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Summay Yy

On the basis of instability and vortex interactions in an idealized physical model, an
attempt is made to deduce in a self-contained and rational way the structure of the
turbulent boundary layer. It is shown that the model provides a rough but
self-consistent description of several known aspects of the structure The key concept is
that of a 'critical layer’ in the flow. It is believed that this description will shed some
light on possible control schemes for the turbulent boundary layer.

In i

Among the prototypical turbulent flows repeatedly studied over the years, the
turbulent boundary layer (TBL) is clearly the least understood in terms of its
structure. One of the primary difficulties is that there are at least two distinct scales in
the flow which are disparate at high Reynolds numbers, and the interaction of
phenomena dominated by one scale with those dominated by the other is generally
ill-understood.

It should thus come as no surprise that the experimental work has identified a
multiplicity of structural elements. For example, some evidence has been put forth
(Townsend 1966; Kovasznay, Kibens & Blackwelder 1970) to suggest that the
boundary layer is domimated by the so-called large eddies of size comparable to the
entire thickness of the boundary layer. On the other hand, more recent evidence
(Head & Bandyopadhyay 1981) suggests that the very existence of these structures is
in doubt, and that the large eddy apparent in flow visualization studies is only the slow
overturning motion of a collection of smaller scale eddies of the hairpin type, each of
which is inclined, over a major part of the thickness, at around 45° to the plane of the
flat plate. In fact, hypotheses have been made (Perry & Chong 1982) that the essential
structure of the flow is a hierarchy of hairpin eddies. Other structural elements such
as the 'typical' eddies (Falco 1977), double roller-type eddies (Townsend 1956, Kim
& Moin 1986, Nagib & Guezennec 1986), transverse vortices (Praturi & Brodkey
1978), have also been identified.
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In the inner layer where the characteristic scale is governed by the wall shear stress
and viscosity, the evidence appears incontrovertible - at least at low Reynolds
numbers - that an important feature is the streaky structure (Kline et al. 1967). The
sequence of quasiperiodic events comprising of the formation of these streaks, and the
lift-up, oscillation and breakdown of some of them, together designated as the
bursting process (Kline 1978), is believed to be responsible for the significant
fraction of the turbulent energy production (Kim, Kline & Reynolds 1971). Research
has also revealed the existence of other structures, for example, pockets (Falco 1987).

It is clear that the TBL structure is many-faceted and complex. Even if we concede
that some of these structural elements are not independent - that is, they emphasize
different aspects of the same basic form - we are still left with a number of them, and
the puzzle is to decide which of them are dynamically significant, and how they arise
and interact. If, for the sake of the argument, we assume that the large structure is
indeed the dominant and driving mechanism, the question arises as to how it
originates and maintains itself. Clearly, we can rule out laminar-turbulent transition
as the source. It is also not hard to argue that the bursting process is unlikely to
accomplish this, merely based on the fact that its scales and the large eddy are quite
disparate at high Reynolds numbers; to our knowledge, no one has observed the
required hierarchical amalgamation of scales to make the point of view viable.
Alternatively hypothesizing that bursting is the dominant aspect shifts our concern to
its origin and sustained maintenance, and difficulties still remain. If we argue (e.g.,
Blackwelder 1978) that bursting arises purely from local instabilities in the inner
region (say, y* < 30), it is tantamount to saying, at high Reynolds numbers, that an
extremely small fraction of the entire thickness (0.001 at a boundary layer Reynolds
number of 106) drives the rest of the flow having no active role - a sentiment clearly
open to doubt. If we propose instead that bursting is driven by the outer structure
(Rao, Narasimha & Badri Narayanan 1971), the nature of the inner/outer interaction
has to be understood, and we are back to asking how the outer structure which drives
the phenomenon came into being in the first place.

We may conclude that, in spite of some very important work on the topic, no
self-contained and complete picture of the structure exists today. It is our belief that,
on the shoulders of the past work, such a picture can now be constructed, in a way that
explains to a first approximation at least the important structural features of the flow.
It is to an assessment of this statement that the paper is devoted. The work is clearly
unfinished and has a number of holes, and yet these notes seemed useful if only
because they will provide a target for useful criticism.
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2, The overall

To set the stage, it is helpful to examine the origin of the dominant structure in the
simpler case of a two-dimensional mixing layer between two streams of unequal

