Statistical physics of interacting agents models:

Minority Games

Matteo Marsili

April 16, 2004

Contents
1 Introduction
1.1 Aplanofthesenotes. ... .. ... ... ... ... .......
2 Minority and Majority Games as Market models
3 Definition of the Minority Game
3.1 From the MG definition to a computer code . . . . . . ... ...
3.2 Simplifying the Minority Game dynamics . . . .. ... ... ..
3.3 Some convenient notations . . . . . . ... . Lo
4 Generic behaviour of the MG
5 Minority Game without information
6 Analytic approaches to the Minority Game
6.1 Stationary state and minimal predictability . . . ... ... ...
6.2 The statistical mechanics analysis of stationary states and phase
transition . . . . ... ..o
6.3 The asymmetric phase . . . . . .. ... ... oL
6.4 The symmetric phase and dependence on initial conditions . . . .
6.5 The continuum time limit and fluctuations in the stationary state
6.6 The Generating functional approach . . . . ... ... ... ...
7 Extensions
8 Recovering financial markets’ stylized facts in Minority Games
9 Improving cooperation in the Minority Game
9.1 Market impact and Nash equilibria . . . . .. .. ... ... ...
9.2 Nash equilibria of the Minority Game . . . . . .. ... .. ...
9.3 From naive to sophisticated agents . . . . ... ... ... L.
9.4 The AT-MOline . .. .. .. ... ..
A Replica method for the MG

A.1 Replica calculation . . . . .. ... ... o0 oL

13

16

18
20

22
24
25
27
33

35

45
47
49
51
92

55



1 Introduction

The availability of massive amounts of financial data provides scientists the ac-
cess to microscopic behavior down to individual interactions. Such a wealth
of empirical information, which in principle makes it possible to test theo-
retical insights on financial markets to an unprecedented precision in socio-
economic systems, has been one of the causes of the recent interest of physi-
cists in financial markets. One of the contributions of physicists has been
an empirical approach to financial fluctuations [Mantegna and Stanley, 2000,
Bouchaud and Potters, 2000] independent of the econometric approach and of-
ten in contrast with the axiomatic approach of theoretical finance [Farmer, 1999].
The empirical evidence depicts financial markets as complex self-organizing crit-
ical systems: The statistics of real market returns deviate considerably from
Gaussian statistics. Market returns display fat tails, scaling and long range
volatility correlations [Mantegna and Stanley, 2000, Bouchaud and Potters, 2000].
These anomalous properties of financial fluctuations have been called the styl-
ized facts. Agent based models of financial markets have shown that these
empirical features can be self-generated by a system of more or less ratio-
nal traders, interacting through a market mechanism [Farmer and Joshi, 99,
Lux and Marchesi, 1999, Cont and Bouchaud, 2000, Arthur et al., 1997, Caldarelli et al., 1997,
Levy et al., 2000]. A modeling approach in the spirit of statistical mechanics
seems particularly appropriate, for financial markets, because features such as
the stylized facts evoke the theory of critical phenomena. This explains how
and when anomalous fluctuations do emerge from the interaction of many mi-
croscopic degrees of freedom. Unfortunately, for most agent based models,
progress beyond the mere numerical simulation approach is hard, because of
the model’s complexity. So the relation with critical phenomena has not been
pushed further. The Minority Game, though being a very crude representation
of a financial market, has filled this gap.

The Minority Game[Challet and Zhang, 1997, Challet, ] (MG) was initially
designed as the most drastic simplification of Arthur’s famous El Farol’s Bar
problem [Arthur, 1994]: it describes a system where many heterogeneous agents
interact through a price system they all contribute to determine. The MG is
an highly stylized model of such a situation: it captures some key features of a
generic market mechanism and the basic interaction between agents and public
information — i.e. how agents react to information and how these reactions
modify the information itself. In addition, it allows to study in details how
macroscopic quantities depend on microscopic behaviors.

However, the basic MG is a so stylized model of a financial market that
prices are not even explicitly defined. Furthermore the micro-economic behav-
ior of agents is quite simplified: agents have heterogeneous strategies but they
enter the game with the same weight. In other words there are not poorer or
richer agents and their wealth does not change according to their performance.
Also all agents are constrained to play, with the same frequency, no matter
how much they may loose. All these unrealistic features makes it hard to ac-
cept the MG as a model of a real financial market, especially when compared
to other agent-based models [Lux and Marchesi, 1999, Caldarelli et al., 1997,
Levy et al., 2000, Cont and Bouchaud, 2000] which have so far been more suc-
cessful in reproducing the stylized facts of high frequency statistics of prices
[Mantegna and Stanley, 2000].



The same stylized nature of the MG however, allows one to gain a deep
understanding of its extremely rich collective behavior: Statistical mechanics
of disordered systems indeed allows for a full analytic solution in the limit of
infinitely many agents [Marsili et al., 2000]. More precisely, these techniques
allows one to fully characterize the evolutionary equilibrium of the dynamical
learning process in a truly complex system of interacting adaptive agents. In
top-down approach to real financial markets, where complexity is added in steps,
the analytic solution of the MG provides an invaluable starting point which
allows us to keep full control on the emergent features.

The Minority Game not only captures the essential interaction between
traders in a market but also provides a very simple description of market’s
behavior in terms of two key quantities, predictability and volatility. Examin-
ing the interplay between market’s informational inefficiency (i.e. predictability)
and speculative behavior, one finds very good theoretical reasons to expect that
markets operate rather close to criticality [Zhang, 1999]. These expectations
are fully supported by microscopic agent based market models based on the
Minority Game: The picture offered by these synthetic markets is one where
speculation drives market to information efficiency, i.e. to a point where market
returns are unpredictable. But the point where markets become exactly efficient
is the locus of a phase transition. Close to the phase transition the behavior of
synthetic markets is characterized by the observed stylized facts (fat tails and
long range correlations) whereas far from the critical region the market is well
described in terms of random walks.

1.1 A plan of these notes

A good start on beginning to understand the Minority Game is to program it.
Since the computer code produces all the complexity of the Minority Game,
the first step is to read the key dynamical equations from it. The second
step is to simplify further the model so as to leave unaffected its generic be-
haviour, making an analytic treatment possible. Identifying unnecessary com-
plications is not an easy task. For example, one a priori essential fact that a
model of a financial market should capture is that traders base their strategies
on processing the information about past price moves which are produced by
their very actions. Very few would have guessed that such a feedback loop of
information a posteriori turns out to have weak consequences on the collec-
tive behaviour [Cavagna, 1999]. Some other ’simplifications’ actually amount
in making the model apparently more complex, but remove hindrances to a
mathematical approach. It is the case of the ’temperature’ introduced in Ref.
[Cavagna et al., 1999] in order to model agents who choose in a probabilistic
fashion. The Minority Game has reacted in a totally counter-intuitive way to
this modification, as we shall see.

After having defined the model and discussed how it can be simplified, we
shall discuss how the Minority Game can be derived from a market mechanism.
Then we shall outline the generic behavior of the Minority Game.

The simplifications discussed above bring the Minority Game in the range
of applicability of the powerful tools of statistical physics. First, by taking
the average of dynamical equations, it is possible to characterize the “average
behaviour” in the stationary state. The problem can be cast into the form
of the minimization of a function H with respect to the “average behaviour”



of agents'. Since H quantifies market predictability, in loose words we can say
that agents in the Minority Game make the market as unpredictable as possible,
given their strategies. This is in line with no-arbitrage arguments: if an agent
is able to predict the market shewould modify herbehaviour in order to exploit
this information. Therefore, in the stationary state, the agents either have no
possibility to predict the market or already exploit the information they have.

The minimization of H reveals that the collective behavior of the Minor-
ity Game features a phase transition as a function of the number N of agents.
When there are less agents than a critical number, the price evolution seems
predictable to an external agent (but not to those already playing), whereas
when the number of agents is beyond the critical number, the market becomes
unpredictable. This suggests that, as long as there are few participants, the
market will attract more and more agents, thus approaching the critical num-
ber where the market becomes unpredictable and hence unattractive. Hence
the scenario depicted by the Minority Game lends support to the conjecture
that markets self-organize at a critical point, an issue we leave for the next
chapter. Apart from predictability, the two phases have quite different proper-
ties: in the predictable phase (when there are few agents) the stationary state
is unique and ergodic, i.e. independent of initial conditions. When there are
many agents (unpredictable phase) the stationary state is not ergodic as it re-
members (i.e. depends on) the initial conditions. In particular the fluctuations
in the stationary state is a decreasing function of the degree of heterogeneity
of initial conditions. A further remarkable feature is that, in the unpredictable
phase (many agents), adding randomness in the way agents chose, collective
fluctuations decrease. This is at odd with conventional wisdom according to
which collective fluctuations increase when stochasticity at the micro scale —
e.g. ’temperature’ — increases. Even more remarkable is the fact that in the
predictable phase (few agents) collective fluctuations do not depend at all from
microscopic randomness.

All these features find their explanation together with a precise quantitative
assessment within a stochastic theory of the Minority Game [Marsili and Challet, 2001a].
Microscopic 'temperature’ affects learning rates and finally turns out to act as
the inverse of a global temperature, thus explaining the unconventional depen-
dence of fluctuations on microscopic noise. This approach, based on the neglect
of time dependent volatility fluctuations, also unveils the peculiar interconnec-
tion between initial conditions and correlated fluctuations, leaving us with a
complete picture of the Minority Game behavior. Although an approximation,
this theory turns out to be quite precise in general, except close to the phase
transition in finite sytems.

We shall finally comment on a powerful alternative approach, based on the
generating functional [Heimel and Coolen, 2001]. The extraction of quantitative
results from this approach is made difficult by the mathematical complexity of
the resulting equations. On the other hand, this method is exact. Even if it does
not yet provide a complete picture of how Minority Game works, the generating
function is a very promising approach.

.e. the frequencies with which agents play their strategies.



2 Minority and Majority Games as Market mod-
els

The minority game has been proposed|[Challet and Zhang, 1997, Zhang, 1998]
to model speculative behavior in financial markets. Agents sell and buy asset
shares or currencies with the only goal of profiting from market’s fluctuations.
The minority game is a highly simplified picture of this context where agents
can take, in each period, one of two actions. The agents who take the minority
action win, whereas the majority looses. The connection with financial markets
is established naively by observing that markets are instruments for reallocating
goods. No gain can be made, in principle, by pure trading. Hence the market
should be a zero sum game. Transaction costs and other frictions make it an
unfavorable game, on average, i.e. a minority game?.

A naive argument, however, suggests the opposite conclusion: when every-
body is going to buy the price will raise and hence it is convenient to buy. Hence
speculative markets should be rather similar to majority games. One may argue
that only the minority of agents who buy first win whereas the other lose and
eventually enter into endless arguments.

The problems with arguments in support of either the minority or the ma-
jority game essentially arise from the difficulties related with the definition of
the payoff of a single transaction. Strictly speaking, buying or selling an asset
does not change agent’s wealth but just the composition of his portfolio. A real
gain can be measured only if after buying or selling something at time ¢, the
same is sold or bought again at time ¢ > t. This leaves the trader with the
same amount of asset but with a gain or a loss of money. Therefore market
gains depends on more than one time and in general, assessing the performance
of a trading strategy is a complex inter-temporal problem. The ultimate con-
clusion of these arguments is that financial markets cannot be described by
simple markovian agent based models, but rather require rather sophisticated
intertemporal models of traders’ behavior.

It may be reasonable to assume that traders first form an expectation on
the behavior of the market and then optimize their behavior with respect to
this expectation. Expectations are eventually revised and modified, on a longer
time-scale, if they contrast with actual market behavior.

We show indeed that the minority game can be derived assuming that agents
follow this behavior, from a market mechanism. From this viewpoint, expecta-
tions lie at the very basis of the definition of the minority game as a market
model. Depending on the expectations of agents we can distinguish between
fundamentalists or contrarian traders — who perceive the market as a minority
game — and trend followers — who perceive it as a majority game.

Before entering into details, let us mention that Ref. [Marsili, 2001] analyzes
a simple case where both fundamentalists and trend followers are present in the
market. Since the two groups have opposite expectations on the price process,
the relevant question is which of these expectations is fulfilled by the actual price
process? It turns out that the price process satisfies the expectations of whatever
group is more numerous: In a market with a majority of fundamentalists the
minority mechanism will prevail and the expectations of fundamentalists will be
satisfied. On the contrary, if trend followers are the majority their expectations

2Ref. [Challet et al., 2000a] expands these types of arguments in much more details.



will be satisfied and price process will acquire a trend. This agrees with the well
known observation that expectations of traders in a market can be self-fulfilling
prophecies.

Let us imagine that time ¢ is discrete, there are N agents and they submit
all together their orders a;(¢) to the market (i =1,..., N).

The single time step is split in three phases:

time t — € Agents take their choices on the basis of their accumulated experi-
ence up to time ¢ — 1 and submit their orders a;(t).

time ¢ The market aggregates orders a;(t) from traders and forms a price p(t).

time t + € Agents learn: they update their experience by evaluating the success
of their actions. This will enter into the decision process at time t + 1 —e.

Agents do not know the price at which the transaction will actually take
place. Secondly, given that agents cannot define a real payoff for the present
transaction as discussed above, they have to resort to “perceived” or “expected”
payoffs in the learning phase.

