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It has been pointed out (Mandelbrot 1974) that the turbulent energy 
dissipation field has to be regarded as a non-homogeneous fractal and 
that other more general quantities than the fractal dimension of  its 
support have to be invoked for describing its scaling (metric) properties 
completely. This work is an attempt on amplifying this idea by using 
direct  experimental  data, and on making proper connections between 
the multifractal approach (described in section 2) and the traditional 
language used in the turbulence literature. 

In the multifractal approach (Friseh & Parisi, 1983), the local behavior 
of the dissipation rate is described by a fraetal power-law. We verify 
that this is so, and use it to measure the (infinite) set of 'generalized 
d imensions ' ,  and thus obtain the mul t i f rac ta l  spec t rum f(cx) for 
one-dimensional  sections through the dissipation field. Two operational 
approximations are made: first, for most of  the results,  a single 
component of  the energy dissipation will be used as a representative of 
the total dissipation; second, we use Taylor's frozen flow hypothesis. The 
validity of both these approximations will be briefly assessed. We relate 
our  r e su l t s  to l o g n o r m a l i t y ,  v e l o c i t y  s t r u c t u r e  f u n c t i o n s ,  
auto-correlation function of the dissipation rate, Kolmogorov's -5/3 law 
for the energy spectrum, the skewness and flatness factor of  velocity 
derivatives, as well as to possible improvements in estimating various 
in ter face  dimensions.  We conclude that the mul t i f raeta l  approach 
provides a useful and unifying framework for describing the scaling 
properties of the turbulent dissipation field. 

I. Introduct ion  

For the study of fully developed turbulence it is necessary to provide 

a sat isfactory description of  the dissipation field of  turbulent  kinetic 

energy, which is highly intermittent (Batchelor & Townsend 1949). In an 

a t tempt  to incorpora te  in t e rmi t t ency  expl ic i t ly ,  Ko lmogorov  (I 962) 

introduced the Iognormal model. Several people - for example, Mandelbrot 

(1972), Kraichnan (1974) have noted the inconsistencies present in the 

lognormal model. Mandelbrot (1974) introduced a fractal model in order to 

eliminate these inconsistencies. A simple version of this fractal model has 

become well known as the 13-model (Frisch et al. 1978). The [3-model has 

several shortcomings, one (by no means the most significant) of which is 

that it cannot account  for the nonlinear behavior of the characteristic 

exponents  of  high-order  veloci ty  structure functions.  To explain this 
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behavior in a consistent manner, Frisch & Parisi (1983) introduced the 

notion of a multifractal model. 

In chapter 2 we shall review the Frisch-Parisi arguments using a 

nomenclature developed in the context of fractal attractors in phase-space 

and called the singularity spectrum, or the f-(~ curve (Halsey et al., 1986); 

we shall refer to that curve as the "multifractal spectrum". Note that, in the 

present work, the f-(x curve refers to a multifractal description of the 

turbulent energy structure embedded in three dimensional physical space 

rather than in phase space. We then present in section 3 measurements 

determining the f -a  curve for the dissipation field of turbulent energy. In 

sections 4 to 7 connections are highlighted between the experimentally 

d e t e r m i n e d  f-(x curve with several other descriptions such as the 

log-normality and a variety of scaling exponents. In section 8, we show 

that the multifractal  spectrum correctly predicts the observed Reynolds 

number variation of the skewness and the flatness factor of velocity 

derivat ives,  while in section 9, we briefly discuss the corrections 

introduced for the fractal dimension estimates of surfaces such as the 

v o r t i c i t y / n o - v o r t i c i t y  in te r face .  Sect ion 10 con ta ins  some general  

conclus ions .  

2. Generalized dimensions and the multifractal  spectrum: Theory 

We start by observing (Frisch 1983) that the Navier-Stokes (N-S) 

e q u a t i o n s  

dV/dt + V . (17  V )  = - V ( p / p )  + v V2V (2.1) 

are invariant under the following set of rescaling transformations: 

r ' =  ~. r 

V '  = X Cv3 V 

t' = ~ 1-off3 t 
( 2 . 2 )  

(p/p), = ~ 2ct/3 (p/p). 

These rescaling transformations hold provided that rl < r,r' << L and L>>rl 

(that is, in the high Reynolds number limit). Here rl is the Kolmogorov 

microscale and L is a typical large scale imposed by external boundary 

conditions on the flow. The scaling exponent o~ is arbitrary, and cannot be 



C. Meneveau, K.R. Sreenivasan / The multifractal spectrum 51 

determined merely on grounds of  dimensional analysis. 

Next we focus our attention on how the dissipation behaves under 

these scale transformations. We use 

e r ~ 5vr3/r (2.3) 

to estimate the local dissipation of  turbulent kinetic energy e r ( a v e r a g e d  

over a domain of size r); 8v r is some typical velocity difference across a 

distance r. The relation (2.3) is expected to be valid, essential ly on 

dimensional grounds in the high Reynolds number limit, and is widely used 

in the turbulence literature. For an experimental justif ication of  (2.3), see 

Sreenivasan  (1984).  

Using (2.2) we see that e r rescales according to 

Er '  = ~ t x - I  8 r  " (2.4) 

From (2.2) we get ~. = r'/r. Using for example r'=L and er '= e L, we can write 

e r = (eL/Let-1) rot-1 ~ rot-1 . (2.5) 

Kolmogorov 's  original inertial range theory (Kolmogorov 1941) assumes no 

intermittency, that is that the locally averaged dissipation rate (a random 

variable in reality) is independent of  the extent of  the averaging domain. 

In the present  notation, this is equivalent  to saying that o t=l  in the 

c o m p l e t e  t h r e e - d i m e n s i o n a l  space .  The [3-model assumes  that the 

dissipation is confined to a homogeneous fractal subspace of  the flow, of 

fractal  d imension D~. We shall see later that this model is equivalent to 

saying that ot takes on the value D~-2 on that homogeneous fractal. 