‘speeds. For convenience, we shall think first of a counter-current mixing layer, that

is, the one in which the two velocities are equal in magnitude and opposite in sign.
This allows us to forget the effect of spatial variation of the flow scales momentarily,
but we shall return to it soon. Let us consider the laminar case. It is well known that
the vortex sheet, formed when the two streams come in contact with each other, is
unstable to small two-dimensional perturbations (the Kelvin-Helmholtz instability),
and the saturation state of this instability corresponds to the roller-type vortical
structure. Vortex sheets of infinitesimal thickness are unstable to perturbations of all
wavelengths, but in practice the finite thickness due to viscous diffusion enforces an
upper cut-off on the unstable wavenumbers. This results in a most amplified
instability wavelength (figure 1), and the expectation that this corresponds to the
observed one is then quite natural. If the two-dimensional roller-type structures were
to survive, we should show in addition that they are stable to three-dimensional
perturbations. Ideally, one should consider the case of arbitrarily large
three-dimensional perturbations, but experience in a number of similar circumstances
(Gaster, Kit & Wygnanski 1985, Wygnanski, Champagne & Marasli 1986,
Wygnanski 1987) suggests that the use of the linear theory may be adequate. This
staterpent calls for a thorough assessment, and some brief remarks are made in section
7, but, for now, we shall take this as an empirical fact.

To show the relation of this picture to the large structure in the turbulent mixing
I.aye'zr, we continue the same descriptive reasoning while clearly recognizing its
limitations. If our interest is in the primary large structure, it is our assertion that
local or small scale instabilities will not have much influence on the origin of the large
structure. This means that, for present purposes, the flow need only be observed and
described on scales that coarse-grain the small scale details. Thus viewed, the
turbulent mixing layer appears as a vortex sheet much as in the laminar case -
although more fattened obviously. This yields roller-type structures whose
wavelength we can predict as before. The required three-dimensional stability
analysis in this case, carried out by Robinson & Saffman (1982), shows that three
dimensional instabilities grow much more slowly, implying that the two-dimensional
structures are the most likely ones to be observed. This is qualitatively consistent with
observations in turbulent mixing layers.

The task of providing quantitative assessment is rendered difficult because (to our
knowledge) there exists no experimental work in constant density counter-current
shear flows. There do exist, however, some in slightly stratified environment
(Thorpe 1971, 1973; Ramshankar 1986), and an abundance of the spatially
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developing type. A quick look at the former class shows that the most amplified
wavelength is close to the one observed; more work is needed, however. Quantitative
comparisons in spatially developing flows are complicated by the length scale
variation with the streamwise direction x. The difficulty is that the observed
wavelength at any x is a consequence of the growth from some upstream distance, and
it is not clear what length scale one should use to normalize the observed wavelength.
If one uses the local length scale (say, the local momentum thickness) the observed
dimensionless wavelength of the large structure does not correspond to the largest
amplification, but instead to zero amplification. One possible interpretation is that the
instability corresponds to the maximum amplification at the point of its onset, but
slides down the curve to the right (see figure 1) due to the increasing length scale as it
propagates downstream, until the instability saturates (and the structures become
observable) at the wavelength of neutral growth. One may conceive of interactions
between large structures as the next important step in dynamical evolution.

In sum, the picture is that, insofar as we are interested in the large structure, an
appropriate idealization of the mixing layer is a vortex sheet of finite thickness in
which the entire mean flow vorticity is being concentrated. It is the end result of its
instability to two and three dimensional perturbations that will determine the origin
and sustenance of the large structure in the flow. For practical purposes, linear theory
seems adequate.The picture appears correct for temporally developing mixing layers,
but is qualitatively reasonable for the spatially developing ones also.

These same issues concerning the large structure in other shear flows can now be
sought in similar terms by a straightforward procedure. For example, in the case of a
two-dimensional wake, we may think of the instability of two vortex sheets of
opposite sign as giving the clue to the dominant structure of the wake. We have
examined this idea in somewhat of a detail, and roughly satisfied ourselves that the
idea is sound there, but this is no place to discuss it. Similar suggestions for other free
shear flows. are more or less obvious.