We shall discuss later how agents take their decisions and how they update
their behavior on the basis of perceived payoffs. For the moment being let
us focus on the second step and define the market interaction in detail. Let
a;(t) > 0 mean that agent ¢ contributes a;(¢)$ to the demand for the asset.
Likewise a;(t) < 0 means that i sells —a;(t)/p(t — 1) units of asset, which is
the current equivalent of |a;(t)|$. With a;(t) = +1 and A(t) = ), ai(t), the

demand is given by D(t) = N+T’4(t), whereas the supply is S(t) = é\;?t—’i(f)). Price
is fixed by the market clearing condition, p(t) = D(t)/S(t), i.e.
N + A(t)
t)y=p(t—1)——+. 1
) = plt = )35 1)

Consider an agent who buys 1§ of asset at time t (i.e. a;(t) = 1): He
exchanges 1$ with 1/p(¢) units of asset. Was the choice a;(t) = 1 the “best”
one?

In order to answer this question, we may imagine that agent ¢ considers
selling 1/p(t) units of assets at time ¢ + 1. This leads to a payoff

_ p(t+1)

U; (t) = 1

p(t) ’

However, the price p(t + 1) will only be revealed after agents communicate
their investments decisions a;(t + 1) for all j. If agents want to use Eq. (2) to
revise their choice rule before deciding a;(t + 1), they have to replace p(t + 1) in

it by their expectation at time ¢, denoted by Et(i)[p(t +1)]. Let us assume that:

if ai(t) =+1 (2)

EX[p(t+1)] = (1 — :)p(t) + ip(t — 1) (3)

Then E\” [u;(t)]as(t) = +1] = —;[p(t) — p(t — 1)]/p(t) and, using Eq. (1) we
find B [u;(t)]as(t) = +1] = =20 A1) /[N + A(2)].

Likewise, if agent ¢ sells 1/p(t — 1) units of assets at time ¢ (i.e. a;(t) = —1)
and buys it back at the expected price Et(i)[p(t + 1)], elementary algebra leads
to B\ [u;(t)|ai(t) = —1] = 20;A(t)/[N — A(t)]. This means that:



A(t)
N +a;(t)A(t)

Notice that agents who took the majority action a;(t) = sign A(t) “receive a pay-
oft” —2u,|A(t)|/[N + |A(t)|] whereas agents in the minority get 2¢;|A(t)|/[N —
|A(t)]]. If ¢»; > O the minority is the winning side and indeed Eq. (4) reduces to
the usual payoffs of the minority games 3. Agents with 1; > 0 may be called fun-
damentalists as they believe that market prices fluctuate around a fixed value, so
that future price is an average of past prices. They may also be called contrari-
ans since they believe that the future price increment Ap(t+1) = p(t+1) — p(t)
is negatively correlated with the last one

wilai (), A(t)] = BV [ui(t)] = —2¢iai(t) (4)

EJ[Ap(t +1)] = i Ap(t).

On the other hand, if ¢); < 0 the game turns into a majority game. More
precisely, agent ¢ perceives the game as one in which he prefers to stay in the
majority. These type of agents may be called trend followers since they believe
that future price increments Ap(t + 1) are positively correlated with past ones,
as if the price were following a monotonic trend.

3 Definition of the Minority Game

We focus on the simplest non-trivial version of the model to make the derivation
as straight and simple as possible. The derivation can be extended in a straight-
forward manner to a number of variations on the theme, adding frills here and
there on the skeleton Minority Game which we discuss. These extensions are
discussed in the final section. The overall picture turns out to be quite robust.

3.1 From the MG definition to a computer code

The MG was introduced in Ref. [Challet and Zhang, 1997] with the following
definition:

Let us consider a population of N (odd) players, each has some finite
number of strategies S. At each time step, everybody has to choose
to be in side A or side B. The payoff of the game is to declare that
after everybody has chosen side independently, those who are in the
minority side win. In the simpliest version, all winners collect a
point. The players make decisions based on the common knowledge
of the past record. We further limit the record to contain only yes
and no e.g. the side A is the winning side or not, without the actual
attendance number. Thus the system’s signal can be represented by
a binary sequence, meaning A is the winning side (1) or not (0).

Let us assume that our players are quite limited in their analysing
power, they can only retain last M bits of the system’s signal and
make their next decision basing only on these M bits. Each player

31t turns out that, in the minority game (v; > 0 Vi) A(t) ~ v/N is negligible compared to N
in the denominator and it can be dropped. Then one recovers the linear payoffs used in Refs.
[Challet and Marsili, 1999, Cavagna et al., 1999, Challet et al., 2000c, Marsili et al., 2000].



has a finite set of strategies. A strategy is defined to be the next
action (to be in A or B) given a specific signal’s M bits. The example
of one strategy is illustrated in table 1 for M=3.

signal | prediction
000 1
001
010
011
100
101
110
111

Ol O~ Olo

There are 8 (= 2M) bits we can assign to the right side, each config-
uration corresponds a distinct strategy, this makes the total number
of strategy to be 22" = 256. This is indeed a fast increasing number,
for M =2, 3, 4, 5 it is 16, 256, 65536, 655362. We randomly draw
S strategies for each player, and some strategies maybe by chance
shared. However for moderately large M, the chance of repetition
of a single strategy is exceedingly small. Another special case is to
have all 1’s (or 0’s) on the RHS of the table, corresponding to the
fixed strategy of staying at one side no matter what happens.

Let us analyse the structure of this Minority game to see what to
expect. Consider the extreme case where only one player takes a
side, all the others take the other. The lucky player gets a reward
point, nothing for the others. Equally extreme example is that when
(N —1)/2 players in one side, (N +1)/2 on the other. From the soci-
ety point of view, the second situation is preferable since the whole
population gets (N — 1)/2 points whereas in the first example only
one point—a huge waste. Perfect coordination and timing would ap-
proach the 2nd, disaster would be the first example. In general we
expect the population to behave between the above two extremes.

This binary game can be easily simulated for a large population
of players. Initially, each player draws randomly one out of his S
strategies and use it to predict next step, an artificial signal of M
bits is also given. All the S strategies in a player’s bag can collect
points depending if they would win or not given the M past bits, and
the actual outcome of the next play. However, these points are only
virtual points as they record the merit of a strategy as if it were
used each time. The player uses the strategy having the highest
accumulated points (capital) for his action, he gets a real point only
if the strategy used happens to win in the next play.

As a first step to understand the MG, let us try to translate this wordy
definition into a computer program. The result may look like the following®:

4We use FORTRAN language with operators .eq. and .gt. replaced by = and > respec-
tively for the sake of readability.



C AGENTS’ CHOICE
do i=1,N
do s=1,S
if (points(i,s) > points(i,bestStrategy(i))) bestStrategy(i) = s
end do
end do
C MARKET INTERACTION
N1=0
do i=1,N
N1 = N1 + side(i,bestStrategy(i) ,mu)
end do
if (N1 > N/2) then
winSide = 0
else
winSide = 1
end if
C LEARNING
do i=1,N
do s=1,S
if (side(i,s,mu) = winSide) points(i,s) = points(i,s)+1
end do
end do
C INFORMATION UPDATE
mu = mod(2*mu + winSide, 2**M)

This code is a good starting point to analyze the dynamics: First agents
choose the strategy they play — stored in the variable bestStrategy (i) — look-
ing at the virtual points points(i,s) that each strategy s has accumulated.
Agents pick the strategy with the largest number of points®. The side prescribed
by this strategy, given the sequence mu of the last M outcomes, is stored in the
table side(i,s,mu) for each agent i and each strategy s. Note that this de-
pends on mu which encodes the history of recent games. The tables side(-,-, ")
are drawn at random — with side(i,s,mu)=0 or 1 with equal probability — at
the beginning of the game, i.e. in the initialization section of the program. Once
every agent has fixed his bestStrategy (i), the attendance of the two sides is
computed: N1 is the number of agents who took the choice 1 and winSide is
the winning side: winSide=1 if N1<N/2 and winSide=0 otherwise (we assume N
is odd). Given the outcome winSide of the game, agents updated their scores
points(i,s). Finally the history mu — which is an integer variable — is updated
for the next time-step by the last instruction. In this way the first M bits in the
binary representation of mu are the last M values of winSide.

The central quantity of interest is the difference in the attendance of the two
sides:

A=2xN1—N (5)

But before discussing the fluctuations of A, let us review the key steps which
have led to an analytically tractable version of the MG.

5Tn case of ties a tie-breaking rule has to be decided. The one used here is an example.
Other rules can be used without affecting much the collective properties.



3.2 Simplifying the Minority Game dynamics

In its simplicity the Minority Game as defined above, captures quite complex
phenomena. The route to a thorough analytical approach have been made pos-
sible by simplifying the model still further, while preserving its rich dynamical
behaviour.

1. The first has been the observation by Cavagna [Cavagna, 1999] that the
fluctuations of A are left largely unaffected if the dynamics of the history

mu = mod(2 * mu + winSide, 2 * *M) (6)

is replaced by a random draw from the integers {0,...,2M — 1} with
uniform probability:

mu = int(2 % %M rand()). (7)

While p in Eq. (6) encodes the real history, in Eq. (7) p is just a random
piece of information®.

One of the ideas behind Eq. (6) was to describe a closed system where
agents process and react to a piece of information they themselves produce.
The results of Ref. [Cavagna, 1999] suggests that this feedback is largely
irrelevant. The endogenous information process of Eq. (6) may well be
replaced by Eq. (7) which models a news arrival process of ezogenous
information. With exogenous information, the number of values that u
can take is not restricted to be a power of two. We call this number P
henceforth, and we shall have

p=2M

for endogenous information.

A close inspection of Fig 1 of Ref. [Cavagna, 1999] shows that the conclu-
sion on the irrelevance of the origin of information does not hold exactly
[Challet and Marsili, 2000]. We shall go back to this issue in the last sec-
tion 7. At any rate, the passage from endogenous (Eq. 6) to exogenous
(Eq. 7) information represents a great simplification of the model.

2. A further simplification of the original model is to replace the account-
ing of the points points(i,s) by a linear dynamics of scores Uj ,(t).
It was noticed in Refs. [Johnson et al., 1998, Challet and Marsili, 1999,
Cavagna et al., 1999] and later shown in Ref. [Challet et al., 2000d], that
this modification does not alter the qualitative behaviour of the model. In
practice, this amounts to replacing the update of points points(i,s) by

o u(t) A(t)
ai,s N (8)

where we introduced the convenient notation

Uis(t+1) = Uis(t)

6Early works (e.g. [Challet and Zhang, 1997, Cavagna, 1999]) refer to memory rather than
to history. We prefer the latter term because, strictly speaking, the memory of agents is stored
in points rather than in p.

10



aj = 2xside(i,s,u) — 1 (9)

(3

for the strategy tables. Again the strategy s is rewarded [i.e. U;s(t +
1) = Ui 5(t) > 0] when it predicts correctly the minority sign, i.e. if aj’, =
—sign A(t), and penalised otherwise.

3. Finally it is convenient to generalize in a probabilistic fashion the way in
which agents take decisions. In the original Minority Game the strategy
s;(t) which agent i uses at time ¢ is that with the highest score:

si(t) = arg max Ui s(t). (10)

This introduces a mathematical discontinuity which is hard to deal with
analytically. Ref. [Cavagna et al., 1999] suggested to overcome this diffi-
culty by resorting to a probabilistic choice model:

eFUi,S(t)

Prob{s;(t) = s} = W

(11)

with I' > 0. This is reminiscent of the Gibbs distribution for physicists
[Yeomans, 1992] and I' appears as an “individual inverse temperature” —
whereby the name of Thermal Minority Game [Cavagna et al., 1999]. Eq.
(11) is also a very well known choice model among economists, known as
the Logit model” [Luce, 1959, McFadden, 1981].

"The probabilistic nature of agents’ choice does not necessarily imply that the agents
randomise their behaviour on purpose. McFadden has indeed shown that Eq. (11) models
individuals who maximise an “utility” which has an implicit random idiosyncratic part n; s:

s;i(t) = arg msax [TU; s(t) + ni,s(t)] (12)

The constant I' is the relative weight which agents assign to the empirical evidence accumu-
lated in U; , with respect to random idiosyncratic shocks n; ;. If ' = oo agents always play
their best strategy according to the scores, while if I' decreases agents take less into account
past performances. For a generic distribution Py, (z) = Prob{n; s(t) < x} we have

Prob{s; () = s} = / dPy(@) [ Pale +T(Wis = U0)),

00
e r#s

This coincides with Eq. (11) if Py(z) = exp(—e~*) is the Gumbel distribution
[McFadden, 1981]. Different distributions of 7; s lead to choice models which are different
from Eq. (11), but the model of Eq. (11) is unique in that it satisfies the axiom of indepen-
dence from irrelevant alternatives: this states that the relative odds of choices s and s’ does
not depend on whether another choice s’/ is possible or not. In addition, there is a natural
derivation of the Gumbel distribution in the case where agents want to maximize an utility
function W;i(s,01,...,0n) = Ui s +nVi(o1...,0n|s) which depends also on n variables oy,
which take g values each. The factor n in the second term implies that the weight of all
variables is equivalent in decision making. The choice behavior with respect to the other
variables, which is not of our explicit interest, is modelled in a probabilistic way. With an
opportune choice of U; ¢, let us assume that V;(o1...,0n|s) are i.i.d. gaussian variables with
zero mean and variance v. Then, using extreme value statistics [Galambos, 1987]

n
Nis = maxnVi(o1...,0nls) =Vo+, [ ————VYis
{or} 2vlogyg

where Vp is a uninfluential constant and Y; s is distributed according to the Gumbel distribu-
tion. This suggests that I' = y/(2vlog g)/n, i.e. when there are many other choices (n > 1)

11



Summarizing, the dynamics of the simplified Minority Game is described by
the following equations:

Prob{s;(t) = s} = % (choices of agents) (13)
e e

Prob{u(t)=v}=+%, v=1,...,P (choice of Nature) (14)

At) = Zi\; a?(stl)(t) (market aggregation)  (15)

Us st +1) = Up o (t) — af VA2 (learning) (16)

The strategies af’ , are randomly drawn at the beginning of the game and
then they are kept fixed. Hence they can be considered as fixed (quenched)
disorder.

