9x1)%+ (8C/dx2)? (the d curve).

small, much lower than for one-dimensional sections
of e

Notice that we did not include the last component
(8C/98x3)? in the calculation of x(C). In doing so, we
assumed that the f vs a curve of any one term (9C/dx;)?
could not differ appreciably from that of the others or of
the sum. This assumption about their scaling behavior
has been checked by comparing the f vs a curves ob-
tained separately from (8C/8x,)2 and (8C/8x,)%. The
averages and variability of five realizations are shown in
Fig. 5. It is seen that they agree very well within experi-
mental scatter, confirming the hypothesis of small-scale
isotropy used to obtain x(C). This small-scale isotropy
refers to the equality of power-law exponents of the
different components of ¥, and not to their absolute
values. The present results do not rule out different
preexponential factors in all relevant scaling laws for
different components® of x.

Next, the f vs a curve for one-dimensional sections
was obtained. The passive scalar used in this context
was the temperature, and the flow was a heated air jet
(D=2.5 cm, U=5 m/s). Measurements were made at
an axial distance x;/D =25 from the nozzle and on the
fluid-dynamic center line of the jet where the tempera-
ture rise above the ambient was 5°C. The temperature
was measured with a cold wire (diameter=0.63 um)
operated at a constant current of 90 uA in order to mini-
mize the influence of flow velocity. Following Ref. 5, the
time trace of temperature was interpreted as a one-
dimensional spatial cut through the flow field in the
streamwise direction x; with Taylor’s frozen-flow hy-
pothesis. The dissipation of temperature fluctuations
was calculated with only one component X(T)~(38T/
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FIG. 6. Average f vs a curve for one-dimensional sections
through X(T) (circles) and variability observed from one data
set to another (error bars). Only the portion of the curve cor-
responding to ¢ = 0 is shown. The continuous corresponds to
the f vs a curve of ¥(C) minus 1 (see text).

9x1)% which, on the basis of Fig. 5, seems reasonable.
The D, curve was obtained with Eq. (1), where X, is
now the integral of X(7) within a segment of length r.
This was repeated for 30 signals each of which was 40L
long, and the resulting values of D, were averaged. (For
a detailed description of the experimental pointers to
measuring D, curves and selecting the length of the sig-
nals to be analyzed, see Ref. 5.) Since the uncertainty in
the determination of D, for ¢ <0 was relatively high
(this being due to noise, which reduces the scaling range
for negative g, as explained in Appendix C of Ref. 5),
only the results for ¢ =0 are presented. Finally, Egs.
(2) with d=1 were used on the averaged D, curve to ob-
tain the f vs a curve for the one-dimensional cuts
through 2(T). The results, corresponding to the left side
of the f vs a curve, are shown as circles in Fig. 6, along
with typical experimental variability.

A comparison of results from one- and two-
dimensional sections can now be made. With the under-
standing that fractal dimensions follow additive laws un-
der intersections—see Mandelbrot '* and references cited
there—it is expected that the f vs a curve of the one-
dimensional sections will be one less than that of the
two-dimensional section. The line in Fig. 6 corresponds
to f(a) —1 vs a for the case of 2(C), obtained by the
subtraction of unity from the continuous curve of Fig. 4.
This was done only by an interval of a such that
f(a) —1=0. The agreement between the two curves is
good within experimental uncertainty.

Since the results of one- and two-dimensional slicing
agree, the interpretation of a temporal signal as a one-
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dimensional spatial cut appears plausible in the present
context. Also, the Schmidt number in the two cases
differs greatly (by a factor of 1000 or more), and the
Reynolds number was also quite different. This is an in-
dication that the present results are universal charac-
teristics of the dissipation of passive scalar fluctuations,
independent of the scalar, provided that it is passive and
that the Reynolds number is sufficiently high.

A last remark concerning the intermittency of X
should be made. From Fig. 5 it is seen (for one-
dimensional cuts) that ami, =0.40 * 0.07, which is lower
than ami, observed for e (amipy=0.51+0.05). This
means that ¥ has stronger singularities than €. Also, not-
ing’ that the intermittency exponent u is given in terms
of the Dy curve as u=—2dD,/dq, or equivalently as
u=2la—14+d—f(a)l, both evaluated at ¢ =0, one ob-
tains uy =0.38 = 0.08, higher than the intermittency ex-
ponent of € (u,=0.25%0.05). This agrees with experi-
mental results® obtained with Kolmogorov’s relation be-
tween the variance of log(,) and log(e,) vs log(L/r).
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FIG. 1. Digitized image of the concentration field in a tur-
bulent water jet, illuminated by a thin laser sheet. The box
shows a region typically used for the calculations, which is fully
contained within the jet fluid (see text).
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FIG. 2. Dissipation of concentration fluctuations X(C)/{x)
as a function of x; and x;, within the box of Fig. 1.