1t is worth emphasizing that in 'concentrating' all the mean flow vorticity in one or
more fat ‘sheets’, we are no longer concerned about the details of the mean velocity
distribution; the implication is that the large-scale instabilities of the two are the same.
It follows that one of the a priori requirements for the reasonableness of this approach
is that the mean velocity distribution itself be unstable. This requirement is obviously
satisfied for all free shear flows with inflexion points, but the sifuation is marginal for
the TBL, and certainly different for the channel flow whose mean velocity profile is
stable to linear perturbations (Reynolds & Tiederman 1967). The justification for
proceeding further in wall-bounded shear flows is merely that the perturbation
environment is in general not linear, and that we shall not need to invoke small
amplitude perturbations in the primary instability stage.
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Now, the inviscid model for the TBL, which obviously reduces to a vortex sheet with
a corresponding image, can be expected to be inadequate: unlike the case of the
unbounded shear flows where viscosity has no direct influence, a subtle role for it
ought to be expected on the basis of previous experience in the transitional case. Even
if we succeed in identifying the proper role for viscosity, the vortex sheet is being
constantly buffeted around by the small scale stuff generated by the bursting process
near the wall, and the details of instability can be quite murky. Finally, it is not a
priori obvious how far from the wall the vortex sheet must be located. This will
clearly play a crucial role in determining the instability of the vortex sheet
configuration. The resulting structures can be expected to have a characteristic size of
the order of the boundary layer thickness & itself if we locate the vortex sheet far away
from the wall, y/d fixed around (but less than) unity. This position for the vortex sheet
makes little sense, however, because the majority of the TBL vorticity is contained
near the wall. On the other hand, putting the vortex sheet in the wall region, yUx/v
fixed in the inner layer (U and v being the friction velocity and viscosity coefficient
respectively), makes the concept of a reasonably well-defined vortex sheet invalid,
and the whole idea has to be abandoned. The present view resolving this issue is that
something like a ‘critical layer' exists in the TBL, and it is precisely here that the
vortex sheet must be located. In the following section, we shall argue that this ‘critical
layer' is similar to the transitional critical layer, and determine its location. (Through
out this text, ‘critical layer' means the analogy we imply in TBL with the transitional
critical layer.)

3, The ‘critical laver

We now make a digression whose relevance will be clear presently. Figure 2a shows
the distribution of the Reynolds shear stress in a transitional boundary layer,
computed by us from Jordinson's (1970) numerically obtained eigenfunction and
eigenvalue data for the unstable Tollmien-Schlichting (T-S) waves. The point of
interest here is that the peak in the Reynolds stress coincides with the critical layer.
This same remark holds also for the transitional channel flow (figure 2b). We shall
now invert this simple finding and stretch its implications significantly by saying that
the location of the peak Reynolds shear stress in the TBL is something like a 'critical
layer’ for the flow. We shall presently determine where in the TBL the Reynolds
shear stress peaks, and, to justify the concept of the ‘critical layer’, show how it shares
some of the same properties of the transitional critical layer.

In figure 3a, we have collected all experimental data (including pipe and channel
flows) that could be found on the distance Yp from the wall to the location of the peak
Reynolds shear stress. The characteristic Reynolds number R+ = Uxd/v appears
naturally as the length scale ratio in the problem. A good fit to the data is given by
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Yp©= ypUsiv=2Rs05. &

Since accurate measurement of the Reynolds stress near the wall is beset with several
problemss including the probe size, it would be valuable, in view of the importance of
(1) in this work, to have some corroborative evidence for the variation seen in figure
3a. In fully developed channel and pipe flows, the Reynolds shear stress distribution is
related exactly to the mean velocity distribution U(y) by

v = v(dU/dy) + UsX(1- y/a), (2)

where y is the distance normal to the plate and a is the half-channel height or the pipe
radius.The mean velocity measurements at distances of interest to us are generally
beyond reproach, and so we should be able to obtain the Reynolds shear stress
distribution, and thus yp+, from the mean velocity data, Figure 3b shows the results in
a number of experiments in fully developed pipe and channel flows. Equation (1)
describes the variation satisfactorily. It is of interest to note that the lowermost two
data points in figure 3b, corresponding respectively to the transitional boundary layer
and channel flows of figure 2, obey (1) approximately; this provides some confidence
in the present view that the ‘critical layer' in the TBL can be thought of as a
conceptual extension of the transitional critical layer.

Note 1: Except for the right-most point at R+ of 60000 from Nikuradse's highest
Reynolds number experiment, the data in figure 3b do not assume anything but a fully
developed state. In the exceptional case, the mean velocity data of Nikuradse did not
extend sufficiently close to the wall to include the peak stress location, and was
obtained by us by a standard extrapolation to the wall of the mean velocity data before
using (2). Although we have enough material to justify (1) without this data point, it
was thought that the exercise was worthwhile because of the large Reynolds number
of this flow.

Note 2: We may note, without giving proof, that the peak in u' varies only as a weak
power of Reynolds number (' R+0-17) or perhaps logarithmically. The v' peak is an
even stronger function of the Reynolds number than uv. There is considerable scatter
in the v' data (much more than for uv, surprisingly), but the data are roughly
consistent with a 0.8 power law. Another possible fit is a constant up to an R+ of 400,
and a unit power of R+ beyond. The situation regarding w' (the spanwise component)
is quite uncertain.