There is a further simplification which does not entail a modification of the
dynamics but just a restriction. Early numerical studies have shown that varying
the number S of strategies given to each agent, the MG’s behaviour remains
qualitatively the same. Actually cooperative effects manifest most strongly for
S = 2 strategies.

Hence it is preferable to restrict attention to the case where all agents have
S = 2 strategies (the case with S > 2 strategies will be discussed in section 7).
Ref. [Challet and Marsili, 1999] introduced a convenient notation by labelling
strategy 1 as —1 and strategy 2 as +1 so that agent i controls the variable s;
which takes values £1; such a variable is called a spin in physics. The strategies
of agent 7 can be decomposed

al' . =Wl + s;&

1,8

—at

Iz Iz
into a constant w! = % and a variable component, with £ = 7+ Uit
In binary games |a!'| = 1, therefore w!, &' = 0,£1 but w'¢! = 0. The fact

that for some u, agent ¢ have strategies which prescribe the same action (&' =0
and w! # 0) lies at the origin of cooperation in the game (see section 7). This
decomposition allows us to express A(t) in a form where its dependence on the
quenched disorder variables w!, £/ and on the dynamical variables s;(t) is made
explicit. Indeed Eq. (15) becomes

N N
Aty =00 + 3 et Wsit), with Q0 =" Wl (17)
i=1 i=1
A further simplification arises from the fact that, only the difference between

the scores of the two strategies is important in the dynamics. In other words,
each agent can be described in terms of a single dynamical variable

Ut,i(t) —U-i(?) _

vi(e) = e (18)
The probability distribution of s;(t) becomes
+ L
Prob{si(t) = +1} = L= 1AL Yi(t) (19)

2

o which are affected by the choice of s we expect a small value of " and viceversa.
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Finally, the dynamics of Y;(¢) is derived taking the difference of Eqs. (16) for
s ==%£1:

Vit +1) = Y;(t) — %gf(t)A(t). (20)

The model defined in Eqs. (14,17,19) and (20) shall be our reference model
for the remaining of this chapter. Below we shall discuss its generic behaviour
and the theoretical approach based on statistical physics which has allowed to
understand it.

3.3 Some convenient notations

Before entering into the details, it is convenient to discuss statistical averages
and to introduce the relative notations. There are two sources of randomness
in the MG. One is the choice of information u(t) and the other is agents’ choice
of strategies s;(t). We shall be interested in the stationary state of the game®.
Hence, for any quantity Q(t), we denote by

1 to+T
= i lim — 21
(@ = Jim lim = > Q() (21)
t=to+1
its average value in the stationary state. We shall also be interested in condi-
tional averages for a particular value of the information p. We denote it as

1 to+T to+T
lim  lim — > QW)uwy,u where Tu= > Sy, (22)

o to—o00 T'—oo I
t=to+1 t=to+1

(Qp)

Finally, averages over y will be denoted by an over-line:
1 r
~5_1 p
Q=5 ; Q

This notation shortens considerably some expressions. We implicitly assume
that averages under the over-line are conditional on p. So, for example

1 P

F(@Q) =5 > F(Qlu).

Note that clearly (Q) = (Q) but (Q)? # (Q)2.

4 Generic behaviour of the MG

Let us rephrase in mathematical terms the generic behaviour of the MG sketched
in the previous chapter. Early papers focused on the cooperative properties of
the system in the stationary state. Symmetry arguments suggest that none of

8That a stationary state exists for the Minority Game exists can be shown observing
that 4) it is a Markov process ii) it can be approximated with a finite space Markov process
(discretizing Y;(t) on a grid of A points) to an arbitrary precision (letting A — co).
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the two groups 0 or 1 will be systematically the minority one. This means that
A(t) will fluctuate around zero, i.e. (A) = 0. The size of fluctuations of A(t),
instead, displays a remarkable non-trivial behaviour. The variance

o? = (A?) (23)

of A(t) in the stationary state is — quoting from Ref. [Savit et al., 1999] —
“a convenient reciprocal measure of how effective the system is at distributing
resources”. The smaller o2 is, the larger a typical minority group is. In other
words ¢? is a reciprocal measure of the global efficiency of the system. This is
obvious if the payoff function is linear, as in Eqgs (16) and (8): in that case the
total payoff given to the agents — >, a;(t)A(t) = —A?(t), hence, ¢ measures
the average total loss of the agents per time-step.

Early numerical studies [Challet and Zhang, 1997, Savit et al., 1999, Challet and Zhang, 1998]
uncovered a remarkably rich phenomenology as a function of M and the number
of agents N. Savit et al. [Savit et al., 1999] found that the collective behaviour
does not depend independently on M and N but only on the ratio

oM P

between the number P = 2™ of possible histories ;¢ and the number of agents,
as illustrated in Fig. 1. This means that typically A(t) VN for fixed a. When
a > 1 information is too complex and agents essentially behave randomly. In-
deed 02 /N converges to one — the value it would take if agents were choosing
their side by coin tossing. As a decreases — which means that M decreases or
the number of agents increases — 02 /N decreases suggesting that agents man-
age to exploit the information in order to coordinate. But when agents become
too numerous, 02 /N starts increasing with N. Savit et al. [Savit et al., 1999]
found that, at M fixed, o2 increases linearly with N as long as N < P but
with a quadratic law 0> ~ N? for N > P, which implies 0> ~ 1/a for
a & 1. The behaviour for @« < 1 has been attributed to the occurrence of
‘crowd effects’, and it has been studied in some detail both numerically and by
approximate methods [Hart et al., 2001, Zhang, 1998, Challet and Zhang, 1998,
D’hulst and Rodgers, 1999, Manuca et al., 2000, Heimel and Coolen, 2001, Caridi and Ceva, 2003].

A further interesting observation of Savit and co-workers [Savit et al., 1999]
comes from their analysis of the probability

P =(0(A)w

that the minority is on one given side conditional on the value of p (here 8(z) =
0 for z < 0 and 1 otherwise). This is an important quantity as it tells us
whether u(t) carries some information on the attendance A(t) or not. Savit et
al. observed that p* = 1/2 for @ <« 1: the minority was falling on either side
with equal probability irrespective of y. But when a > 1 the minority happens
to be more likely on one side (i.e. p* # 1/2), depending on the value of p.
This means that the value of u(t) contains some information on A(t) because it
makes possible a better than random prediction of the minority side.

These observations have been sharpened in Ref. [Challet and Marsili, 1999]
by confirming the existence of a phase transition located at the point where
o? attains its minimum (a. &~ 0.34 for S = 2). The transition separates a

14



a=P/N, p=2"

Figure 1: Global efficiency o?/N for P = 128, and 256 and N ranging from
0.1P to 10P. Data set with I' = 0.1 (+ P = 128 and x P = 256) or I" = oo are
shown (o P = 128). Agents have two trading strategies. Each point is obtained
as the average over 100 random systems in the asymptotic stationary state of
the dynamics. For large N the collective properties only depend on the ratio
a = P/N. For small values of a, o2 is larger for fast learning (o correspond to
I' = 00) than for slow learning (x, + correspond to I' = 0.1). The full line are
the results of the theory based on the statistical mechanics approach, which is
valid in the limit P — oo and for small I". The predictability H/N as a function
of a, for the same systems as above, is also shown at the bottom of the figure.
H does not depend on T'.

symmetric (o < a.) from an asymmetric phase (o > a.). The symmetry which
is broken is that of the average (A|u) of A(t) conditional on the history .

In the asymmetric phase, (A|u) # 0 for at least one u. Hence knowing the
history u(t) at time ¢, makes the sign of A(t) statistically predictable. A measure
of the degree of predictability is given by the function

1 P
H=45 D (Al = (4). (25)

In the symmetric phase (A|p) = 0 for all 4 and hence H = 0.

Ref. [Challet and Marsili, 1999] found that, at fixed M or P, H is a de-
creasing function of the number N of agents® (see Fig. 1): This means that
newcomers exploit the predictability of A(¢) and hence reduce it. The same
article also introduced the concept of frozen agents, who always play the same

P

,i—1 (sign (A)|p)? = (2p — 1)2 was actually studied

9A slightly different quantity 6 = % >
in [Challet and Marsili, 1999].
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< 04

0.2

10

Figure 2: Fraction of frozen agents versus a = P/N for M = 6 (circles), 7
(squares) and 8 (diamonds). The critical point is located at the intersection of
the three curves.

strategy. The fraction ¢ of frozen agents is reported in Fig. 4 and it has a
discontinuity which provides a very precise determination of a.

Finally Ref. [Cavagna et al., 1999] observed that fluctuations o2 increase
with I'. That is a quite remarkable finding specially if one considers I' as an
inverse temperature as suggested by Eq. (13): Usually fluctuations decrease
when the temperature decreases, whereas o2 increases when the ‘temperature’
1/T decreases. Note that Ref. [Cavagna et al., 1999] also reports a rise in o2 for
very high ‘temperatures’ (i.e. for I' < 1). This was later found — first in Ref.
[Bottazzi et al., 2003] then in Ref. [Challet et al., 2000b] — to be due to lack of
equilibration in numerical simulations.

What is also quite remarkable is that, as shown in Fig. 1, o® depends
on I' only for a < a, but not for @ > a.. Nor does H for all values of a.
Furthermore, the stationary state depends on initial conditions for a < a.
[Challet et al., 2000c, Garrahan et al., 2000, Marsili and Challet, 2001b, Marsili and Challet, 2001a,
Marsili, 2001, Heimel and Coolen, 2001]: the larger the spread or the asymme-
try in the initial conditions {¥;(0)} the smallest the value of 0?. This dependence
disappears for a > a, and the dynamics forgets’ about initial conditions, as in
ergodic systems (see subsection 6.4).

These results leave us with a number of open questions that a theory of the
Minority Game should address.

2

5 Minority Game without information

Interestingly, a hint on some of these answers can be obtained from the study of
an highly simplified version of the MG [Marsili and Challet, 2001b, Marsili, 2001]
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where the collective behavior can be easily understood with simple mathematics.
In the minority game the quantities of interest are the first two moments of

A(t):

1 to+T
W= gt S
t=to+1
1 to+T
2 — 2 — — 2

t=to+1

If agents are rational at all, we expect that they will drive the system to
a state where none of the two actions a; = %1 identifies systematically the
minority side. Hence, we expect (4) = 0. o2 gives instead a measure of the
efficiency of the systems because it tells how many more losers than winners are
there. For illustrative purposes, let us compare the state where A(t) = 0 Vt to
the state where A(t) = (—1)!N. Both have (4) = 0 however in the former no
agent loses (02 = 0) whereas in the latter all agents lose (02 = N?).

Agents learn from past experience which action a;(t) is the best one. The
learning dynamics is the one used in general in minority games and it is well
rooted in the economic literature [Rustichini, 1999]. The past experience of
agent 7 is stored in the “score” A;(t): A;(t) > 0 means that the action a; = +1
is (perceived as) more successful than a; = —1 and vice-versa. Agents use the

information accumulated in A;(t) to take decisions!®:
B eAi (t)
and they update A;(t) by
At
Ai(t+1) = As(t) - 128 27)

N

This learning dynamics is easily understood: if A(t) < 0 agents observe that
the best action was +1 at time t. Hence they increase A; and the probability
of playing a; = +1 (see Eq. (26)). The parameter I' modulates the strength of
the response in the behavior of agents to the “stimulus” A(t)/N. Let us finally
assume that the initial conditions A;(0) are drawn from a distribution po(A)
with a standard deviation s. How does the collective behavior depends on the
parameters I and s?

Notice that y(t) = A;(t) — A;(0) does not depend on i, for all times. For
N > 1, the law of large numbers allows us to approximate A(t)/N by its average
value!!. In Eq. (27), this yields a dynamical equation for y(t):

y(t+1) = y(t) - T{tanhly(t) + A(O)]o (28)

10The exponential form, which results from a Logit discrete choice model, is taken here for
simplicity. Any increasing continuous function x;(z), with 0 < x;(z) <1 for all real z, x(z) —
0 as ¢ — —oo and x(z) — 1 as x — 00, leads to the same results [Marsili and Challet, 2001b].

' The average value of A(t)/N is computed using Eq. (26), which gives (a;(t)) = tanh A;(t),
and averaging over the distribution po(A) of initial conditions A;(0).
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where the average (...)o is on the distribution py of initial conditions. This
equation admits a fixed point solution y(t) = y* for all ¢, where y* is the
solution of

(tanh[y™ + A(0)])o = (4) =0 (29)

If this solution is stable, the distribution of relative scores A;(#) shift bodily from
the initial conditions and settles around the origin, in order to satisfy (A) =0
(Eq. (29)). Given that (a;) = tanh[y* + A;(0)], it is not difficult to find that

N
0> = (1—(a;)?) = N {1 — (tanh[y* + A(0)]*)o}

i=1

for this state. Notice that 02 o« N and it decreases with the spread of the
distribution of initial conditions.

When is this a stationary state of the dynamics? To answer this question it
suffices to study the linear stability of the dynamics. We set y(t) = y* + dy(t)
and expand Eq. (28) to linear order. It is easy to find that the fixed point y* is
stable only for

B 2 2N (30)
~ 1— (tanh[y* + A(0)]2)g 02"

When I' > T'. we find periodic solutions y(t) = y* + z*(—1)! where y* and z*
satisfy

I <T.