The multifractal f r a m e w o r k  consists in supposing that ot takes on 

d i f f e r en t  "values  on d i f f e r en t  i n t e r w o v e n  f rac ta l  subse t s  o f  the 

th ree -d imens iona l  phys ica l  space  in which the d i ss ipa t ion  f ie ld is 

embedded. The fractal dimension of  the set with the scaling exponent lying 

be tween  ot and ot + dot will be denoted by f(ot). This description will be 

shown to be general; among other things, it incorporates the intermittent 

behavior of  the dissipation field (section 4) and is consistent with the 

nonlinear behavior  of  the exponents of  the veloci ty  structure functions 

(section 5). It also explains a number of other features (section 6-9). 

Our first objective is to measure the f-ot curve. For that purpose we 

analyze the scaling behavior  of  the total diss ipat ion occurr ing in a 

d-dimensional box of size r 
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Er,d ~ £r  r d ~ r ct-l+d (2.6) 

Now we divide the d-dimensional space in boxes of size r and sum powers 

of different order q o f  Er, d (q  real) over all boxes. If the dissipation of 

turbulent energy is a multifractal, we expect these sums to scale with the 

size of the boxes r according to some power law. If we write that 

]~ Eqr, d ~ r ( q - 1 ) D q  (2.7) 

the quantity Dq defines the so-called generalized dimensions (Hentschel & 

Procaccia, 1983; Halsey et al. 1986; in the context of probability measures 

these exponents are also called Renyi dimensions). Using equation (2.6) we 

can write (2.7) as 

y. r(a-1+d)q ~ r(q-l)Dq. (2.8) 

Next we approximate the sum on the left-hand side of equation (2.8) by an 

integral over all possible values of c~ (for details, see Halsey et al. 1986). 

Note that we use ct- l+d where these authors use ct, both expressions being 

equivalent if local isotropy of the multifractal is assumed, but the former 

bears a closer relationship to the rescaling transformation (2.2) with which 

we started. (Let us also note that the assumption of local isotropy does not 

hold exactly for the turbulent dissipation field, but it will be assumed as 

working condition for the rest of this work for the sake of simplicity. A 

more thorough discussion will be given elsewhere.) The integrand must be 

weighted by the number of boxes for which ct takes on values between cc 

and co+dec. If iso-ot sets are fractals with fractal dimension fd(CX), this weight 

is clearly p ( a ) r - f d ( a ) , w h e r e  p(ct) is a density. Therefore 

~p(O~) r(~-l+d)q-fd(a) dec ~ r (q-l)Dq . (2.9) 

Now one uses the method of steepest descent to extract the dominant term 

from the integral in the limit of small r, and obtains 

p(ct)[2n/If"(Ct)l] I/2 (Iog r) -I/2 r (a-l+d)q - fd (ct) ~ r (q-l)Dq (2.10a) 

if Ofd/O(~ = q and O2fd/OCC2 < 0 . (2.10b) 

Taking the logarithm of equation (2.10a) and neglecting log(logr)/logr as r 
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tends to zero one can write 

( a - l+d )q  - fd (a )  = (q-l) Dq. (2.11) 

or fd(a)  = a q  - (q-1)(Dq-d+l) + d -1. (2.12a) 

Differentiating (2.11) with respect to q we get 

a = d/dq[(q-1)(Dq-d+l)]  (2.12b) 

The last two identities allow the calculation of a and its corresponding fd(a)  

once the funct ion Dq is known, and it is this function which can be 

determined in practice.  For homogeneous fractals one has that Dq is a 

constant equal to the fractal dimension of the support, and does not depend 

on q. It is interesting to note that Dq=3 for Kolmogorov 's  original theory 

(Kolmogorov, 1941), and therefore (from 2.12 with d=3) we have a = l  and 

f(1)=3. The multifractal spectrum thus consists of a single point. For the 

[3-model we have Dq=DI~ and again (with d=3) we get a single point in the 

multifractal spectrum at a = D l v 2  and f(DI~-2)=DI~. 

Furthermore, equations (2.12) allow us to obtain some interesting 

results concerning the behavior of  the generalized dimensions Dq under 

intersections with lower-dimensional spaces, and this question is addressed 

in appendix A. In the next section we focus on the special case of linear 

intersections of the dissipation field, that is d=l .  If Dq and f ( a )  are the 

generalized dimensions and multifractal spectrum of these linear sections, 

we can write 

a = d/dq[(q-1)Dq] (2.13) 

f (a)  = aq  (q-l)Dq. (2.14) 

These are the results we shall use in our experimental determination of the 

f - a  curve. 

3.General ized  dimensions  and mult i fractal  spectrum: Experiments  

In this section, we analyze several fully developed turbulent f lows 

(two dimensional  wakes and boundary layers, nearly homogeneous and 

isotropic turbulence behind grids, and atmospheric boundary layer) in the 

manner described above. We base our analysis on measured time series of 
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the streamwise velocity component ul(t). We use Taylor's hypothesis and 

suppose that the time series can be considered as a linear cut through the 

'frozen' turbulent velocity field in the streamwise direction (say x l - a x i s ) .  

Furthermore, we suppose that the square of gradients in only one direction 

are representative of the actual dissipation, E. A few remarks on the 

validity of these approximations will be made in Appendix B. For the rest 

of the analysis, it will be assumed that (dUl/dt) 2 r e p r e s e n t s  features of the 

dissipation field, and will be normalized by its own mean. 

I 
I l l, j . . . . .  ]. ,, L_.l 

x2~ X 

Figure la. Typical time trace of OUl/3t)2, representative of the rate 
of dissipation of turbulent kinetic energy. 
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Figurelb. Local power-law behavior of 
E r around x I (arbitrary units). 

Figurelc. Local power-law behavior of g:r 
around x 2 (arbitrary units). 
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Figure la shows a typical distribution of e ~ ( d u l / d t )  2 as a function of 

position (or time) along the intersecting line. It is clear that the signal is 

highly intermittent. We can also verify that local power- laws like (2.6) 

exist by identifying linear regions in plots of  log Er,l(Xi) vs log r, where 

E r, l (x i )  is the total dissipation contained in a region of  size r centered 

around some point x i. The slope will be equal to a .  Figures lb and lc  show 

such plots for two different locations x 1 and x 2 (marked with arrows in 

figure la),  the first corresponding to a region of low-dissipation and the 

second to a region where the dissipation is very intense. By fitting straight 

lines to figures lb and lc we get that a=1 .65  for x 1 and cc=0.54 for x 2. As 

will be shown later in this section, these values are close to the maximum 

and minimum values of  cx. 