Two remarks, although obvious from figures 3a and b, are worth making. Firstly,
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since the peak in the Reynolds shear stress occurs at increasingly larger y* from the
wall, we conclude that the part of the dynamics contributing to the Reynolds shear
stress does not primarily reside at constant y*. We shall return to this important point
in section 7. Further, the fact that the peak Reynolds stress follows (1) in the TBL as
well as pipe and channel flows is here interpreted to mean that the Reynolds shear
stress producing motion is similar in all three cases. Secondly, although the peak in
the Reynolds shear stress moves outward in terms of wall units, it moves inward in
terms of the outer units - in fact, according to the inverse half power of Rx.

It is well known that the flow speed in the transitional critical layer is a constant
fraction of the free stream velocity, and it is useful to see if this is true for our ‘critical
layer' also. Figure 4 shows that, independent of Rx, the speed at the ‘critical layer'is a
constant of approximately 0.65 U,,, lending credence to our claim. Other indications
justifying the analogy are mentioned in the Appendix.

One observation, although not too directly related, may be useful. For sufficiently
high Reynolds numbers, say R* > 1000, the 'critical layer' lies within the logarithmic
region of the TBL. We thus have:

0.65U,/Ux = A log yp+ +B.
Using (1) on the right hand side, we get the result that
Uo/Ux =43 1og R+ + 8.5, 3)

where we have chosen the usual values of 5.5 for both constants A and B in the
1og-1gw. Equation (3) is similar in form to the so-called skin-friction law for the TBL
(e.g., Monin & Yaglom, 1971, p 296). The constants in (3) are somewhat different
from the usually quoted values of 5.5 and 7.4, but, over a range of R, (3) is in

substantial agreement with the usual skin friction law. A more detailed assessment
should await another occasion.

The picture then is simply the following. The boundary layer is modelled by a fat
vortex 'sheet' located at a distance given by (1). To determine the dominant structure

of the flow, it is necessary to examine its stability. This is done in the next two
sections.

According to (1) and our previous discussion, the vortex sheet must be located at Yp =
h = 2(8v/Ux)0-5, As this sheet becomes unstable to perturbations, the first task must be
to determine the streamwise wavelength of the rolled-up structures (figure 5). Again,
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we make the analogy to the transitional case. We propose a heuristic argument to
predict the wavelength of the T-S waves, and show that it is in general accordance
with observations. We then use the same arguments to determine the wavelength of
roll-up in the case of the TBL model.

In the transitional boundary layer, one may imagine a vorticity perfurbation imposed
on the vortex sheet in the critical layer. There is a corresponding perturbation at the
wall, which will both diffuse outwards and convect downstream. If the arrival at the
critical layer of the wall perturbation occurs such that it reinforces the vorticity
perturbation in the critical layer, the latter will get amplified. If the wall perturbation
arrives at the critical layer out of phase with the prevailing perturbation there, the
latter will decay and no sustained disturbances are possible. Thus, the criterion for a
sustained growth of the vorticity perturbation is that its wavelength be compatible
with the phase relationship mentioned above. If A1_g is the wavelength of a growing
T-S wave, and Uy is the phase velocity at the critical layer located distance 3, from the
wall, the condition for reinforcement is

| Y\o5 - 8
(U, c

where it is assumed that the convection velocity for the wall vorticity perturbation is
0.5U. This relation can be rewritten as

M./ = Ry 160, o “

by noting that 8, = 0.199, and U, = 0.35 U, Here, Rg = U.d/v. For typical Rg in the
unstable range, we have

AT.5/6 =0(10),

a result close to observation in transitional situations. The usefulness of this argument
is that it provides a simple explanation for why the ‘aspect ratio' A_g/8 for the T-S
waves is of the order 10, while a similar aspect ratio in free shear flows (for example,
the mixing layer, and the Karman vortex street) is of the order unity. This also
explains why vortex pairing is unlikely in the TBL (secondary instabilities being
likely to take over).

Extending this argument to the '‘critical layer' in the TBL is conceptually
straightforward, but the details need some discussion. This is best done with reference
‘to figure 6. Near the wall in the viscous sublayer (say, y* < 5), diffusion of the wall
vorticity occurs essentially by viscosity, but the major part of the diffusion occurs
largely by turbulence. The turbulence intensity profile q'/U,, is plotted in figure 6;
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q?2 - ;"l_u: (For a self-contained picture of the TBL, we have to say how this
turbulence is created, and to this we shall return in section 6. For now, we shail
presume that it exists and diffuses the wall vorticity perturbations over the major part
of the ‘critical layer’ height.) If vorticity diffusion by turbulence can be represented
by an eddy viscosity v, the above reasoning suggests that

Ad® = 13 (WIVg) (Upo /Ux). (5)

Although the concept of eddy viscosity as a general rule is not useful in shear layers
(for example, Sreenivasan, Tavoularis & Corrsin 1982), its use for mimicking the
diffusion effects of small scale turbulence is not too unreasonable. In any case, it is
invoked here merely for convenience of completeness, and we shall show that its
precise value is immaterial for most of what follows in the next section.