(tanh[y* + 2* + A(0)])o + (tanh[y* — z* + A(0)])o

5 = 0 (31)
(tanh[y* + z* + A(0)])o = (tanhly® — 2" + AO)o _ Q_Fz )

The parameter z* plays the role of an order parameter of the transition at I',
(z*=0for I' < T';). Again we have (A) = 0, but now it is easy to check that

2 o 2 {tanhly” + 2 + AO)]) + (tanhly® — 2* + AO)); _ (2Nz*>2
2 r

is proportional to N2. Hence this is a much less efficient state. Fig. 3 shows
the behavior of 0?/N? as a function of I'. The inset shows how I'. depends on
the spread of initial conditions. We conclude that the more heterogeneous the
initial condition is, the more efficient is the final state and the more the fixed
point y* is stable.

The transition from a state where 0? o< N to a state with 02 o« N2 is
generic in the minority game, and it has been been discussed by several au-
thors [Savit et al., 1999, Johnson et al., 1999a, Challet and Marsili, 1999, Cavagna et al., 1999].

6 Analytic approaches to the Minority Game

The first significant attempts to understand the Minority Game dynamics have
focused on the derivation of continuum time dynamical equations. This has been
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Figure 3: Global efficiency 02/N? as a function of T for two different sets of
initial conditions: A;(0) is drawn from a gaussian distribution with variance s2.
The full line corresponds to s = 1/2 whereas the dashed line is the result for
s = 1. The inset reports the critical learning rate I', as a function of the spread
s of initial conditions.

the subject of debate for some time. First Cavagna et al. [Cavagna et al., 1999]
proposed stochastic differential equations for time evolution of the probabilities

mi,s(t) = Prob{s;(t) = s}

which were found to be problematic in Ref. [Challet et al., 2000b] (but see
also [Cavagna et al., 2000]) and later amended in Refs. [Garrahan et al., 2000,
Sherrington et al., 2002]. On the other hand, Refs. [Challet et al., 2000c, Marsili et al., 2000]
derived a deterministic dynamical equations by erroneously neglecting stochas-
tic fluctuations. The asymptotic state of the dynamics was found to be related
to the minima of H, which is a Lyapunov function of the deterministic dynamics.
This opened the way to statistical mechanics of disordered systems because it
relates the properties of the stationary state of the Minority Game to the ground
state properties of a disordered spin model, which can be analysed in all details.
It is remarkable that, in spite of neglecting fluctuations, this approach yields
very precisely the behaviour of 02 and H with «, at least for a > a for all val-
ues of I' and for a@ < . in the limit I' — 0. The reason for this coincidence was
found in Ref. [Marsili and Challet, 2001a] which restores the stochastic term in
the dynamics of Refs. [Challet et al., 2000c, Marsili et al., 2000] and provides a
coherent, picture of the Minority Game behaviour. In addition, the generating
functional approach substantiated this approach [Coolen and Heimel, 2001].

It turns out that it is not necessary to derive continuum time equations
in order to show that the minima of H describe several quantities in the sta-
tionary state of the Minority Game. Therefore we shall outline the theoretical
developments introducing the continuum time limit only in a second stage.
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Figure 4: The condition for an agent to be frozen requires that the field h; =
Q& + Z#i &&ym; be larger in absolute value than the self-interaction term

Jii = & ~ 1/2. Indeed m; = —sign[h; + J;;m;] has only a solution when
|hi] > Ji;. Indeed plotting the time of the last change of strategy of agents
versus the ratio |h;|/J;; we see that all those agents with |h;| > J; ; soon freeze
onto one strategic choice. The plot refers to a simulation with M = 8, N = 511,
S =2, 310° iterations. Here heg = Q;.

We shall keep the discussion as simple as possible and refer the reader to the
relevant original papers. Some of the results can also be derived with the gener-
ating functional method [Heimel and Coolen, 2001, Coolen and Heimel, 2001],
as discussed in Section 6.6. Finally we shall comment on how the theory extends
to several ‘variations on the theme’.

6.1 Stationary state and minimal predictability

Taking the average of Eq. (20) in the stationary state one finds a dynamic
equation for (Y;). We look for solutions with (Y;) ~ v;t. If we define

m; = (tanh(Y;)) = (s,), (33)
for t — oo we have
—_ N —_
Vi = —Qfl — Z&f]m] (34)
j=1
Now if v; # 0, then y; diverges — +o00 and
—_ N —_—
m; = signv; = —sign | Q& + Zfifjmj =41. (35)
j=1
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This means that agent i will always use the strategy s;(t) = m; for ¢ large
enough, i.e. that he/she is frozen. Conversely, agent i is not frozen if (Y;) is
finite, which requires v; = 0, i.e.:

N
0=—v; =0& + Y _ &&m;. (36)
j=1

The presence of the self-interaction term £Zm; in Eq. (36) is crucial [Challet and Marsili, 1999]
for the existence of non-frozen agents, as shown in Fig. 6.1. We call F the set
of frozen agents; ¢ = |F|/N is the fraction of frozen agents. Eqs. (35,36) are
equivalent to the solution of the constrained minimization problem

{min H, m;e[-1,+1] Vi (37)
where
1P N 2
—TA2 — — n Foam -
H = (4) _P; Q +i§§mz] (38)

This is easily shown by taking the first order derivatives of H with respect to m;.
Either 0H/0m; = —2v; = 0 and then m; takes a value in the interval (—1,1)
(and agent 7 is not frozen) or 0H/Om; = —2v; # 0 and then m; = signv;.

All quantities, such as H or ¢, which can be expressed in terms of m; can be
computed if one can solve the “static” problem Eq. (37). We call m; “average
behaviour” of agent i for short. It is represented by a so-called soft-spin in the
statistical mechanics formalism.'2

The fact that the stationary state behaviour is related to the minima of
the predictability H is a quite robust feature of Minority Games. This is also
a natural result: Each agent is trying to predict the market outcome A with
the limited capabilities — the strategies — at his disposal. The only possible
stationary state is one where the outcome A is as unpredictable as possible.

The solution {m;} does not depend on I" and, by Eq. (38), neither does H.
On the contrary o2 cannot be expressed in terms of m; only. Indeed

N
o> =H+) &(1L-mi)+) &&((tanhY; — m;)(tanh Y; —my))  (39)
i=1 i#j

The last term depends on fluctuation of tanh Y; around m;. It only involves off-
diagonal correlations across different agents i # j. An analysis of fluctuations
in the stationary state is necessary in order to compute this last term and hence
o2. This in turn will require the introduction of the continuum time limit. Let
us discuss the properties of the solution to the problem (37). We anticipate
that the effective theory which we shall develop later, and which is remarkably
accurate, shows that the last term in Eq. (39) vanishes for a > a. for all values
of I' and for a < . in the limit I' — 0. Accordingly, the solution of Eq. (37)

will also allow us to compute 0 & H + 3, €2(1 — m?) in these cases.

12 A soft spin, as opposed to a (hard) spin s; = +1, is a real number m; € [-1,1].
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6.2 The statistical mechanics analysis of stationary states
and phase transition

Let us come back to the minimization problem in Eq. (37). The statistical
properties of the solutions to this problem can be accessed using techniques of
statistical mechanics. Indeed, regarding H as the Hamiltonian of a system of
soft spins {m;}, the solution to Eq. (37) is given by the associated ground state
properties. These are studied first introducing the partition function

Z(8,5) = Tr =P}

where [ is an inverse temperature, = = {aﬁ <} denotes the quenched disorder
and Tr,, stands for the integral on m; from —1 to +1, for all i = 1,..., N.
This is nothing else than a generating function, from which all the statistical
properties can be computed. In our case, since we are interested in the minimum
of H, we shall take the limit 8 — oo at the end of the calculus. Eq. (37) can
be rewritten as:

. - .1 -
EnmlgH{mz,_} = —BILII;OEIHZ(B,_). (40)

Rather than in the solution of this problem for a particular game, that is
for a given realization of the structure of interactions =, we are interested in
the generic properties which hold for ‘typical’ realizations of the game in the
limit NV — oo. These properties are called self-averaging because they hold for
almost all realizations. In other words, in this limit, all the realizations of the
game are characterized by the same statistical behaviour, i.e. the same values
for all the relevant quantities.'® In order to study these properties, we take the
average over the disorder = in Eq. (40). This eliminates the dependence on
quenched disorder but leaves us with the problem of taking the average of the
logarithm of a random variable Z, which is very difficult at best. However, the
replica trick [Mézard et al., 1987]

(In Z)z = lim 1 In(Z™)=. (41)
n—0n
reduces the complexity of the calculus. In this equation, Z™ means that one
replicates n times a given system, keeping the same disorder (strategies), but
introducing a set of variables m; for each replica ¢, denoted by {m$}. One finds
that (see e.g. the appendix of [Challet et al., 2000d]) the calculation of (Z")z
can be reduced to an integral on a space of n X n matrices Q and R, ie.

(Z™z x /deRe_BN"f(Q’R) ~ e=ANF(Q".R) (42)

where the saddle point integration was used in the last step (note that both 8
and N are large). Here @Q is a matrix of order parameters and it has elements

N
1
Qa,b = N ; Mg, cMi.d (43)

13This also means that when the system’s size increases, one has to average over less samples
in numerical simulations for a given desired accuracy.
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where the indices . and 4 label replicas. The matrix R is introduced in order to
enforce Eq. (43) as a Lagrange multiplier.The free energy f is given by:

1) = gotviog 142 (14.Q) ] + 22 3 v
c<d
1 QTB2 Ec<d Te,dMeMa
- mlog {Trme < ] . (44)

It is known that for Hamiltonian which are non-negative definite, such as H =
(A)?, the matrices Q* and R* which dominate the integrals in the limit SN — oo
have the replica symmetric form

ab =0+ (Q—q)0ap, Ryy=1+(R—7)0up (45)

Another consequence of the non-negativity of H is that it takes its minima on
a connected set, which is either a point or a linear subspace'?. In section 9
we shall see a case where the minimized function is no more positive definite.
With the ansatz (45), we can compute the free energy f and then take the limit
n — 0.

(RS) _ BQ — Q)]
f (Q,Q,R,T) - 2,8 log |:1+ a
« 1+¢q af
Y 2ava@-g 2O
_ 1 ' sz(m)>
3 <log/1 dme ] (46)
where
Vz(m):—@nf—ﬁzm (47)

and the average of the last term is defined as (...). = [ dz.. e 722

The last term of f(F9) looks like the free energy of a particle in the interval
[—1,1] with potential V. (m) where z plays the role of disorder. The parameters
@, q, R and r are finally found solving the saddle point equations BJ;(;S) = 0 with
X = Q,q,R or r. The derivation of these equations is standard in disordered
spin systems [Mézard et al., 1987] and are described in some more detail in Refs.
[Marsili et al., 2000, Challet et al., 2000d].

The properties of the solution differ qualitatively according to whether o >
Q. or a < a. where

a.=03374... (S=2) (48)

is the solution of the non-linear equation a. = erf [\/| log[/7(2 — a.)|]| where

erf (z) is the error function.

14 A remarkable consequence of this will be discussed in section 6.4.
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6.3 The asymmetric phase

For a > .. the solution to Eq. (37) is unique. In parametric form, we find,

lim l(min H{m;})= = L+¢Q

—_— 4
N—oo N ‘{m;} 2(1 + x)? (49)

where the parameters () and x are given by

erf (%
w - < (51)
a —erf (E)
where ( is determined by
a=[1+Q(¢ (52)

for a > a,15.

The parameter () = % o m? emerges in the calculation as an order param-
eter. It provides a measure of the degree of randomness of agents’ behaviour:
@@ = 1 means that all agents stick to only one strategy (m; = £1 for all i)
whereas () = 0 means that they play at random (m; = 0). A similar measure is
given by the fraction ¢ of frozen agents, which is given, in parametric form, by

¢ = lim % = erfc (C/V2). (53)

A more detailed information on how agents play, is given by the full proba-
bility distribution of m;:

N
Pm) = Jim % S 6(mi — m) (54)
i=1
¢ ¢ C

- 7 hd _ S5 7(2m2/2
26(m+1)+26(m 1)+me .

The quantity y emerges instead as a response function in the statistical mechan-
ics approach. More precisely, it is given by

(mi’c — mi,d)Q. (55)

M) =

X = lim fRQ=9) = lim —

B—o0 0] B—o0 alN =

() —q measures the distance between two different replicas of the system, labelled
by the indices . and 4 in the above equation. We can think of a replica as a
realization of the stochastic process with given initial conditions. A finite value
of x means simply that two processes with different initial conditions converge,
in the stationary state, to the same point in phase space {m;}, i.e. that ¢ — @
as # — oo in the statistical mechanics formalism. This is what we expect to
occur in an ergodic Markov process. We shall see that for a < a, the process

15Tn practice, Eqgs. (50,51) and (52) describe the a > a. phase in a parametric form, for
¢ > (e where (. is the solution of [1 + Q(¢)]¢2 = erf(¢/sqrt2) (and a — ac as ¢ — ().
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is not ergodic, i.e. the stationary state depends on initial conditions. Indeed
x = oo for a < a, as we shall see.

The behaviour of the solution as a function of « is the following: When
a > 1 agents behave nearly randomly () ~ 0. A naive explanation is that the
information encoded in p is too complex and agents with their limited processing
power are unable to detect significant patterns.

When «a decreases agents manage to exploit information in a more efficient
way: Hence @ (and ¢) increases — implying a larger specialization in the pop-
ulation — and H decreases. Note that a decrease in « corresponds either to a
decrease in the complexity P of the information, or to an increase in the num-
ber N of agents, and thereby of their collective information processing power.
Hence at fixed P we find that as more and more agents join the game, the
game’s outcome becomes less and less predictable. This is a quite reasonable
property for such complex adaptive systems.