It is now straightforward to divide the x-axis into segments or boxes 

of size r and calculate E r for each box as the area under (dul /d t )2 ,  and then 

perform the sum of Erq over all boxes. Let us call this sum Z. That is, 

Z = ~ Erq . (3.1) 

This calculation is repeated for different values of  r, and log Z 1/(q-1) is 

plotted vs log  r. In general these plots will show a linear region somewhere 

in the inertial range, the slope being Dq. 

A question of some importance in measuring the Dq exponents is the 

convergence of  Z. By convergence of  Z we mean that Z/s tends to a 

constant, where s is the size of the domain used to evaluate Z. Usually s 

has to be extremely large to achieve convergence especially for large q, this 

being a well  known problem in calculat ing high-order  moments  in 

turbulence (see for example Frenkiel & Klebanoff  1975; Sreenivasan et al. 

1978) .  

In the context of  numerically generated fractals (for example by 

i terat ing nonl inear  maps),  the number  of  points  ava i lab le  for the 

calculations is limited only by computer size. In general, by incrementing 

the number of  points on the fractal, the range of scaling is also incremented 

(because smaller  and smaller  scales become avai lable when generating 

more iterations on a nonlinear map). 

In our experimental situation, however, where an inner and outer 

cutoff of  scaling is present and is fixed, say TIk and L, the excessive increase 

of  data points (which corresponds to longer duration, if  the sampling 

f requency  is kept  constant)  cor responds  to analyzing sets that are 

excessively larger than the outer cutoff  scale L. 

To clarify the arguments, let n = s /L, that is, n is the ratio between 
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the size of the domain used to calculate Z, and L. Let 1 be the total length 

of the set available from an experiment and call m=l / s .  S is a proper 

subset of L. Figure 2 shows the different sets L(i), S(j) and L ,  whose sizes 

are L , s ,  and l respectively. The union of n consecutive L(i)-sets gives a 

S(j)-set, and the union of m consecutive S(j)-sets is the total set L available 

from exper iments  (that is, comple te  time series) .  Equivalent ly ,  the 

following relations hold : 

i-j(n+l) 

Ui.jn L(i) = S(j) j=l,2 ...... m 

and m (3.2) 

Vj .  1 SO) = L 

- - - L  u , )  
I I ., 

i r  

S(]} 

Y 

L 

i 
J 

Figure 2. Definition of different subsets of the dissipation field and their 
relative size. 

Suppose that Dq(i) are the generalized dimensions of the set L(i). If we now 

perform the sum Z over a large S(j)-set, that is, n is taken very large (say 

500) to ensure convergence, it is possible that the power-law dependence 

of Z with r gets degraded due to small fluctuations in Dq(i), ~k and L from 

one L(i) to another. This may in general result in less defined straight lines 

and in shorter scaling ranges in the plots of log Z 1/(q-l) versus log r. 

On the other hand, if we use small n, say n=50, convergence is not 

achieved, and Z changes from one S(j) to another for a given r. In a given 

S(j)-set, however, the power-law dependence holds generally better under 

the circumstances than if n is large, allowing convincing estimates to be 
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made of  the corresponding slopes to determine Dq(j). But, as already 

pointed out, these Dq(j) possess fluctuations from one S(j) to another. We 

have reasons to believe that these fluctuations are due in part to local 

anisotropy of the turbulent dissipation field. This field consists (as seen in 

f low v isua l iza t ions)  o f  convo lu ted  sheets  rather than of  spher ical ly  

symmetric clusters. The values of Dq for high q can depend on the angle 

with which those sheets (the most intense ones) intersect the measuring 

probe. This explanation for the observed fluctuations is based on our 

preliminary studies, and our efforts in this direction are continuing. 

In practice, therefore, one can either measure the Dq-exponents for a 

high number of  short sets (low n and high m) and then average the results, 

or a low number of longer sets (high n and low m). In the first case one 

deals with little uncertainty when determining the slopes,  but with a 

higher variance from one set to another. In the second case, the variance 

gets smaller, but the uncertainty in determining slopes gets larger. This 

situation was also observed in the context of fractal surfaces of iso-velocity 

and iso-dissipation, as reported in Sreenivasan & Meneveau (1986). 

A generally valid compromise is hard to find and the precise nature 

of  the described trend varies from case to case. In our measurements in 

wakes, grid and boundary-layer  turbulence, it was generally preferable to 

use low values of n (30-75), since it was not possible to identify straight 

regions for high n. Even for the low n used in those cases, approximately 

10% of  the S(j) were not taken into account because there was no 

convincing linear region. 

In the case of atmospheric turbulence (where L is hard to estimate, 

but is usually very large) the use of "long" time series was highly 

sa t i s fac tory  and in fact  a l lowed unambiguous  ident i f icat ion of  linear 

regions be tween scales ranging over 3 to 4.5 decades. We analyzed 5 

different time series, each of  which is 30 seconds long. Even though about 

2 .105  data points were available for calculating Z, strict convergence was 

not achieved due to the low value of  n (large value of L). We observed 

again fluctuations in the measured Dq from one sot of data to another, the 

variance being very similar to that for the laboratory flows. On the other 

hand, there was virtually no uncertainty in fitting the slopes of  the linear 

regions over 3 to 4.5 decades. 

Having outlined the primary experimental difficulty one encounters 

while trying to measure the set of  Dq-exponents,  we present  the results 

using in each case some appropiate value of  n. Table 1 contains the flow 

description for each case, where we indicate the parameters n and m used 

in the measurement of  the corresponding D a. 
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T a b l e  1 

Laboratory Grid Wake of a atmospheric 
boundary layer turbulence cylinder boundary layer 

Symbol: A 
-6 , 

Position 
of hot-wire 

y18 =0.4 
boundary layer 

thickness : 
8 = 11.4 cm 

x/d=100 height h = 2 m 
x/M=40 Cylinder dia.: above the 

Mesh size: d = 1.8 cm roof of a 
M=1.27 cm y/8 = 1.3 4-story 

Solidity = 0.44 half-wake thickness: building 
8 = 3.8 cm 

Fre¢ stream 
velocity 
U~ (m/s) 