5. The hairi

At this stage, then, we know the distance from the wall of the vortex 'sheet' (equation
(1)), and have estimated the streamwise wavelength Ay of the roll-up structure
resulting from the primary instability (equation (5)). Numerical estimates based on
(5) will be given later, but it is useful to note that the ratio A,/ is generally of the
order 5 over a significant range of Reynolds number.

If this structure is the one to be observed, it must be shown to be stable to three
dimensional perturbations. As suggested earlier, we shall be content with inviscid and
linear theory. (An effect of viscosity appears in equation 5, and will reappear in a
stronger form in section 6. For fast growing modes, which the three-dimensional
perturbations actually are, it is enough to consider inviscid theory.) The inviscid
equivalent of figure 5 is given in figure 7a, where the wall has been replaced by the
image array of vortex elements. Naturally, the zero normal velocity at the wall
implies a symmetric configuration only. The distance height 2h between the two
arrays and the spacing between any two array elements are marked. This
configuration will now be subject to three dimensional perturbations of the type exp
(iat), having both spanwise and streamwise periodicities (as shown schematically in
figures 7a and 7b). Again, symmelric perturbations are relevant because of the
impermeability condition.

The required stability calculations have been made by Robinson & Saffman (1982).
These calculations assume finite-core vortices, and show that the most unstable
perturbations have a streamwise wavelength corresponding to the pairing mode, or
the streamwise wavelength = 2. Their results are given in figure 8, which is a plot
of the normalized growth rate as a function of the spanwise wavelength A,/h. The
parameter x is 2h/A. Table 1 shows that k is of the order 10-3 or lower for R+ > 100.
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Table 1
R« K= 2h/7»x
102 5.1073
103 103
104 3.104

This means that the curve of interest to us here corresponds to x = 0. It is worth
pointing out that these calculations assume that the wavelength A, is large compared to
the core size of the vortex elements. This will indeed turn out to be the case in the
following. The results for ¥ = 0 and x = 0.2 more or less overlap, and so even a few
orders of magnitude variation in the estimates of A, (and hence k) is immaterial for
the results to be deduced from figure 8. This justifies our earlier assertion that the
precise value of Vg in (5) makes no difference.

Figure 8 shows that the growth rates are largest for two distinct spanwise
wavelengths, say Az and A); the two growth rates are comparable. This implies that
the two-dimensional vortex structures get kinked on two distinct scales which, by
virtue of their induced velocities, tend to form two distinct scales of A shaped eddies.
It will be argued below that the smaller of the two corresponds to the so-called hairpin
eddies (Head & Bandyopadhyay 1981), and the legs of the larger scale correspond to
the so-called double roller structure.

The most amplified mode of the smaller of the two scales is given from figure 8 (after
some slight rearrangement) to be

Ags Ustv = 1.7 (UsdV)03. (6)
For the larger scale, the most amplified mode corresponds to
Aygh=17 N
In spatially developing flows, the observed wavelength is likely to correspond to the
neutral mode (section 2); this changes (6) by only a few percent, while the estimate (7)

gets altered from 17 to about 21. -

We take the view that the presence in the TBL outer region of the hairpin-type
structures is an established fact (Head & Bandyopadhyay 1981, Wallace 1984, Lynn
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1987); however, there has been no serious effort made to obtain their wavelength
quantitatively. From (6), it follows that A,qUx/v varies between 55 at R+ of 103 and
170 at R+ of 104; this is consistent with the casual observation of Head &
Bandyopadhyay (1981) suggesting a scale of the order 100 in roughly the same
Reynolds number range. More work is obviously needed, but we tentatively conclude
that the theory and experiment are in qualitative agreement.

For an experimental estimation of the larger wavelength, on which there is scant
direct data, we have measured the correlation function Ryy,(Az) between the velocity
signals obtained from probes at a fixed height from the wall, separated by the variable
distance Az in the spanwise direction. The motivation is that, if there is some
periodicity in the spanwise direction, a second peak must appear in the correlation
function corresponding to the spanwise wavelength. Admittedly, these are not the
optimum type of measurements to be made for this purpose, chiefly because of the
degradation of the correlation by the superimposed small scale stuff, but it was
believed that the spirit was consistent with the lack of sophistication at this stage of the
rest of this work. A typical correlation function is given in inset to figure 9; in many
instances, the second peak was substantially stronger. Even so, instead of directly
basing the wavelength estimates on the position of the second peak, we chose for
consistency to obtain them from the average of the first and second zero-crossings in
the correlation function, which should correspond respectively to A;/4 and 3A,y/4.
The results for two Reynolds numbers are plotted in figure 9. Also shown as two
arrows marked (a) and (b) on the abscissa are the two values 17 and 21 for A, /h. The

data, lying generally between the two amrows, bear out the expectations from the
theory.