Decreasing a we also find that x increases more and more steeply. x ~
(a — )t diverges as a — a. and correspondingly H ~ (a — a.)? — 0 (see
Eq. 49). This singularity marks the location of a phase transition. For a > a.
we have H > 0 which means that, given the information p, the outcome A(t) is
probabilistically predictable, we call this an asymmetric phase. For a < a, we
have H = 0 which means that for any p the outcome A(t) is symmetric. So we
call this the symmetric phase.

6.4 The symmetric phase and dependence on initial con-
ditions

It is worth to notice that the occurrence of a phase transition can be understood
from a simple algebraic argument. Consider the set of N(1—¢) unfrozen agents,
those who have |m;| < 1. In the stationary state the corresponding variables
m; must satisfy the set of linear equations:

N
()& =06+ ) &&m; =0.

Jj=1

There are at most P independent equations in this set because that is the rank
of the matrix &;¢;. Hence as long as N(1 — ¢) < P the solution is unique but
when N(1 — ¢) > P there are more variables than equations and the solution
is no more unique. Notice that in this case we have (A|u) = 0 for all p which
means H = 0 for N(1—¢) > P. We conclude that the critical threshold is given
by:

a.=1—¢(ag) (56)

and that for a < a, the solution is no more unique, a fact which is at the origin
of the divergence of x in the whole a < a,. phase. Note that the replica method
confirms the validity of Eq (56).

The non-uniqueness of the stationary state implies that the properties of
the Minority Game in the symmetric phase depend on the initial conditions.
This was first observed in Ref. [Challet et al., 2000c] then confirmed numeri-
cally in Ref. [Garrahan et al., 2000]. Finally Ref. [Marsili and Challet, 2001a]
showed that it is possible to characterise this dependence in the limit I' — 0
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where the dynamics becomes deterministic. Similar conclusions extend quali-
tatively to the more complex stochastic dynamics (I' > 0), as discussed in Ref.
[Marsili and Challet, 2001a]. Before coming to that, let us mention that much
insight can be gained on the dynamics in the symmetric phase by studying the
limit o — 0 [Marsili, 2001, Marsili and Challet, 2001b].

In the @ < a, phase the minimum of H is degenerate. In order to select
a particular solution of H = 0 Ref. [Marsili and Challet, 2001a] adds a poten-
tial n)_,(m; —m})?/2 to the Hamiltonian H. This term lifts the degeneracy
and selects the equilibrium close to m] in the limit n — 0. We refer to Ref.
[Marsili and Challet, 2001a] for details and focus on the main results here.

Taking m; = m* = 0 describes symmetric initial conditions and increasing
m* > 0 gives asymmetric states that are reached when the initial scores are
biased, that is ¥;(0) # 0. In this case the saddle point equations of the statistical
mechanics approach reduce to:

@ = [ Demits (57)
— 00
1+x /°°

X = —— Dzzmg(z o8
s [ D) 3)
where Dz = sz—ﬂefzzm and mo(z) € [—1,1] is the value of m which minimises

1 1+ 1 .
V.(m) :§m2— anm+ §n(1+x)(m—m )2 (59)

There are two possible solutions: one with y < oo finite as  — 0 which describes
the a > a. phase. Note that, as long as y remains finite, the last term of Eq.
(59) vanishes when n — 0, hence the dependence on ’initial conditions’ m*
disappears.

The second solution has x ~ 1/n which diverges as n — 0, hence the last
term of Eq. (59) has a finite limit. This solution describes the a < «a, phase
and can be expressed in parametric form in terms of two parameters zo and
€0 = cm™ /(1 + ¢), where ¢ = lim, o nx. Eq. (57) with

-1 ifZS—Zo—EO
m[)(Z): ZJZF% if—Zo—60<Z<ZU—60
1 if 2> 29— ¢

gives Q(zo, €0) and Eq. (58), which for x — oo reads /a(1 + Q) = [ Dzzmy(2),
then gives a(zp,€p). With ¢y # 0, i.e. m* # 0, one finds solutions with a non-
zero ‘magnetization’ M = ), m;/N. This quantity is particularly meaningful,
in this context, because it measures the overlap of the behaviour of agents in
the stationary state with their a priori preferred strategies

1 N

M= [ " De mo(2) = lim — > (si(t)si(0)). (60)

t—o00
i=1

Which stationary state is reached from a particular initial condition is a quite
complex issue which requires the integration of the dynamics. However, the
relation between ) and M derived analytically from Eqgs. (57) and (60), which is
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Figure 5: Relation between @ and M, for « = 0.1, derived from analytic calcu-
lation (full line) and from numerical simulations of the MG with different initial
conditions yo (¢, P =32, N =320, I' = 0.1). The inset shows the dependence
of @ and M from the initial condition yg.

a sort of ‘equation of state’, can easily be checked by numerical simulations of the
Minority Game. Figure 5, from Ref. [Marsili and Challet, 2001a], shows that
the self-overlap ) and the magnetization M computed in numerical simulations
with initial conditions y;(0) = yo for all i, perfectly match the analytic results.
The inset of this figure shows how the final magnetization M and the self-overlap
() depend on the asymmetry yo of initial conditions.

In order to show the variability of results with initial conditions, Fig. 6
plots 02 /N both for symmetric (yo = 0) and for maximally asymmetric initial
conditions (yo — o00) in the limit I' — 0. The inset shows the behaviour of @
and M in the maximally asymmetric state.

Remarkably we find that o?/N vanishes as @ — 0 in the maximally asym-
metric state!®, in agreement with the results of Ref. [Heimel and Coolen, 2001].
This means that, at fixed P, as N increases the fluctuation o2 remains con-
stant. This contrast with what happens in the yo = 0 state, for ' < 1,
where o2 increases linearly with N, and with the case I' = co where 02 o« N?
[Savit et al., 1999].

6.5 The continuum time limit and fluctuations in the sta-
tionary state

The study of the off-diagonal correlations (s;s;) requires a more refined ap-
proach. Let us go back to Eq. (20). The study of the dynamics of the Minority
Game starts from three key observations:

16The relation is almost indistinguishable from a linear law 02 = cNa but higher order
terms exist.
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Figure 6: 02 /N for the Minority Game with initial conditions yo = 0 (full line)
and yo — oo (dashed line). The inset reports the behaviour of M and @ for
Yo — 0.

1. the scaling 0> ~ N, at fixed a, suggests that typically A(t) ~+/N. Hence
time increments of U; 4(t), in Eq. (16) are small (i.e. of order 1/v/N);

2. as shown in Ref. [Challet et al., 2000b], characteristic times of the dy-
namics are proportional to N. Naively this is because agents need to
‘test’ their strategies against all P = aN values of u, which requires of
order P time steps.

3. characteristic times in the learning dynamics are also inversely propor-
tional to I'. The process takes a time of order 1/T" to ‘learn’ a perturbation
0U; s, i.e. to translate it into a change in the choice probabilities Eq. (13)
of the same order. From this perspective I' appears as a ‘learning rate’
rather than the inverse of a temperature.

The second and last observation implies that one needs to study the dynam-

ics in the rescaled time I

N

and to introduce continuum time variables y;(7) = Y;(¢). The key point is that
if N > I', a small time increment dr < 1 corresponds to a large number At =
Ndr/T > 1 of time-steps. The corresponding change dy;(7) = Y;(t+At)-Y;(¢),
being the sum of At stochastic increments, can be estimated quite precisely by
the Central Limit Theorem when At — co. Having taken the thermodynamic
limit N — oo, one can take the continuum time limit dr — 0. Note that I’
needs to be finite in this process, and the limit ' — oo can be taken at the
end. In practice, numerical simulations show that the limit in which the limits
N — 0o and T' = oo are taken does not matter.

T
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We refer the interested reader to Ref. [Marsili and Challet, 2001a] for a
detailed account of the derivation and jump directly to the resulting dynamical
equations:

dy;

N
- 06 — Zgi—gjtanh(yj) + G (61)

j=1
where (;(7) is white noise with (¢;(7)) = 0 and

(GG () = 3 TE&G0(r —7) (62)

The average (...), in Eq. (62) is taken over the instantaneous probabilities
Prob{s;(t) = s} = (1+stanhy;)/2in Eq. (19) of s;(t). In other words, the noise
covariance depends in a non-linear and complex way on the dynamical variables
yi(7). Hence Egs. (61,61) are complex non-linear stochastic differential equation
with a time dependent noise term. They are exact in the limit N — oo with I fi-
nite. This conclusion has been confirmed by the more elaborate generating func-
tional approach of Ref. [Heimel and Coolen, 2001, Coolen and Heimel, 2001]
(see section 6.6).

A peculiar feature of these equations is that the noise strength in Eq. (62)
is itself proportional to (A%), ~ o?. This feedback effect is quite natural in
hindsight: Each agent faces an uncertainty which is large when the volatility
(A?%), is large.

Quite remarkably, the stochastic force is proportional to I' and that’s the
only place where I' appears explicitly. Hence I' tunes the strength of stochastic
fluctuations in much the same way as temperature does for thermal fluctuations
in statistical mechanics. It is significant that ', which is introduced as the
inverse of an individual temperature in the definition of the model, actually
turns out to play collectively a role quite similar to that of global temperature.
This similarity will appear even more evident below.

The analysis of the stochastic dynamics is made complex by the dependence
on y;(7), and hence on time, of Eq. (62). However this time dependence comes
through the volatility (A?|u), /N which is self-averaging unless collective fluc-
tuations of the variables y;(7) arise. Ref. [Challet and Marsili, 2003a] expands
further on this argument, showing that collective fluctuations which can sustain
time dependent volatility fluctuations only arise close to the critical point and
for finite size systems. Away from it, the feedback arising from time dependent
volatility can be neglected assuming that

(42),6:&5 = (A%), &€ = o2&,

This greatly simplifies our task by replacing Eq. (62) with

I'o?
2N

One important point is that in going from Eq. (62) to (63) we pass from an
exact to an effective theory. Note indeed that the temperature T in Eq. (63)
depends on ¢? which in its turn depends on the fluctuations of y;(7). So the
theory becomes a self-consistent one. The comparison of its predictions with
numerical simulations will provide a check of its validity.

(GG ) 22TEES(E—1),  with T = (63)

29



Let us imagine we have solved the problem of computing m; in the stationary
state!” and let us address the problem of computing the fluctuations of y;. We
briefly review the main steps of the analysis in Ref. [Marsili and Challet, 2001a]
and refer the interested reader to the original paper for more details.

Using the stationary condition Eq. (36) and Eq. (63), we can write the
Fokker-Planck equation for the probability distribution P,(y;,i ¢ F) of un-
frozen agents. This satisfies a sort of fluctuation dissipation theorem: indeed
both the deterministic term of Eq. (61) and the noise covariance Eq. (63) are
proportional to the matrix J; ; = ;. This makes it possible to find a solution
in the stationary state, which reads

1
Py o< Py(o) €xp ~7 Z [log coshy,; — m;y;] (64)
JEF

where
P 0 N P
Pyo) =[] / de I 6 lyi —5i(0) = ) eret (65)
pu=1v "> i=1 n=1

is a projector which imposes the constraint that the states |y(¢)) = {y:(t)}Y,
which are dynamically accessible must lie on the linear space spanned by the
vectors |£#) which contains the initial condition |y(0)). Note that Eq. (64) has
the form of a Boltzmann distribution with temperature 7', which is proportional
to I’ (see Eq. 63).

Using the distribution Eq. (64), we can compute ¢? from Eq. (39). In
principle the third term of Eq. (39)

S(T) =Y &&j{(tanhy; — m;)(tanh y; — m;))r
i#j
(where (...)r stands for averages over P,) depends on T which in its turn
depends on ¢? (see Eq. 63). Hence the stationary state is the solution of a
self-consistent problem.

For a > a, the number N — |F| = N(1 — ¢) of unfrozen agents is less than
P and the constraint is ineffective, i.e. P, ) = 1. Hence the dependence on
initial conditions y;(0) drops out and the probability distribution of y; factorises
over i. As a consequence X(7T') = 0 vanishes identically. We conclude that, for
a>ae, 02 =H+Y (1 —m?) only depends on m; and is independent of I'.
This is confirmed by numerical simulations to a remarkable accuracy: Fig. 7
shows that o2 stays constant when I' varies over four decades.

When a < a., on the other hand, the constraint cannot be integrated out
and the stationary distribution depends on the initial conditions. In addition
Py(0) also introduces a correlation in the fluctuations of y; across the agents.
This leads to a non vanishing contribution ¥(7") in Eq. (39). Hence o2 turns
out to be the solution of the self-consistent equation:

N 2
UQ(I‘):H—f-zg(l—m?)-f-E(F(;]\(fr)). (66)

17We remark that for @ > a. the solution of min H is unique and hence m; depend only on
the realization of disorder =. For a < a. the solution is not unique, hence we also have the
problem of finding which solution the dynamics selects, depending on the initial conditions.
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Figure 7: 0?/N as a function of T' for a given realisation of the game with
initial conditions y(0) = 0; a ~ 0.1 < a. (upper panel, P = 10, N = 101) and
a =15 > a, (lower panel, P = 30, N = 45). Average over 10000P iterations.

Ref. [Marsili and Challet, 2001a] solved these equations using Monte Carlo
methods to sample the distribution P, of Eq. (64). The results, reported in
Fig. 8, agree perfectly with numerical simulations of the MG.
It is possible to solve Eq. (66) toleading orderinI" <« 1. Ref. [Marsili and Challet, 2001a]
shows that
o ,1-Q 1 1-Q+ a(l-3Q)
N~ 2 + 4

L +0(I?)]. (67)

which agrees very well with numerical simulations (see the inset of Fig. 8).
Ref. [Marsili and Challet, 2001a] also shows that a simple argument allows to
understand the origin of the behaviour 02/N ~ 1/a for T' > 1, first discussed
in Ref. [Savit et al., 1999]. It must be observed that a correlated behaviour of
agents was already hinted at by Johnson and coworkers [Johnson et al., 1999a,
Hart et al., 2001], who put this effect in relation with crowd effects in financial
markets.