12.2 14 15 
Mean velocity 
at hot-wire 

location = 6 m/s 

C o n v e c t i o n  
velocity at 
h o t - w i r e  
location Uc(m/s ) 

10.6 14 14.55 6 

rms ve loc i ty -  
fluctuations 
u' (cm/s) 

66 30 42 42 (+ 30%) 

Taylor  micro-  
scale ~., (cm) 0.48 
~.2 = U2 Uc2/<1~2> 

0.35 0.32 5.3 

Reynolds number 93,000 12,000 18,000 8 ' 105 

RI=U.o 1 / V 1=5 I=M I=d l=h 

R~.=u' ~ / V 209 70 90 1,500 ( + 30%) 

Kolmogorov 
micro-scale 0.27 
rl k (ram) 
rlk= {V 2 Uc2/15<fi2>} 1/4 

0.21 0.17 0.7 ( + 7%) 

l o n g i t u d i n a l  
integral length- 
scale L (cm) 

3.6 1.9 3.9 > 18,000 

D a t a - a q u i s i t i o n  
frequency (Hz) 20,000 30,000 40,000 6,000 

n (see text) 40 75 30 1 

m (see text) 5 5 5 5 
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Figure 3 shows some typical plots of log Z l /(q-l)  vs  log(r) for several 

values of  q for the case of  boundary layer turbulence in a wind-tunnel. 

Linear regions can be identified over a scale range of  1.5 to 2 decades. 

Figure 4 i l lustrates the case for atmospheric  turbulence where linear 

regions can be identified over 3 to 4.5 decades (see appendix C). 

1 
i o g Z  q 1 

-2 

-4 

-6 

|t.. 
' 

. . . . .  . . . . . ' ' °  

* . .  

o . o  

° . . o . .  

_80 ~ ~ I T ~ l 
0.5 I 1.5 2 2.5 3 3.E 

log r 

Figure 3. Typical plots of log Z 1/(q'1) versus log r for the dissipation field measured in 
a turbulent boundary layer in a wind tunnel. Linear regions are visible 
over 2 decades for q>0 and over 1.5 decades for q<0. (Z and r in arbitrary 
units.) q=20,2,-2 and -20, from top to bottom. 

0 ~..,..~,,,a,,llll. 

log Z q'~ -4 

-6 • "'" " ~  

• . . .  • 

-&O ! v 1 2 5 4 

log r 

Figure 4. Typical plots of log Z I / ( q ' l )  versus log r for the dissipation field measured in 
the surface layer of the atmosphere. Linear regions are visible over 4.5 
decades for q>O and over 3 decades for q<0. 

(Z and r in arbitrary units.) q=20,2,-2 and -20, from top to bottom. 

Figures 5 to 8 show the resulting D q  - curves for each different flow. 

The scatter and the error bars represent the variations of  Dq from one S(j) 

to another, and the typical uncertainty in determining the slopes in the 
logZ1/(q -1) vs log r plots, respectively. 
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-30 -20 -10 0 10 20 30 
q 

Figure 5. Generalized dimensions D_ as a 
function of q for 5 di~erent 
subsets S(j) of the dissipation 
field measured in a wind 
tunnel turbulent boundary 
layer .  
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q 
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Figure 6. Generalized dimensions D_ as a 
function of q for 5 dif)erent 
subsets S(j) of the dissipation 
f ield measured in the 
turbulent flow behind a 
grid.  

D q 

[ ]  

I I I I I 

-30 -20 -10 0 10 20 30 
q 

Figure 7. Generalized dimensions D_ as a 
function of q for 5 dif)erent 
subsets S(j) of the dissipation 
f ie ld measured in the 
turbulent wake behind a 
circular cylinder. 
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Figure 8. Generalized dimensions D_ as a 
function of q for 5 dil~erent 
subsets S(j) of the dissipation 
field measured in the surface 
layer of the atmosphere. 

To quant i fy  the f luc tua t ions  of  the Dq f rom one S(j) to another ,  we 

p r e s e n t  in f i gu re  9 s o m e  m e a s u r e d  p r o b a b i l i t y  dens i t i e s  for  3 d i f f e ren t  

va lue s  o f  q, n a m e l y ,  D20(J) ,  D2(j )  and D.20( j ) ,  wi th  m=45  and n= 30, 

measu red  in the case  o f  wake  tu rbu lence  ( f low cond i t ions  as in Tab le  1). 

The  s t anda rd  d e v i a t i o n s  o f  the d i s t r i bu t ions  are 0.068,  0 .054 and 0.117 

re spec t ive ly ,  and the co r r e spond ing  mean  va lues  be ing 0.49, 0.79 and 1.72. 

W e  con lude  that  the mean  va lues  are r ep resen ta t ive .  
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N 

20 

10 

q=2 

Dq 

Figure 9. Histograms of the fluctuating generalized dimensions D O for 
q=20, 2 and -20, measured for 45 different subsets S(j) o7  the 
dissipation field (in the wake behind a cylinder). 

Returning to the Dq-curves, we ~can now use equations (2.13) to obtain 

¢(q)  by using central differences to calculate the derivative of (q-1)Dq with 

respect to q in (2.13) and then calculate its corresponding f(cx) using (2.14). 
Figures 10 to 13 show the multifractal spectra obtained from figures 5 to 8. 

We draw attention to the fact that we discarded points for which f(cx)< 0 or 

f"(cx) > 0. The former unphysical result occurs as an artifact of relatively 

large variability in Dq for high values of Iql, and the latter follows from 

(2.10b). 
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F i g u r e l 0 .  Mu l t i f r a c t a l  spec t rum 
(calculated from results 
shown in figure 5) of 5 
different subsets S(j) of the 
dissipation field measured in 
a wind tunnel boundary 
layer.  
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Mul t i f r ac t a l  spec t rum 
(calculated from results 
shown in figure 6) of 5 
different subsets S(j) of the 
dissipation field measured in 
the turbulent flow behind a 
grid. 
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Superposing figures 5 to 8 we obtain figure 14. The continuous line is 

obtained by averaging all the points. In figure 15 we superposed graphs 9 

to 13 and the mean is also plotted as a continuous line. We conclude that 

this continuous line can be regarded as the mean multifractal spectrum 

corresponding to linear intersections of the energy dissipation field in fully 

deve loped  turbulence .  
1.5 
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Figure l4 .  Superposi t ion of the D .  
curves shown in figures 5 t ~  
8. The mean is plotted as the 
continuous line. 
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F i g u r e l 5 .  S u p e r p o s i t i o n  of the 
mul t i f rac ta l  spectra shown 
in figures 10 to 13. The mean 
in plotted as a continuous 
l ine .  
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Some general properties of the measured multifractal spectrum 

deserve specific comments. Its shape is fairly symmetric and it intersects 

the a -ax i s  at a m i n  = 0.51 and at a m a x  = 1.78. The maximum of the curve 

occurs at f ( ao )= l  for a o = l . l 1 7 .  There we have df /da=0,  that is q=0 from 