Since A, is large compared to h and, at moderate Reynolds numbers, is of the order &
itself, it seems reasonable to identify the legs of this A shaped structure with the
double roller eddy deduced, among others, by Nagib & Guezennec (1986). Estimates
from these latter measurements roughly confirm the present scaling.

One final remark may be useful. The existence of the log-law in the TBL suggests the
possibilify of a hierarchy of scales whose size varies with the height y from the wall.
The inevitable randomization of the two scales discussed above will no doubt partly
contribute to this, but one cannot rule out that other scales result from the interaction
of these two primary ones.

Th T

An ubiquitous aspect of the TBL structure in the inner layer concerns the sublayer
streaks. Figure 10 shows the collection of all the data available on the spanwise
spacing A of the streaks; A* = AUx/v. There is no discernible trend with Reynolds
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number, and the mean spacing of around 100 wall units appears to be one of the solid
quantitative results on which there is unusual agreement. So far as we are aware,
however, there is no quantitative explanation for this remarkable observation. The
interest in predicting this spacing is both fundamental and practical. For example,
data in drag reduction by polymer addition or by stable stratification of the TBL show
that there is a direct correlation between increased streak spacing and skin friction
reduction.

The simplest possible explanation for these streaks is that they mark the tracks of the
A-shaped eddies that are being dragged along. Unfortunately, neither of the two A
structures discussed above has the observed constancy with Reynolds number
{contrast equations (6) and (7) with figure 10), and so a different explanation appears
called for. The one adopted in this section derives from the basic idea proposed by
Coles (1978) and invoked in a similar context by Brown & Thomas (1977). The
notion is essentially that when a big eddy' (which is two-dimensional on the streak
spacing) moves with a convection velocity U, the particle paths under the eddy
assume a curvature that is concave upwards (see figure 11a). The characteristic
counterclockwise angular velocity  is of the order Ug/R, where Uy is the increased
velocity at the sublayer edge, and R is the radius of curvature of the particle
trajectory. It is reasonable to suppose that the velocity gradient in the sublayer
(thickness &) under the big eddy is increased, and the corresponding clockwise
vorticity § is of the order Ug/8g. The connection to the Goertler instability is then
clear, and the expectation that the observed streaks result from this mechanism is
natural (see figure 11b).

For the notion to be useful, it is necessary to show (at least) that the following
conditions hold. It should be shown by some kind of Floquet analysis that, among a
host of other possible instabilities, it is indeed the Goertler instability that dominates.
It should be shown that the two dimensional structures sketched in figure 11a are
indeed present and are of sufficient strength. It should also be shown that the Goertler
number Go exceeds the critical value substantjally, and that the corresponding growth
rates are large enough for the perturbations to grow to saturation amplitudes before
encountering regions of convex curvature; these regions are expected to occur on
either side of the concave region. The situation is hopeless in a strict sense, and all that
we do here is to estimate the magnitudes of Go to render the notion somewhat
plausible; we then estimate the streak spacing.

The obvious candidate for the two-dimensional ‘big eddy’ needed in this description is
the two-dimensional roll-up structure that is presumed to exist before the onset of
three dimensional instability. Although the growth rates of the three dimensional
structures are large, leading to their eventual domination, there will be a certain part
of the cycle over which the two dimensional structure can be expected to exist. Some
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evidence for this can be found in short-time auto-correlation function of the u'
velocity fluctuations; they reveal the character of lightly damped oscillators, with a
distinct second peak occurring at some non-zero time lag, At* (say). This second peak
becomes insignificant if averaged for long periods of time, but is quite discernible
when auto-correlations are obtained over durations of the order of a few hundred
integral scales. The quantity At* varies slightly from one short-time realization to
another, and is distributed roughly like the Rayleigh distribution. Mean values of At*,
obtained for each Reynolds number from an ensemble of about thirty realizations,
were converted to length scales using the convection velocity U = 0.65 U... The data
plotted in figure 12 show that A,/§ = O(6). We do not attach any significance to the
fact that A,/8 increases slightly with Reynolds number, although there is no reason to
rule out such a trend. The two curves shown in figure 12 correspond to the expression
(5) for Ay/3, the difference between them being the choice for ve. The choices
considered correspond to the Van Driest (1956) values at the location of either U'yax
Or q'max- It is interesting that the data plot between the two curves. We shall argue
presently that the approximate concurrence of A,/8 with the most popular bursting
period is not mere accident.