In summary the dependence on initial conditions, cross-correlations in the
behaviour of agents and dependence of aggregate fluctuations on the learning
rate are intimately related in a chain of consequences. This is a remarkable and
entirely novel scenario in statistical physics. These results are derived under the
approximation of Eq. (63) but are fully confirmed by numerical simulations.
This suggests that this approximation may be exact in the limit N — oo at
least far from the critical point a..

A quantitative study of correlated fluctuations close to the critical point
has been carried out in [Challet and Marsili, 2003a] on the basis of a sim-
ple argument: The time dependence of the volatility becomes relevant when
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3r < N=160 Montecarlo

O N=320 Montecarlo

0 N=640 Montecarlo
—-- Theory T —> 0
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Figure 8: Global efficiency 0% /N versus I' for « = 0.1 < a. and different system
sizes. Lines refer to direct simulations of the Minority Game with N = 160, 320
and 640. Finite size effect for I' > 1 are evident. Symbols refer instead to the
solution of the self-consistent equation (66) for the same system sizes. For both
methods and all values of N, o2 is averaged over 100 realizations of the disorder.
In the inset, the theoretical prediction Eq. (67) on the leading behaviour of o2 /N
for T' <« 1 (solid line) is tested against numerical simulations of the Minority

Game (points) for the same values of N.
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Figure 9: Graphic construction to show that deviations from theoretical result
occur inside the critical region define by Eq. (68) (K = 0.39 in the figure).

the deterministic part of the dynamics (see Eq. (61)) is small. Then corre-
lated fluctuations between y; and y; can be sustained by fluctuation in (A%|u).
The criteria for this to occur is, in the present model (see Eq. (6) in paper

[Challet and Marsili, 2003a]), H < 02/v/P. Indeed Fig. 9 shows that the point
where

L]

~ B (68)
VP

with K = 0.39 a constant, determine quite precisely the location where nu-

merical simulations deviate considerably from the theoretical results. Since

H o« (a — a.)?, we argue that the critical region where we expect anomalous

fluctuations has a size which vanishes as |a — a.| ~ N='/* when N, P — oc.
We expect that Eq. (63) is a good approximation outside the critical region,

whereas for |a — a.| < N'/* one needs to take explicitly into account the time
dependence of volatility.

ag

6.6 The Generating functional approach

A different approach, based on the generating functional has been proposed to
study the Minority Game [Heimel and Coolen, 2001, Coolen and Heimel, 2001,
Heimel et al., 2001]. This method is dynamical in essence. Taking the average
of dynamical equations over the disorder, it yields an effective dynamical the-
ory. We include Ref. [Heimel and Coolen, 2001], which deals with the Minority
Game with T' — oo, in the list of reprints. This gives a quite detailed account
of the method. We refer the interested reader to it while giving a brief account
of the method and results in what follows.

This approach was proposed in Ref. [Heimel and Coolen, 2001] for a batch

33



version of the Minority Game in which I' = oo and the agents revise their choices
si(t) only every P time steps'®. Later the analysis was extended to the standard
— called on-line — Minority Game and later to I' < oo and to a different choice
rule [Coolen and Heimel, 2001, Heimel et al., 2001].1°

The idea is to write down a dynamic generating functional as a path integrals
over the exact time evolution of a given configuration of scores {U; s}. After
taking the average over disorder, one finds that the generating functional is
dominated (in the saddle point sense) by a single “representative” stochastic
process ¢(t) — Egs. (62) to (66) of Ref. [Heimel and Coolen, 2001]. These are
quite complex self-consistent equations: Indeed the drift and diffusion term of
the process ¢(t) depend in a non-linear way on the correlation and response
functions

Clt.t) = (s(e), Gltt) = o)

of the process s(t). Here h(t) is an auxiliary external field which is added to the
dynamics in order to probe its response. Furthermore the integration on the
quenched disorder induces a long term memory in the process.

A virtue of this approach has been to clarify several issues on the continuum
time limit[Cavagna et al., 1999, Challet et al., 2000c, Challet et al., 2000b, Cavagna et al., 2000].
In particular it has shown that characteristic times of the dynamics do indeed
scale with V.20 Furthermore it has shown that an approach based on Fokker-
Planck equation (which neglects higher order terms in the Kramers-Moyal ex-
pansion) — such as that of previous sections [Marsili and Challet, 2001a] — is
indeed correct. It also gives an exact derivation of the drift and diffusion terms
in the continuum time description.

A drawback of the approach is that the resulting equations for C(¢,t) and
G(t,t") are too complex to be solved exactly and results are available only in limit
cases or for some quantities. Assuming time translation invariance — C'(¢,t+7) =
C(7) and G(t,t + 7) = G(r) for t — oo — a finite integrated response

lim [ dt'G(t,t') = x < 00
t—o00

and weak long term memory [Eq. (69) in Ref. [Heimel and Coolen, 2001]],
Coolen and Heimel were able to re-derive the equations of the replica approach?!
and the phase transition at a. = 0.3374.. ..

It is quite interesting that the generating function approach gives a dynami-
cal interpretation of the quantity x as the integrated response to an infinitesimal
perturbation. Then x = oo implies that the system ‘remembers’ forever a per-
turbation. In particular this means that the stationary state depends on initial

18Put differently agents process in a batch all information patterns p and react to their
cumulative effect.

19Note that as long as the average behaviour m; is concerned, this model is identical to the
on-line case. Indeed Eqs. (34) are still valid. However, g2 differs from the online version of
the game.

20Tn the batch version of the game, the time is de facto rescaled by a factor P.

21Egs. (76,77) and (78) of Ref. [Heimel and Coolen, 2001], with ¢ = C(7 = o0) = ¢ = Q
and y = ¢ become equivalent to the saddle point equations (50,51) and (52) discussed above.
In addition Eq. (84) of Ref. [Heimel and Coolen, 2001] is exactly the expression of H in Eq.
(49).
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conditions. However when xy = oo, for @ < a., the self-consistent dynamic
equations are much more difficult to analyze and have not yet been solved .
The generating functional approach is a quite promising tool for these sys-
tems which has also been successfully extended to more complex cases [Heimel and Martino, 2001].
However it does not yet give a clear picture of the interplay between initial con-
ditions, correlations and fluctuations — including the independence of 02 on I’
for @« > a. — such as the one given by the approach outlined in the previous
sections. On the other hand, the exact representative agent process that this
method allows to derive makes it possible to carry out accurate numerical sim-
ulations of the system in the thermodynamic limit [Eissfeller and Opper, 1992].

7 Extensions

The analytic approaches discussed so far extend, in a more or less straight-
forward way to more complex models. Many of them lead to a quite similar
generic picture characterised by a similar phase diagram. In many cases, the
stationary state is related to the minimum of a functional which can be studied
exactly within the replica symmetric approximation. We list here some of these
extensions:

e The Minority Game with endogenous information has been studied in Ref.
[Challet and Marsili, 2000]. It turns out that for @ > a. the behaviour of
the Minority Game with endogenous information (Eq. 6) slightly differs
from that under exogenous information (Eq. 7). The correction can be
quantified within the analytic approach of Refs. [Challet et al., 2000c,
Marsili and Challet, 2001a], as shown in Ref. [Challet and Marsili, 2000].
In brief, the dynamics of A(t) induces a dynamics on u(t) according to Eq.
(6). w(t) is a diffusion process on a particular graph, called after De Bruijn.
The diffusion process acquires a drift for @ > a. because (A|u) # 0. This
results in the fact that some value of u arise more frequently than others,
i.e. the stationary state distribution p* of u(¢) is not uniform, as in the
case of exogenous information (p* = 1/P). These considerations can be
cast into a self-consistent theory which approximately accounts for the
effects of endogenous histories for a > a..

For a < a, instead the stationary state is uniform (p# = 1/P) be-
cause there is no bias ((A|u) = 0) but correlation functions exhibit an
oscillatory behaviour (Fig. 2 in Ref. [Challet and Marsili, 1999]) under
endogenous information dynamics which does not arise with exogenous
information. Refs. [P. Jefferies, 2001, Hart et al., 2002, Hui et al., 1999,
Challet et al., 2000d, Metzler, 2002] also discuss the issue of endogenous
versus exogenous information in different variants of the Minority Game.
It should be noted that there are cases where endogeneous information
makes sense, for instance in models of prediction, bubbles and crashes
[Lamper et al., 2002, Giardina and Bouchaud, 2002].

Endogenous information leads to a radically different results with re-
spect to the endogenous case when agents behave in a deterministic way
(i.e. when they are all frozen). Then the induced dynamics of u(t)
is also deterministic and it locks into periodic orbits of period ~ /P
on the De Bruijn graph. The majority of the information patterns are
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o’ /N

Figure 10: Global efficiency o?/N as a function of « for S = 2,3,4 and 5 from
numerical simulations of the minority game with N = 101 agents and I'; = oo
(averages were taken after 100P time steps), averaged over 100 realizations of
d; (small full symbols), from numerical minimization of H (large open symbols)
and from the theoretical calculation (lines) with U; 4(0) = 0.

never generated by the system. Such a situation has been discussed
in Refs. [Johnson et al., 1999b, Challet et al., 2000c, Marsili et al., 2000,
Challet and Marsili, 2003b].

e This whole approach can be generalised to S > 2 strategies [Marsili et al., 2000].
Fig. 10 shows that o?/N increases with S toward the random limit
0?/N =1 and the phase transition a.(S) = a.(S = 2) + S/2 — 1 moves
linearly to higher values. Giving agents more resources leads generally to a
smaller efficiency, because their strategy sets are less internally correlated.

e The approach has been also generalised to include a fraction of determin-
istic agents —i.e. agents with S = 1 strategy — and totally random agents.
These extensions are discussed in Ref. [Challet et al., 2000d] and in the
next chapter.

e Cavagna et al. [Cavagna et al., 1999] have proposed a generalization of
the Minority Game where each agent contributes an action

P

a;(t) =) af, n" (1) (69)

p=1

where n#(t) is white noise (i.e. a Gaussian variable with zero average and
unit variance, independent for each p and t). In Ref. [Cavagna et al., 1999]
trading strategies aﬁ s, are “continuous”, i.e. they are drawn from a contin-
uous distribution — a Gaussian — rather than from the bimodal. The idea
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is that the exogenous process which drives the market, or the news arrival
process, is a P dimensional vector #j(t). Agents respond to it with linear
strategies, which are also P dimensional vectors @; s. This model reduces
to the previous one if we assume that 77(¢t) = (...,0,1,0,...) can only lay
along one of the P components of the orthogonal basis and that aj, is
drawn from the bimodal distribution. In general the vector 7 probes the
performance of the strategies with respect to all informations (i.e. com-
ponents) p at the same time. Challet et al. [Challet et al., 2000b] have
shown that this model has the same collective behaviour as the one dis-
cussed above. Indeed the equations which describe the stationary state of
this model has the same deterministic term as Eq. (61).

The agents can be allowed not to play by endowing them with a so-called
0—strategy which prescribes not to trade, whatever . These models are

characterised by a behaviour similar to that discussed here [Challet et al., 2001,

Challet and Marsili, 2003a]. Even if, in general, agents do not play at all
times, they all update their (virtual) payoffs simultaneously observing the
market. In other words, the model is still a fully connected, mean field
model. This case is dealt with in detail in the following section.

The case of agents entering the market with heterogeneous weights w; =
|a§‘7 s/ # 1 — modelling a population where some are richer or more influ-
ential than others — has been dealt with in Ref. [Challet et al., 2000a].

Agents with a given degree of correlation between their two strategies

[Challet et al., 2000d, Sherrington et al., 2002, Sherrington and Galla, 2003]

also exhibit the same generic behaviour, with a. depending on the corre-
lation coefficient. Ref [Challet et al., 2000d] discusses this case within the
replica approach, while ref [Sherrington and Galla, 2003] employ generat-
ing functionals.

Agents playing on different frequencies have been discussed in Ref. [Marsili
This amounts in assuming that agent i plays only for a fraction f; of in-
formation patterns y and otherwise shedoes not play (a}, = 0). Even for
broad distribution of frequencies f; across the population of agents the
phase transition persists, with a. which depends on the distribution of f;.
Interestingly it turns out that frequent players have a smaller probability
of being frozen than those who play rarely.

Information patterns with widely spread frequencies have been discussed
in Ref. [Challet and Marsili, 2000, Marsili and Piai, 2002]. Again the
phase transition persists and a. depends on the distribution of the fre-
quencies p* with which information patterns occur. It turns out that
in the asymmetric phase, more frequent patterns are typically less pre-
dictable. More precisely if p occurs with a probability p# = 7+ /P

1
x ——
1+ xm#

(Al

which also suggests that y is the inverse of the characteristic frequency
above which the market is unpredictable ((A|u) ~ 0 for 7# > x71).