(2.10b), and the corresponding value of f (a  o) is the fractal dimension D o of 

the multifractal set. Our measurements therefore imply that D o = 1, that is 

that the metric support of the dissipation field is the embedding space 

itself: There is at least 'some' dissipation everywhere,  even at high 

Reynolds numbers. This conclusion requires additional comment, since it 

seems to contradict the fact that the total dissipation has to remain finite. 

If there are singularities in the dissipation field, that is, field points exist 

for which equation (2.5) holds, then they have to be on a support of 

measure zero in order to keep the total dissipation finite. That argument is 

completely valid in the range 0 < a < 1. For a > 1, however, the 

'singularities' really correspond to 'holes', that is e r tends to zero as r tends 

to zero, and since our measured a o is greater than 1, f ( a o ) = l  is perfectly 

consis tent  with finite total dissipation.  From figure 15 we see that 

f(1)=0.95, this means that singularities with tx<l are distributed on fractals 

(sets with zero measure) of dimensionali ty less or equal to 0.95, thus 

satisfying the finiteness of total dissipation. 

4. Probabi l i ty  density funct ion of  e r 

4.1 General theory 

Let us now consider the problem of obtaining the probability density 

function of e r given its f -a  curve. 

Let us rewrite equation (2 .5 )  as 

e r = e L (r/L) et-1 (4.1) 

where e L is the mean dissipation averaged over a large region of size L. 

Therefore we can express a as a function of e r (except when e r = 0 for 

nonzero r): 

a = log (er/eL) / log(r/L) + 1. (4.2) 

The probability densities of e rand  a are related by 

Pe(.er) = Pet(a) d a / d e  r [ P(er~e0)] 1 (4.3) 

Here, Pet(a) is the probability density of the variable a and P ( g r ~ 0  ) is the 

probabi l i ty  that e r is non-zero for non-zero r. This is equal to the 
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probabi l i ty  that a box o f  size r contains part  o f  the mult i f ractal ,  and can be 

wri t ten in terms o f  its fractal  d imens ion  D O as 

P ( e r ¢ 0 )  = c 1 ( r / L )  d-Do . (4.4) 

S ince  iso-ct  sets are fractals ,  we can write the probabi l i ty  densi ty  for ct 

lying be tween ot and ct + d c t  in a box of length r as 

Pa(c~) = c 2 (r/L) d- fdC~) (4.5) 

where  c 2 is an arbi t rary number  that may depend on ot but not depend on 

r. Final ly  we can write : 

P e ( E r )  = C ( r /L)Do- fa  fln(E'/~)/ln(r/L) + 1] [ E  r log(r/L) ] -1 (4.6) 

G iven  a spec i f ic  f-ct curve  (and suppos ing  that c 2 does not depend on co), 

one can therefore  ca lcula te  the p robabi l i ty  densi ty  o f  e r, which depends  on 

the pa rame te r  (r/L). In real i ty  c 2 may depend to some extent  on ct, and this 

should be kept  in mind in interpret ing the resul ts  of  the fo l lowing  section. 

4.2 The lognormal  case 

Let us expand the f-ct curve  around its m a x i m u m  up to second order  as 

fret) = f f ao )  + (ct-Cto) fCc%) + 1/2 (ct-c%) 2 f'(Cto) + ....... (4.7) 

Since f '(cto) = 0 and f(cco) = D O , we can write 

f (u )  = D O + ( f ' (c to) /2  ) (ct-Cto)2 . (4.8) 

There  is still an ex t remely  interest ing proper ty  of  the f-ct curve  that 

has to be made use of, and it refers  to the behavior  of  equat ions (2.13) and 

(2.14) at q= l .  Clear ly for q= l  one has 

c~ 1 = f(c~ 1 ) and df/d(x I ~  1 = 1 (4.9 a, b) 

where  tx 1 is g iven by (2.13) for  q = 1. The condit ions (4.9) mean that not 

any pa r abo l a  wi th  f"(ot)  < 0 can be a valid f-ct curve,  but that it has to be 

tangent to the line f ( c t ) =  tx at cc = tx 1. This proper ty  is direct ly related to the 

p r o p e r  b e h a v i o r  o f  the ' i n f o r m a t i o n  d i m e n s i o n '  D1 (see H e n t s c h e l  & 

Procacc ia ,  1983). This  imposes  an addi t ional  re la t ion  be tween  cc o, D O , and 
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f"(Cto). From (4.8) and the first of  (2.10b), we have 

q = df/dct = f'(Cto)(Ot-Oto). 

It follows from (4.9b) that 

ct = q/f' +ct o and ct I = I/f' + ot o. 

Therefore, f(otl) = D o + 1/(2f"(Cto) ) which, with (4.9b), gives 

f'((Xo) = 1/[2(Do-Cto) ] . (4.10) 

The final expression for the parabolic f-cx curve is given, from (4.8), to be 

f(ct) = D O -1/4 ( (x -c to )2 / (c to -Do) .  (4.11) 

Replacing (4.11) in (4.6) and changing the base from r/L to an exponential ,  

we get (after normalizat ion)  that Pe(l~r) is a lognormal distr ibution with the 

fo l lowing parameters  (referred to log er): 

mean = m = log e L - (cto-1) log(L/r) , (4.12) 

variance = 0 2 = 2(o%-Do) log(L/r) . (4.13) 

From the last  relat ion,  we infer  that the ' lognormal  in termit tency exponent '  

(Kolmogorov 1962) is related to the parabolic f-co curve by 

g i g  = 2(°~o 'Do)-  (4.14) 

We call  this number  the ' lognormal  in termi t tency exponent '  to dis t inguish 

it f rom the i n t e rmi t t ency  exponen t  g t reated in sect ion 7. The latter 

constant  does not  invoke lognormal i ty .  