In the present model, U, = 0.65 U, and we know h; the radius of curvature R will be
bounded on the low end approximately by h itself. If the particle paths are assumed to
be arcs of circle with chord lengths equal to the period A¢ = 69, the upper bound for R
can be estimated to be 68 (Uxd/v). The upper bounds of Go, corresponding to the
lower bound on R, are of interest to us.

From the analysis by Floryan & Saric (1982) of the Gortler problem, it appears that
we can write (in the notation of figure 11a)

UgAV (A/R)0S = constant
independent of the Goertler number. The precise value of the constant is a matter of
some debate, but the one corresponding to the largest amplification rate is about 150
(figure 7 of Floryan & Saric's paper). Substituting h from (1) for R, we have

UxAWV = (210/c) (Uxdv)V/6
where Ug = cUx, ¢ being a constant. If we assume a linear velocity distribution up to
the edge of the sublayer, taken as usual to be 5 wall units in height, we obtain the result
that

AUV = 42 (Usdv) 16, 8

The main point is not the numerical constant on the right hand side, but the weak
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dependence of the streak spacing on Rx. The constant cannot be reliably estimated
because there will be some acceleration of the sublayer right underneath the 'big
eddy’, and so c is possibly larger than 5; it needs only a 25% increase in the sublayer
edge velocity for the above expression to yield the dashed line in figure 10. A simple
plausible argument can be given to eliminate even the weak Reynolds number
dependence in (8), but such detail is inconsistent with the spirit of this paper.

The precise values of the Goertler numbers attained are not easy to obtain, but rough
estimates are possible. Recalling (in the present notation) that

Go = Ugdyv (84/R)0S,

it is easy to show that Go decreases as R+"0-25, but even at a fairly high value of 10%
for Rx, the estimated Goertler number is of the order 10. This value is above the
critical values quoted for transition to turbulence. One may then be tempted to think
of turbulent bursting as this transition to turbulence. It is obvious that Go is the largest
right under the big eddies, and so, on the average, it is reasonable to expect this
transition to occur at intervals comparable to Ay. It will come as no surprise that many
researchers have come up with the time interval between bursting to be of the order
of 58/U,.

7 Di . | Jusi

Many instances have proven that flow control is better exercised when the dynamics
are understood in terms of vortex interactions rather than, say, energy dynamics.
This work arose from the awareness that there has been no such attempt made for the
TBL as a unified whole. At this time, the principal merit of this work is probably the
attempt itself, and its potential usefulnes lies in the clues that it might provide for
control purposes. The model provides a self-generating mechanism for the TBL
structure, and should therefore be capable of suggesting clues as to how one
parameter, when influenced in a certain way, can alter the rest of the TBL
characteristics. With this in mind, we have examined accelerated and decelerated
boundary layers - including relaminarizing and separated cases - as well as the
blade-manipulated boundary layers. A few interesting conclusions have emerged, but
it seems better to use of the remaining space for emphasizing some of the inferences
already alluded to in the text.

In summary, we have argued that the idealized version of the TBL is a vortex sheet
located above the wall at a distance given by (1). Its primary instability yields the
roll-up structures, which in turn excite the wall-layer streaks and bursting.The
subsequent instability of the roll-up structures yields the hairpin eddies and the
double roller structure.
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The relative success of the linear stability analysis (here and elsewhere) in explaining
the structural features of the highly nonlinear turbulent flows, can only be attributed
to the fact that linearization is done 'cleverly'. Ordinarily, one linearizes about the
‘experimental’ mean velocity profile, without specifying how the profile was realized
in the first place. This missing link is usually the ‘ignorance factor'. Although the
details of the mean velocity profile are unncessary in the present point of view, all
ignorance is lumped in equation (1). For example, the configuration arrived at figure
7 is based on equation (1) and further logical consequences. This, however, represents
the sole information required to proceed logically.

The second point is that the location of the peak Reynolds shear stress scales on the
geometric mean of the inner and outer scales, more precisely according to (1). This
implies that the most significant Reynolds stress producing activity does not occur at
fixed y*, and is in fact quite far removed from the wall region at high Reynolds
number.