37

and Piai, 2002].



e Minority games with non-linear payoffs —a;G(A) have been discussed in
some details in Ref. [Li et al., 2000] on the basis of numerical simulations
and in Ref. [Challet et al., 2000d, Marsili and Challet, 2001a] analyti-
cally. Ref [Marsili and Challet, 2001a] shows that, within a self-consistent
time-independent volatility approximation, it is again possible to derive
a function H which is minimized by agents in the stationary state. For
G(A) = —=G(—4) and G(A) ~ gA + O(4?) for A < 1, it is possible to
argue that the location of the phase transition does not depend on G(A)
[Challet, 2003].

e The statistical mechanics approach makes it clear that what matters only
the first two moments of the distribution of azs. Our results stay ex-
actly the same for all distributions of aﬁs with zero average and unit
variance. The case of a non zero average has been dealt with in Ref.
[Challet and Marsili, 2003b].

e Ref. [Martino et al., 2003] has shown that an additive noise in the payoff
dynamics does not change the phase diagram, but it affects the fluctuations
o?. In particular Ref. [Martino et al., 2003] considers the case

Ui,s(t + 1) = Ui,s(t) —aj A(t) + (1 - 6s,si(t))Ci,s(t) (70)

i,8
where the payoffs of strategies s # s;(¢) which have not been played are
affected by a ’measurement’ noise (; s(t) with zero average and variance A.
While this term does not modify the conclusion that the stationary state
behaviour is related to the minimum of H, it changes the fluctuation prop-
erties. The new term (; 5(t) removes the degeneracy of stationary states
for a < a, thus affecting the fluctuations. Remarkably the more noisy the
estimate of payoffs of agents, the less noisy the aggregate behaviour, i.e.
o? turns out to be a decreasing function of A.

Further modifications which lead to a qualitatively different behaviour (char-
acterised by replica symmetry breaking) or to a qualitatively different model
with a similar behaviour will be discussed in the following two chapters.

8 Recovering financial markets’ stylized facts in
Minority Games

In this section, we first introduce the simplest possible Grand Canonical Mi-
nority Game (GCMG) which reproduces the main stylized facts, i.e. fat tails
and volatility clustering. Then we present the analytic solution of this model
in the relevant thermodynamic limit. It shows that the behavior of GCMG, in
this limit, exhibits Gaussian fluctuation for all parameter values but on a line
of critical points which marks a discontinuous phase transition. For finite size
systems, numerical simulations reveal that stylized facts emerge close to the
transition line, but they abruptly disappear as the system size increases. Re-
markably, the vanishing of stylized facts when the system’s size increases also
occurs in a variety of models of financial markets. We present a theory of fi-
nite size effects which is fully confirmed by numerical simulations. This allows
us to conclude that anomalous fluctuations are properties of the critical point
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in GCMG. The phase transition is quite unique as it mixes features which are
typical of first order phase transitions — as discontinuities and phase coexistence
— and of second order phase transitions — such as the divergence of correlation
volumes and finite size effects.

In the market described by the Minority Game [Challet and Zhang, 1997],
agents i = 1,---, N submit a bid b;(¢) to the market in every period t = 1,2, .. ..
Agents whose bid has the opposite sign of the total bid A(t) = }_, bi(t), win
whereas the others lose. The bids of agents depend on the value u(t) of a public
information variable, which is drawn uniformly from the integers 1,..., P. In
other words, agents have trading strategies which prescribes to agent ¢ a bid
a!' £1 for each information . Each agent is assigned one such strategy, randomly
chosen from the set of 2 possible strategies of this type. Agents are adaptive
and may decide to refrain from playing if their strategy is not good enough. More
precisely, the bids of agents take the form b;(t) = ¢; (t)af(t) where ¢;(t) =1 or 0
according to whether agent ¢ trades or not. In order to assess the performance
of their strategy, agents assign scores U;(t) which they update by

Us(t +1) = Us(t) — a* D A(t) — e (71)
where N v
At) = D bilt) = 3 dalt)ai. (72)

So if —a?(t)A(t) is large enough, i.e., larger than ¢;, the score U; increases. The
larger U;, the more likely it is that the agent trades (¢; = 1). Here we suppose

that
1

Prob{¢;(t) = 1} = [P 0) (73)

where I' > 0 is a constant. A good strategy prescribes bids af which tend to
coincide with those b(t) = —sign A(t) of the minority of agents. The connection
with markets is realized assuming that A(t) is proportional to the difference of
price logarithms, i.e. logp(t + 1) = logp(t) + A(t).

The threshold ¢; in Eq. (71) models the incentives of agents for trading in
the market. Some investors may have incentives to trade because they need the
market for exchanging goods or assets. This corresponds to ¢; < 0. On the
contrary, speculators who only trade for profiting of price fluctuations typically
have €; > 0. Of course there may be prudent investors with €; > 0 or risk-lover
speculators with ¢; < 0 and a whole range of other type of traders. Here we
focus, for simplicity, on the case

e = € fori<N;
€ = —00 for Ny <i< N
The N, = N — N; agents who have ¢; = —0o — we call them producers after

Refs. [Challet et al., 2000d, Zhang, 1999] — trade no matter what, whereas the
remaining Ny — the speculators — trade only if the cumulated performance of
their active strategy increases more rapidly than et.

The collective behavior of the model in the stationary state is best under-
stood in terms of the market’s predictability, of the volatility and the number
of active traders.
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If the conditional time average (A|u) of A(t) given u(t) = p is non-zero,
then the knowledge of u(t) allows a statistical prediction of the sign of A(t). A
measure of predictability is hence given by

»
Hy = Z Alp)?

where we introduced the notation (...) for averages over p ({...) denotes av-
erages on the stationary state). When Hg = 0 the market is unpredictable
or informationally efficient. Volatility is instead defined as o2 = (A42) and it
measures market’s fluctuations. A further quantity of interest is the number
Naci(t) = >, (#i(t)) of active speculators in the market.

Exact results can be obtained in the thermodynamic limit, which is defined
as the limit Ny, N, P — oo, keeping constant the reduced number of specu-
lators and producers ng = Ns/P, n, = N,/P. In this limit, both o2 and Hy
diverge with the system size, since A(t) ~ v/N. Hence we shall consider the
rescaled quantities Hy/P or o?/P. The calculation follows that of the stan-
dard MG. Here we just discuss the main step and the results. Following Ref.
[Marsili and Challet, 2001a], we derive an Ito stochastic differential equations
for the strategy scores y;(7) = U;(t) in the rescaled continuous time 7 = t/N

dy;
dr

= —a;(A)yy —e+n. (74)

Here n; is a zero average Gaussian noise term with

(mi(7)n; (7)) = %M%‘(Az)wﬁ - 7). (75)

In Eqs. (74,75) averages (.. .), are taken on the distribution of ¢;(¢) in Eq. (73)
which depends on y;(7) in a non-linear way: Prob{¢;(t) = 1} = 1/[1 + '¥(7)].
Hence Eq. (74) is a quite complex system of non-linear equations with a noise
strength proportional to the time dependent volatility (A2),. This feedback will
be responsible for the emergence of volatility build-ups.

Following Refs. [Challet et al., 2000c, Marsili and Challet, 2001a] we find
that the fraction (¢;) of times that agent i plays his active strategy in the
stationary state is the solution of the minimization of the function

2

1 P N Ns+Np
Ho= 53 |Y(odal+ X | +2¢3 (60 (7€)
p=1 |i=1 i=No+1 i

with respect to {¢;). Note that for ¢ = 0 this function reduces to the predictabil-
ity Hg. For € # 0, the solution to this problem, and hence the stationary state,
is unique. An exact statistical mechanics description of the solution {(¢;)} can
be carried out with the replica method, because the replica symmetric ansatz is
exact. Furthermore the solution to the Fokker-Planck equation corresponding
to Eq. (74) can be well approximated by a factorized ansatz for ¢ # 0. This
means that the off-diagonal correlations vanish [((¢; — (¢:))(¢; — (¢;))) = 0
for i # j] and, as a consequence, the volatility turns out to be given by

02 = (A%) = Ho + Zfil((m)(l — (¢;)). The solution {(¢;}} of the minimization
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Figure 11: Theory and numerical simulations: nac; (top) and o?/P and H/P
(bottom) as a function of ns for e = 0.1 (solid line) and e = —0.01 (dashed line).
Numerical results for € = 0.1 (open symbols) and ¢ = —0.01 (full symbols) are
averages over 200 runs, with NgP = 10000 fixed and I' = co.

of H. provides a complete description of the model in the limit N — oo for
€ > 0. In particular the behavior is independent of T'.

Fig. 11 shows that all these conclusions are perfectly supported by numer-
ical simulations: With a fixed number n, of producers, as the number n; of
speculators increases, the market becomes more and more unpredictable, i.e.
Hj decreases. At the same time also the volatility o decreases. In a market
with few speculators (ns < 1 in Fig. 11), most of the fluctuations in A(t) are
due to the random choice of u(t) (i.e. 0> ~ Hy) and the number n,.; of active
speculators grows approximately linearly with 7.

When n, increases further, the market reaches a point where it is barely
predictable. Then, for € > 0 the number of active traders decreases and finally
converges to a constant. This means that the market becomes highly selective:
Only a negligible fraction of speculators trade (¢;(t) = 1) whereas the majority
is inactive (¢;(t) = 0). The volatility 0% also remains constant in this limit.

For ¢ < 0 we see a markedly different behavior: The number of active
speculators continues growing with n, even if the market is unpredictable Hy =
0. The volatility o2 has a minimum and then it increases with n; in a way which
depends on I'. In other words, € = 0 for ns > nk(n,) (= 4.15... for n, = 1)
is the locus of a first order phase transition across which N,. and o2 exhibit
a discontinuity. This same picture applies to a wider range of GCMG models
such as that of Ref. [Challet et al., 2001].

Numerical simulations reproduce anomalous fluctuations similar to those of
real financial markets close to the phase transition line. As shown in Fig. 12, the
distribution of A(t) is Gaussian for small enough ns, and has fatter and fatter
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Figure 12: Probability distribution of A(t) > 0 for ny, = 10 (continuous line),
20,50,100,200 (dash-dotted line) (PN, = 16000, n, = 1, ¢ = 0.01, I' = o0).
Inset: time series of returns A(t) showing volatility clustering for ns = 20 (lower
curve), but not for ns = 200 (upper curve).

tails as ngs increases; the same behavior is seen for decreasing e. In particular
the distribution of A(t) shows a power law behavior P(|A| > z) ~ % with an
exponent which we estimated as 8 ~ 2.8,1.4 for ny = 20,200 respectively and
€ = 0.01. Note that a realistic value 8 ~ 3 is obtained for ny = 20.

This is inconsistent, at first sight, with the theoretical results discussed pre-
viously for N — co. Indeed, if the distribution of ¢; factorizes, A(t) is the sum
of N, independent contributions and it satisfies the Central Limit Theorem.
This implies that for ¢ # 0 the variable A(t)/v/N converges in distribution to
a Gaussian variable with zero average and variance o2 /N in the limit N — oo.
There are no anomalous fluctuations and no stylized facts. Fig. 13 indeed shows
that the anomalous fluctuations of Fig. 12 are finite size effects which disappear
abruptly as the system size increases (or if I' is small).

In order to understand these finite size effects, we note that volatility cluster-
ing arises because the noise strength in Eqs. (74,75) is proportional to the time
dependent volatility (A2),. The noise term is a source of correlated fluctuations
because a;a;(A2),/N ~ 1/v/N is small but non zero, for i # j. It is reasonable
to assume that the dynamics will sustain collective correlated fluctuations in
the y; only if the correlated noise is larger than the signal —a; (A) , — € which
agents receive form the deterministic part of Eq. (74). Time dependent volatil-
ity fluctuations would be dissipated by the deterministic dynamics otherwise.
A quantitative translation of this insight goes as follows: The noise correlation
term is of order a;a;(A2),/N ~ o*/P%/? for i # j. This should be compared to

_ 2
the square of the deterministic term of Eq. (74) [a;(A), +¢€]* ~ [ Hy/P + e] .
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Figure 13: Kurtosis of A(t) in simulations with e = 0.01, ny = 70, n, = 1 and
several different system sizes P for I' = 1,10 and oo.

Rearranging terms, we find that volatility clustering sets in when

£§+26 &%—Fg%:i (77)

o Po o VP
where K is a constant. This prediction is remarkably well confirmed by Fig.
14: In the lower panel we plot the two sides of Eq. (77) as a function of ng, for
different system sizes. The upper panel shows that the volatility o2 /N starts
deviating from the analytic result exactly at the crossing point n¢(P) where Eq.
(77) holds true. Furthermore the inset shows that the region ns, > nS(P) is
described by a novel type of scaling limit. Indeed the curves of Fig. 14 collapse
one on top of the other when plotted against ng/nS(P).

The non-linearity of the response of agents is crucial for the onset of volatility
time dependence. If T' is small the response becomes smooth and anomalous
fluctuations disappear (see Fig. 13).

The fact that, in finite systems, stylized facts arise only close to the phase
transition is reminiscent of finite size scaling in the theory of critical phenomena:
In d-dimensional Ising model, for example, at temperature T' = T, + ¢ critical
fluctuations (e.g. in the magnetization) occur as long as the system size N is
smaller than the correlation volume ~ ¢~%. But for N > £~ % the system
shows the normal fluctuations of a paramagnet.

Eq. (77) and Ho/P ~ €? imply that the same occurs in the GCMG with dv =
4. In other words, the critical window shrinks as N~/4 when N — co. However,
because of the long range nature of the interaction, anomalous fluctuations either
concern the whole system or do not affect it at all, as clearly shown in Fig. 13.
In the critical region the Gaussian phase coexists probabilistically with a phase
characterized by anomalous fluctuations. This and the discontinuous nature of
the transition at € = 0, are usually typical of first order phase transitions.
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Figure 14: Onset of the anomalous dynamics for different system sizes. Top:
02 /N for different series of simulations with L = PN, constant: PN, = 1000
(circles), 2000 (squares), 4000 (diamonds), 8000 (up triangles) and 16000 (left
triangles). In all simulations n, = 1, € = 0.1 and I' = co. Bottom: L.H.S. of
Eq. (77) (full line) from the exact solution and K/vP = K (n,/L)'/* (parallel
dashed lines) as a function of ngy (K =~ 1.1132 in this plot). The intersection
defines n(P). Inset: Collapse plot of /N as a function of ns/né(P).
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The picture of a phase transition controlled by the signal to noise ratio
appears to be universal for Minority Games. Finite size effects close to the phase
transition of the standard MG [Challet and Zhang, 1997] are indeed explained
by the same generic argument: When the signal to noise ratio Hy/o? is of order
1/V/P self-sustained collective fluctuations arise.