Next we address the problem of  how the Dq- q curve looks for the 

lognormal  case. Using the result that ( z - - q / i f  + o~ o, and equation (2.14), we 

obtain (after some algebra) the result  that 

Dq = D O - ((Xo-Do) q , 

that is, Dq is linear with q, with slope = -1/2 g lg"  

Now w e  want to select the parameters o~ o 

(4.15) 

and D O in order to fit our 
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e x p e r i m e n t a l  resu l t s .  C lea r ly  D o = 1. Selecting a o from figure 15 

corresponds to fitting a straight line at q=0 through the Dq curve in figure 

14. A good fit is shown in figure 16 as the continuous line, which 

transforms to the f -a  curve shown in figure 17 also as a continuous line, 

where the value a o = l . l 1 7  has been used. In figure 16 and 17 we also 

display the measured mean curves for comparision. It is clear that the fit 

seems very good in the multifractal spectrum, but is extremely poor in 

representing the Dq curve for Iql > 3. This suggests that the f -a  curve is not 

the best representation of experimental data if one is interested in the high 

moments. The Dq curve is richer because, in going from the Dq curve to the 

f - a  spectrum, a lot of information has been compressed (and even lost) for 

high Iql; recall that points with f" (a)  > 0 were discarded. 

2 1.5 

Dq 

1 

1.0 

f (a) 

0.5 

I I I I I 

0.0 -30 -20 -10 0 10 20 30 
q 

- -  • v 

0 1 2 

Figurel6 .  Mean experimental D_ curve F i g u r e  17. Mean  e x p e r i m e n t a l  q 
and l inear  fit  ( lognormal  mu l t i f r ac t a l  spec t rum and 
approximation) around q=0. l ognorma l  approx imat ion  

(continuous line). 

Going back to relation (4.14) and replacing the 'measured' value of a o, 

we see that IX lg = 0.235, a result that is in remarkable agreement with 

other extensive measurements of this quantity (Anselmet et al. 1984). 

5.Velocity structure functions 

Let us now calculate the scaling exponents ~p of the moments of 

veloci ty  dif ferences  in fully developed turbulent flows. These exponents 

are defined by the equation 

< ~VrP > = < [V(x+r_) - V(x)] P > ~ r ~P (5.1) 
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Noting from (2.5) that 

5 V - r ~/3 , so that 

e r ~ r (cx - ] ) ,  and  using (2.3), we can write that 

~VrP ~ r apes (5.2) 

The next step involves space averaging over the entire volume. As 

before, we change the integration variable to a and we have to weight the 

integrand by the probability that tx lies between a and a + da,  that is, by a 

factor proportional to rd-fd (a). (Note that since we are averaging we have to 

weight by probabili t ies,  whereas in section 2 we had to weight by the 

number of i so-a  boxes since we were estimating sums.) Here fd ( a )  are the 

fractal dimensions of  " i so-a"  sets embedded in d-dimensions. Using again 

the method of steepest descent and taking the limit of small r, one gets 

p/3 - fd(0t) + d = ~p (5.3) 

provided that 

df (a) /dct  = p/3 . (5.4) 

Comparing this last identity with the first of (2.10b), we see that p /3=q,  

and using again the invariance of the codimension under intersection, we 

can write : 

a p / 3 - f ( a ) +  1 = g p .  (5.5) 

Using equation (2.14) we finally conclude 

~p = ( p / 3 -  1)Dp/3 + 1.  (5.6) 

We can now compare experimental results by Anselmet et al. (1984) with 

inferences from our experimental D a curve. 

The continuous curve in figure 18 corresponds to ~p v/s p using 

equation (5.6) and the continuous Dq curve of  figure 14 representing the 

mean Dq behavior in our experiments. The different symbols in figure 18 

cor respond  to the direct  measurement  of  ~p in the experiments  of 

Anse lmet  et al. (1984).  The agreement  be tween  the two sets of  

exper imental  results is excellent .  Thus, the nonlinear behavior  of  the 

scaling exponents of velocity differences is included within the multifractal 

formalism as was proposed originally in Frisch & Parisi (1983), and 
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deve loped  fur ther  by Benzi  et al. (1984). We want  to draw at tent ion here 

to the fac t  that  these  las t  au thors  p re sen ted  an in te res t ing  p robab i l i s t i c  

ex tens ion  of  the 13-model to s imula te  a mul t i f r ac ta l ,  where  13 is now a 

r a n d o m  var iab le  whose  m o m e n t s  can be expres sed  as a funct ion  of  ~p or 

e q u i v a l e n t l y  Dq. 
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! ! 

lo p 20 
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0 30 

Figure 18. Scaling exponents of velocity structure functions. The 
continuous curve is obtained using the present 
experimental results, and the symbols correspond to 
experiments by Anselmet et al., 1984. 

6. Energy spectrum in the i n e r t i a l  r a n g e  

The kinet ic  energy  carr ied by eddies of  size r can be es t imated  as 

W(r) ~ < 8 V r 2 >  . (6.1) 

Us ing  equa t ion  (5.6) with p=2 we can write in te rms  of  one -d imens iona l  

sec t ion  resul ts  as 

W(r) - r 1/3(1-D2/3) + 2/3 

In te rms of  the w a v e n u m b e r  k = l / r  this may  be wri t ten as 

W(k) ~ k 2 / 3  -1/3(I-D2/3) , 

(6.2) 

(6.3) 

and the energy  densi ty  conta ined  in a w a v e n u m b e r  interval  dk is g iven  by 
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E0c) ~ k -5/3 - 1 / 3 ( 1 - D 2 / 3 )  . (6.4) 

Thus the famous Kolmogorov  -5/3 law is modified by 1 /3(1-D2/3)  in the 

multifractal model. Note that for a homogenous fractal (13-model), D2/3=Do 

and the correct ion is 1 / 3 ( 1 - D o ) ,  a result that was first  obtained by 

Mandelbro t  (1974).  