While uv does not scale on wall variables, the production of turbulent energy, -uv
(dU/dy), does scale with yt, at least roughly. Both the experimental data, and the data
from- fully developed pipe and channel flows obtained via (2), confirm that
-uv(dU/dy) peaks at y* in the vicinity of 15. (There may be some weak trend with Rx,
but this does not appear to be significant.) We conclude that the scales producing the
Reynolds shear stress and the turbulence energy are quite distinct at sufficiently high
Reynolds number. Perhaps the concept of 'active’ and 'inactive’ motion, hypothesized
by Townsend (1961) and elaborated upon by Bradshaw (1967), has a bearing on the
present picture.

If the above observation is taken to its logical conclusion, it appears to follow that
bursting (as defined by the Stanford school in their seminal paper in 1967, and refined
by them and others subsequently), which is an activity that occurs in the wall region
(y* < 30, say), has to do mostly with energy production and not the Reynolds shear
stress production. A further corollary is that if one is interested in the Reynolds shear
stress, one should be measuring not at a fixed y* of 15 (or some such number) at all
Reynolds numbers, but should follow the relationship given by (1). Such
measurements are yet to be made in a systematic manner.

In the foregoing analysis, we have implied that the two dimensional and three
dimensional structures coexist in general, the two dimensional configuration being
only the intermediate state. Since the three dimensional instabilities are the faster .
growing ones, it is the three dimensional structures that we typically find, and the
strength of the two-dimensional motion in a long-time average is quite weak. Indirect
estimates confirm this. The structure of the TBL is thus largely three dimensional (the
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picture being surprizingly close to that of Theodorsen 1955), and it follows that ail
successful 'active’ control schemes must also be three dimensional. From the
measurements of Nagib & Guezennec, it appears that the strength of the double roller
structure is weak also, but all indications are that the smaller scale hairpin type eddies
are quite strong and represent the truly coherent motion in the main part of the TBL.
It appears that successful outer layer management of the TBL must concentrate on
these structures. We believe that one (though not necessarily the most important)
function of the blade manipulators is to act on these hairpin eddies (Lynn 1987). A
more detailed discussion will be given elsewhere.

Since we did not have to make special distinction between channel (and pipe?) flows
and TBLs in terms of the structural features, we speculate that they are essentially
similar over a major part of the flow except where the two sides start to interact
together in the channel flow.

Finally, as mentioned towards the end of section 6, the present theory suggests that the
Goertler number decreases with Rx as its -1/4 power. The implication is that at very
high Rx, the Goertler number does not become large enough for streak formation.
Whether this is really the case is not known, and it is possxble that roughness effects
will render this an academic question.

Acknowledgements

I am grateful to Anatol Roshko and Mark Morkovin for acting as effective sounding
boards on two important occasions. I have benefitted from discussions with a number
of colleagues, and Jearnt especially from questions raised by Steve Kline, Roddam
Narasimha and Kirit Yajnik; if they have not been answered satisfactorily, it should
be said that it is not for lack of effort. My thanks go to Ted Lynn who provided me the
data of figure 9, to Charles Meneveau, S Raghu and R. Ramshankar for commenting

on the manuscript, and Jim McMichael for his initial enthusiasm for the work as well
as for the AFOSR support.

Appendix

Other indirect evidence can be given to support the notion that the maximum stress
region in the TBL is like a critical layer. The skewness of u' (for example) is negative
close to the wall, and is positive in the-outer region. Its value is close to zero in a part
of the overlap region including the ‘critical layer’. More significantly, in the part
below the peak stress region, the so-called high-frequency pulses (that is, Signals
which are narrow-band-pass filtered around a fairly high center frequency) tend to
occur during the positive half of the unfiltered signal while doing the reverse in the
part above that region (Badri Narayanan, Rajagopalan & Narasimha 1977). These
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observations, taken together, can be interpreted to mean the presence of something
like a phase jump across the 'critical layer'. Maturally, the concept of phase jump for
random signal is ill-defined, but loose arguments can be given in support of the
present notion.
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The second peak in the short-time auto-correlation fumction
measured in the peak stress region, averaged approximately
over 30 realizations. The time scale is converted to the
spatial scale using the comnvection velocity at the peak stress
region (the 'critical layer'). The interpretation is that
this quantity represents the streamwise wavelength of the
primary inviscid instability of the present vortex sheet model.
The full and dashed lines are estimates based on vorticity
diffusion and convection arguments discussed in the text. For
the full line, vorticity is assumed to be diffused by eddy
viscosity appropriate to the peak u' location; the dashed
line, representing similar calculations with eddy viscosity

of the peak q' location (q'? = u'Z + v'% + w'?) is perhaps
more representative, but is unfortunately less certain in
terms of the numerical accuracy because of the paucity of data
on q' over a wide range of Reynolds number.
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