Since the value of D2/3 obtained from our experiments is close to 1 

(D2/3=0.92), the correction to the -5/3 exponent in (6.4) is negligible; it is 

exper imental ly  not detectable  from power  spectra of  turbulent  veloci ty  

signals. This is consistent with the general experimental confirmation of the 

-5/3 power spectrum in the inertial range of turbulence. 

7. Intermittency exponent of the aut0correlation function of er 

The autocorrelation function of the local rate of energy dissipation 

obeys (in the inertial subrange of  turbulence) the scaling law 

<eCzL) e ( x + l O  > ~ eo 2 ( r /L )~ t  (7.1) 

< E ( x )  e ( x  + r )  > ~ < e r2  > ,  

where e r is again the energy dissipation averaged over a domain of  size r. 

Now we follow the same arguments as in the preceeding sections for the 

special case q -- p/3 = 2 to obtain 

< E r  2 > ~ r 2 ( a  -1)  - f d ( a )  + d ~ r 2 ( a - 1 )  - f ( a )  +1 ~r2a - f ( a )  -1 

Since (from 2.14) 2a  - f (a)  = D 2 , we find that 

< £ r  2 > ~ r ( D 2  - I )  

From equation (7.1), we have 

~t = 1 -  D 2 .  (7.5) 

Figure 14 shows that a reasonable estimate for D 2 is D2=0.75, and therefore 

IX=0.25, which is very close to the value of ~tlg obtained in section 4. This is 

due to the fact that for low moments (q=2), the lognormal is a very good 

(7.3) 

(7.4) 

(7.2) 

where I~ is the intermittency exponent already mentioned in section 4. For 

homogeneous turbulence one can write (Novikov 1971) 
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app rox ima t ion  to the actual  mul t i f rac ta l  d is t r ibut ion.  

8. S k e w n e s s  a n d  the  f l a t n e s s  f a c t o r  o f  v e l o c i t y  d e r i v a t i v e s  

We can write f rom (3.1) and (2.5) that 

(dul /dXl)2  ~ ( r I /L)  a - l ,  

where r in (2.5) has been replaced by ( 'q/L) with the unders tanding  that ~q 

is the smal les t  scale of  interest  in turbulent energy dissipation.  Now,  noting 

that  ( d u l / d X l )  2 is d is t r ibuted as a mul t i f rac ta l ,  the ave rage  of  the m-th 

power  of  (du l /dXl )  2 is given by 

(Ti/L)m(ot-1) + 1 - f(ct). 

But, f rom (2.14), m t ~ -  f(o0 = ( m - l ) D  m. Thus, 

< (dul/dXl)2m > ~ (l.i/L)m(ct-1) + 1- f(ct) ~ Rxl.5(m-1)(1-Dm), (8.1) 

where  we have used the fact  that r l /L  ~ Rx -15  Here ,  R x is the Taylor  

mic rosca l e  Reyno lds  number=  u'~,/v,  u' being the roo t -mean-square  veloci ty 

and  ~, the Taylor  microscale .  

Defining as usual the skewness S and the flatness factor  K of  (du l /dx  1) as 

S = < (dUl/dXl) 3 > /< (dUl/dXl) 2 > 3/2 

K = < (dUl/dXl) 4 > /< (dul /dXl)2 > 2,  

it is easy to see f rom (8.1) that 

S ~ Rx  3/4(1 - D3/2) and K ~ RX 3/2(1 - D2). 

From figure 14, we est imate that D3/2 = 0.80 and D 2 = 0.75, and hence that 

S ~ Rx 0.15 (8.2) 

and K ~ R x°-38 (8.3)  

Figures 19 and 20 bear out these relat ions quite sat isfactori ly .  
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Figure 19. The flatness factor of velocity derivatives as a function of 
Reynolds number. The line corresponds to equation (8.3) and 
the different symbols correspond to experimental data as 
collected by Van Atta & Antonia (1980). 

9. Mul t i f rac ta l  correc t ions  for the fractal  d i m e n s i o n  o f  interfaces  

If two species of matter are separated by an interface, the amount M 

of diffusion of one species from one side of  the interface to the other 

depends on the surface area of the interface, the concentrat ion gradient 

normal to the surface, and the molecular  diffusion coefficient .  We shall 

restrict  to cases where the diffusion coeff ic ient  is equal to the viscosity 

coeff icient ,  although extension to non-unity Prandtl and Schmidt numbers 

is more or less trivial. Using the notion that such interfaces are fraetals 

(Sreenivasan & Meneveau 1986), and that there is a finite inner cut-off at 

the Kolmogorov scale, we have shown (Sreenivasan 1987) that 

M ~ RL 3/4 (D-7/3) (9.1) 
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where D is the fractal dimension of the interface embedded in three 

dimensional physical space. The result applies with very little variation to 

the amount of non-vortical fluid entrained across the vortici ty/no-vortici ty 

interface of a turbulent free shear flow. (The boundary layer is a bit more 

involved, but the final result is no different.) 

Now, it is known that the entrainment rate and mixing are 

independent of  Reynolds number if the latter is sufficiently high (the 

so-called Reynolds number similarity). Invoking this result in the context 

of (9.1), we get the result that 

D = 7/3. (9.2) 

This is very close to the measured value of 2.35 + 0.05 (Sreenivasan & 

Meneveau 1986). 

In the estimates for M which lead to (9.1), it is necessary to 

determine the concentrat ion gradient which, among other things, depends 

on the interface thickness. In deriving (9.1), we have used the result that 

the interface thickness is of  the order of rl (details of this derivation and 

other estimates will be published elsewhere). In reality, the Kolmogorov 

thickness is not a constant because, E, the dissipation of the turbulent 

energy, is nonuniform in space. Our limited objective is here is to improve 

upon (9.2) by making use of the fact that I~ is distributed as a multifractal. 

(We note however that correction due to other factors may be at least as 

significant.) Without going into details, we present the final result that 

D = 7/3 + 3/4(1- O1/4) . (9.3) 

From the multifractal spectrum, we estimate that D1/4 is = 0.96, and that 

the value of D=2.36 from (9.3) is amazingly (perhaps fortutiously) close to 

the measured mean value of 2.35 quoted above. 

I0. CONCLUSIONS 

We have related the multifractal model of turbulence to direct 

experimental  data and have constructed the f-cx curve for the turbulent 

dissipation field. This curve (in addition to the Dq curve) contains all the 

information about the scaling properties of  the turbulent dissipation field, 

and can be used to relate several scaling exponents and concepts that 

lacked a unique and consistent representation in the general turbulence 

l i t e r a tu r e .  

The present results exemplify the fruitful connections that can be 
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made between the theory of nonlinear dynamical systems and turbulence. 

If we consider the qualitative similarity between the vortex-stretching and 

folding mechanism governed by the N-S equations and the way a simple 

non-linear map 'organizes'  its attractor in phase space, the following 

procedure might prove interesting : Given the experimental f-o~ curve, it is 

now possible to obtain a lot of information about the properties of a 

non-linear map that displays the given f-0~ curve (Feigenbaum et al. 1986). 

This could lead to a simple map that models how the N-S equations govern 

the spatial distribution of turbulent dissipation, which may allow further 

insight on the N-S equations and be useful in a variety of ways (for 

instance in numerical models of turbulence). 

From the experimental and theoretical points of view, there are a great 

number of further questions to be addressed. Two-dimensional sections of 

a flow illuminated by thin sheets of laser light in different directions can 

be analyzed using digital imaging techniques. Extension of the multifractal 

approach to anisotropic fractals seems a promising task (interesting work 

in this direction has already been done by Lovejoy & Schertzer, 1985). One 

can obtain the f -a  curve for the dissipation field of a passive scalar, such as 

temperature or concentration, and compare with the present results. Our 

efforts continue in these directions. 
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this work. The work was supported by a grant from the National Science 
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APPENDIX A 

The set of  equations (2.12a) and (2.12b) can be used to relate local 

properties ( a )  with global ones (Dq and f(0~)). Here we shall study the 

re la t ionship  beeween the genera l ized exponents  Dq for an isotropic 

multifractal and the Dq'S of multifractals formed by intersections with 

lower-d imens ional  subspaces.  

Let us suppose we have an isotropic multifractal F l embedded in a 

ds-dimensional space S1.Locally, e r and Er,dl can be written as 

e r ~ r a-1 (A.1) 

Er,dl ~ r a - l+d l ,  (A.2) 

where r is again the spatial extent; if F1 is isotropic, r can be taken in any 
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direction. Figure A1 il lustrates the behavior  of  e r for d2=2. 

gr 
I 

- 1  
N r ~ 

Figure A1. Mean dissipation as a function of 
radial distance in a locally 
isotropic geometry. 

I f  one is dealing with a probabil i ty measure on strange attractors, then 

Er ,d l  is the number  of  points o f  the attractor that fall in a d l - d i m e n s i o n a l  

box of  size r. In the context  of  the present  work it is the total dissipation of 

turbulent  kinetic energy in such a box. 

Suppose that Dq,dl  and fdl(tX) are the sets o f  genera l ized  d imens ions  

and the m u l t i f r a c t a l  s p e c t r u m  of  F 1- Let  us now intersect  it with a 

d 2 - d i m e n s i o n a l  subspace  S 2 and form F 2 and suppose that Dq,d2 and fd2(t t )  

characterize the new set F 2 (d2< d 1, d2=1,2.., and d1=2,3 , . . ) .  

Next  we make use of  a theorem (Mandelbrot  1983, Matt i la  1975 and 

Mars t rand 1954) which,  when appl ied to an iso-tx fractal  set can be written 

a s  

f d l ( 0 t )  = m a x  { f d 2 ( 0 t )  - d 2 + d l ,  0 } .  

Let  us consider  the situation where tx is in an interval A such that 

(A.3) 

fd2" d2 + dl > 0 (A.4) 

I f  we write equat ions (2.12a) and (2.12b) for F 1 and F 2 and use equat ion 

(A.3), it can be shown that 

d l - D q , d l  = d 2 -Dq,d2 (A.5) 

for all tx ~ A. Equivalent ly ,  one can find an interval  Q for the values of  q 

such that ¢x ~ A. 

We conclude that the 'general ized codimensions '  di-Dq,di  are a lmost  
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surely constant under intersection as long as q ¢ Q. For instance, we can 

write for dl=3 , d2=l and q e  Q 

Dq3 = Dql  + 2 .  (A.6) 

Appendix B 
Using one single component ( ~ U I / ~ X l ) 2  in place of the total 

dissipation field I~ is a common practice, but hardly justified in view of the 

fact that 

= V (~Ui/~X j + ~Uj/~Xi)2. 

consis ts  of  several  cross terms as well.  The s i tuat ion,  though 

understandable because there is no known method of  measuring all 

components of 5, makes it especially difficult to assess the reasonableness 

of this common practice. However, for G 0, the dissipation of a scalar 

quantity 0 defined as 

G 0 = r ( ~ e / ~ x i ) ( ~ 0 / ~ x i )  , 

all three terms can be measured simultaneously (Sreenivasan et al. 1977). 

Some assessment of the differences between a single component such as 

( ~ 0 / ~ x l )  and 60 has been made, but not much is known at present about 

them in the context of the f -a  curve. Our preliminary work suggests that no 

qualitative changes can be expected. 

The Taylor's frozen flow hypothesis, which assumes that 

O/0t = -U 1 0/0X 1 , (B.1) 

has been the subject of extensive study; U 1 is the mean velocity in the 

direction x 1. In a recent study, Antonia et al. (1980) have shown that the 

use of Taylor's hypothesis underestimates the velocity moments (especially 

the odd-order ones), but that other errors due to neglect of fluctuation 

velocities in (B.1) are comparable. 

Appendix C 
The scaling range for negative values of q was generally smaller 

than for positive q, and did not extend down to r ~ T1. This is due to the fact 

that Z E~q for q<0 is dominated by the low intensity regions, where the 

finite resolution of the digitizer could become important. However this 

difficulty dissapears approximately at r - 10-20Tl; E r then is already the 

sum of many different E n and is likely to be dominated by some larger 

values of E~ far above the digitizer noise. 
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We verified this plausibility argument with several exactly-solvable 

two-scale Cantor sets, by adding digitizer noise essentially equivalent to 

the experimental situation. The same behavior as in the experiment was 

observed: The scaling range was shortened, but within the available scaling 

range the correct slopes for Dq were always observed. 
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