Volatility clustering in real markets is known to be due to wild fluctuations
in the volume of trades. Volume is the number of active traders Nyt + N, in the
GCMG. Hence wild volume fluctuations require correlated collective fluctuations
in the behavior of agents which only arise close to criticality. This suggests that
real markets operate close to a phase transition. Numerical simulations suggest
that exponents vary continuously on the line of critical points. This raises the
question of why real markets self-organize close to the critical surface with a = 3.

We conclude that the GCMG exhibits a quite peculiar type of phase transi-
tion which mixes properties of continuous and discontinuous transitions. Finite
size effects clearly relate the occurrence of stylized facts to the analytic nature
of the phase transition. The extension of renormalization group approaches to
this system promises to be a quite interesting challenge.

9 Improving cooperation in the Minority Game

The Minority Game addresses the question of how efficiently a group of adap-
tive agents competing for limited resources can coordinate. The fact that agents
with limited rationality and resources can perform better than by taking ran-
dom decisions was regarded as a non-trivial result in early papers. This led to a
‘quest for efficiency’ in a series of papers aiming to find learning dynamics lead-
ing to better coordination (see e.g. [Hod and Nakar, 2002, Reents et al., 2001,
Paczuski et al., 2000, Kinzel et al., 2000, Wakeling and Bak, 2001]).

All these works, however, do not directly pose the question of whether the
agents, given their constrained capacities, play optimally or not. In game
theoretic terms, playing optimally means that agents should be in a Nash
equilibrium—a state where no agent can improve his payoff by adjusting his
strategy if others stick to their choices. It turns out that the agents in the
standard Minority Game do not converge to a Nash equilibrium because they
do not play strategically. Putting it simply, agents behave as if they were play-
ing against a market and not against N — 1 other agents. The key issue is
that this behaviour neglects the impact that each player has on the market. A
minimal requirement for a strategic behavior is to consider the effects of one’s
own actions on oneself. This turns out to be enough to ‘correct’ the learn-
ing dynamics that then converges to a Nash equilibrium [Challet et al., 2000c,
Marsili et al., 2000]. In the dynamical equations of the resulting game, the mar-
ket impact plays a role similar to the cavity, self-interaction term—also called
after Onsager—in spin glasses [Mézard et al., 1987]. Removing this term causes
replica symmetry breaking, leading to a totally novel scenario characterized
by exponentially many (in N) possible equilibria [Martino and Marsili, 2001,
Heimel and Martino, 2001, Marsili et al., 2001].

In the standard Minority Game, the global efficiency o2, which also measures
the total agent loss, varies but remains proportional to V. Is it the best that the
agents can do? Imagine a situation where N is odd and (N + 1)/2 agents stick
to action a; = +1 whereas the rest take a; = —1. This simple arrangement has
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0% = 1 which is way better than what we found previously. Why do the agents
not consider this? How can the agents coordinate to such an arrangement???

It is preferable to address these questions in simple Minority Game models
first, avoiding the complications of dealing with strategies, information (whether
endogenous or exogenous), hence disorder.

One such simple model was proposed by Reents et al. [Reents et al., 2001].
In their model winners of the last game stick to their choice, losers individually
change their minds with probability p. In other words agents react to an indi-
vidual piece of information, which is whether their choice was the right one or
not.

This model is easy to understand: as there are (N + |A])/2 losers and |A]
is at most of order N, the average number of changes is p(INV + |4|)/2 ~ pN.
Three regimes can be distinguished:

e pN = z = constant: the number of people that change their mind does
not depend on N, hence this leads to very small fluctuations o? ~ O(1).

e pN ~ O(VN): the fluctuations are typically of order N, which is what
happens in the original Minority Game with histories.

e p ~ O(1): the fluctuations are of order N2. A(t) is characterized by a
double peaked distribution.

Since the model is very simple, it can be tackled analytically. We refer to Ref.
[Reents et al., 2001] for details.

Refs. [Marsili and Challet, 2001b] observes that there are two separated
issues in the Minority Game. One is the competitive aspect by which the agents
try to exploit asymmetries in the game’s outcome A(t). This is the force driving
to information efficiency (A) =~ 0 and it has to do with predictability. The other
is the coordination aspect of the game and it is related to the volatility o2.
Loosely speaking, no agent in the Minority Game likes volatility. Furthermore
volatility increases the fluctuations in the behaviour of agents and this feeds
back into the collective behaviour causing volatility build-ups.

The analysis of Ref. [Marsili and Challet, 2001b] was later refined in paper
[Marsili, 2001] (see section 5). It shows that very simple models are able to
explain puzzling features of the Minority Game in its full-blown complexity, such
as the dependence of aggregate fluctuations (¢?) on microscopic randomness (T")
and on initial conditions.

In particular, in the extreme case when the spread of initial conditions A;(0)
is very large?® o2 becomes of order 1, in agreement with the numerical simu-
lations of Refs. [Garrahan et al., 2000, Marsili and Challet, 2001a] for e — 0.
This means that agents, starting from extremely different initial conditions, fi-
nally split into two groups of equal size playing opposite actions. This outcome,
however, does not come by the virtue of agents’ ability to coordinate but is
rather already buried in the initial conditions: roughly speaking, half of the
population is convinced, right from the beginning, that a; = +1 is way better
than a; = —1 whereas the others have opposite beliefs. Agents who learn to

22Note that there are very many such arrangements.
23 A more precise condition is that the number of agents with initial conditions in any
interval of size JA be finite, as N — oo.
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coordinate should form these beliefs endogenously in the course of the game?®*.

But why do the agents in the Minority Game fail to do this?

9.1 Market impact and Nash equilibria

As explained above, the optimal way in which agents can play the minority
game is to split into two equally sized groups taking opposite actions. If N is
odd (N + 1)/2 agents, being in the majority, lose. But each of them cannot do
better by changing side: the majority side would move with heras sheswitches
side (unless someone else change her mind as well). No one can improve her
situation by unilaterally deviating from her behaviour. This situation is exactly
what game theory calls a Nash equilibrium [Fudenberg and Tirole, 1991].

The Nash equilibria of the simple minority game discussed earlier, where
strategies are just actions a; = £1, were first discussed in Ref. [Marsili and Challet, 2001a].
Briefly, all arrangements where N — 2k agents play mized strategies, i.e. choose
a; = 1 at random, and the remaining 2k agents split into two groups of equal
size taking opposite actions, are Nash equilibria. These Nash equilibria have
0® = N — 2k. Those k agents taking the action a; = +1 can be choosen in (")
number of ways out of the 2k. The number of Nash equilibria grows as 2]5\7;
it becomes huge already for moderately large N. Those Nash equilibria with
largest k < N/2 are the most efficient, with o? < 1.

Why do agents fail to reach these optimal states? The reason is that agents in
all versions of the Minority Game discussed so far do not play a game against
N — 1 other agents. Rather, they behave as if they were playing against the
process A(t). The problem becomes evident for N = 1: in this extreme Minority
Game the agent would continue endlessly to react to herself, switching side at
each round. A strategic player would do no better in terms of payoff, as shewould
lose whatever side shechooses. But at least shewould realize that there is no
way out. It may seem strange at first sight, but the fact that agents react to
themselves is what hinders them from reaching an optimal Nash equilibrium
even for large N. Even though for large N each agent’s contribution to A(t) is
small, if all agents neglect it, they will fail to reach the Nash equilibrium.

To better understand this issue let us go back to the discussion of section 5
on the Minority Game without information. There agents learning through Eq.
(27) behave as price takers: They totally neglect the fact that price changes —
i.e. A(t) — also depend on their choice a;(t). This may seem reasonable given
that agents are very many and the impact of each of them is very small. As
we shall see in a while (see also Refs. [Challet et al., 2000c, Marsili et al., 2000,
Marsili and Challet, 2001a]), this argument is misleading because indeed price
taking behavior has very strong consequences. Let us consider a slightly different
learning dynamics:

Adlt+1) = Au(t) — S[A) — nai(t)]. (78)

The n term in Eq. (78) describes the fact that agent ¢ accounts for his own
contribution to A(t). For n = 1 indeed, agent i considers only the behavior of
other agents A(t) — a;(t) and does not react to his own action a;(t). In other
words, n measures the extent to which agents account for their “market impact”.

24This seems to be the intuition of Arthur when he states that ”Expectations will be forced
to differ” [Arthur, 1994] in contexts such as the El Farol bar problem.
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For n = 0 we recover the results discussed in section 5. But the situation
changes drastically as soon as agents start to account for their market impact,
i.e. for n > 0. To see this, let us take the average of Eq. (78) in the long time
limit and define m; = (a;). We note that

(it + D) = (Au0) = =y | Ty =i == 552 @)
JEN

where

2

1

H, =3 (Zm) —gsz. (80)
IEN iEN

A close inspection?® of these equations implies that m; are given by the minima

of H,,.

Note that H; is an Harmonic function of m;’s. Hence it attains its minima
(and maxima) on the boundary of the hypercube [—1,1]¥. So for n = 1 all
agents take always the same actions a;(t) = m; = +1 or —1 and the waste of
resources is as small as possible: Indeed 02 = 0 or 1 if N is even or odd, which
is a tremendous improvement with respect to the case n = 0 (where 02> ~ N
or N?). These states are indeed Nash equilibria [Marsili and Challet, 2001b] of
the associated N persons minority game. This argument extends to all n > 0:
The stationary states of the learning process for any n > 0 are Nash equilib-
ria?%. Hence as soon as agents start to account for their market impact (n > 0)
the collective property of the system changes abruptly and inefficiencies o2 are
drastically reduced.

Again the asymptotic state is not unique and it is selected by the initial
conditions. However now the set of equilibria is discrete and the system jumps
discontinuously from an equilibrium to another, as the initial conditions A;(0)
vary. This contrasts with the n = 0 case, where the equilibrium shifts continu-
ously as a function of the initial conditions [Marsili and Challet, 2001a].

The issue of market impact in Minority Game was first raised in paper
[Challet et al., 2000c] and in Ref. [Marsili et al., 2000] for the model in its full
complexity. There Minority Game agents were called naive as opposed to the
sophisticated strategic players of game theory. Agents in the Minority Game
naively neglect their market impact, assuming that it is negligible. Considering
the Minority Game as a market model, they behave as price takers. This as-
sumption about traders may be realistic: traders may really behave that way.
But the results show that the assumption is by no means an innocent one. If all
agents account for their impact the collective behaviour changes dramatically.

In particular, if agents correctly account for their market impact, they reach
a Nash equilibrium.

25The first order conditions on H,, imply that if —1 < m; < 1 then (A;(t+ 1)) = (A;(t)),
i.e. the process A;(t) is stationary. Else if m; = +1 (or —1) one should have A;(t) — 400
(or —o0), which is precisely what constrained minimization and Eq. (79) say.

26The proof of this statement goes as follows: Suppose that m* is an equilibrium with

—1<mj <lfork=1,...,nand m] = *1 for i > n. The conditions for a minimum requires
2H17
om;Om;
must be non-negative. But this matrix has only one positive eigenvalue A= N —npand N —1
negative eigenvalues A\ = —7. Hence n can at most be 1, which can occur for N odd.

that Hy is locally positive definite around m*. At least n eigenvalues of the matrix
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9.2 Nash equilibria of the Minority Game

A Nash equilibrium is defined in terms of the strategies s; which players can
choose and in terms of the payoff matrix w;(s;,s—;), where s_; = {s;, j # i}
is the usual game theoretic notation for the strategies of opponents. In the
Minority Game the payoff matrix is given by

N
ui(si, S_i) = _% Zai,siafj,s]- = P Z Z a; s, ] 55 (81)
j=1

p=1 j=1

where a!’ s are the randomly drawn look-up tables of agents.

The game theoretic interpretation of the Minority Game is discussed in Ref.
[Marsili et al., 2000]. In brief, we imagine we deal with a single stage game
with a state of the world p which is drawn at random and Eq. (81) is the
expected payoff?”. Eq. (81) is also the expected payoff of a game where each
player i is randomly matched with another one (j) to play a game with payoffs
uj(si,s5) = —aj, ;af. ; where the state p = 1,..., P of Nature is drawn also
randomly. Finally, game payoffs similar to those of Eq. (81) are also found in
contexts where N agents compete for the exploitation of P exhaustible resources.
Urban traffic, as shown in [Martino et al., 2003], is one example.

Independently of its interpretation, the payoff matrix in Eq. 81 represents

an interesting instance of a complex system of interacting heterogeneous agents
whose rich behaviour deserves investigation in its own right. Ref. [Marsili et al., 2000]
found that Nash equilibria in evolutionarily stable strategies are the minima of
o2 and each player plays pure strategies. This implies H = o2 (see e.g. Eq. 39).
The study of Nash equilibria was refined in Ref. [Martino and Marsili, 2001]: it
turns out that the characterization of the optimal Nash equilibrium, that with
minimal o2, requires full replica symmetry breaking in the statistical mechanics
approach. In simple terms this signals the existence of a complex hierarchical
organization of the Nash equilibria. Ref. [Martino and Marsili, 2001] shows
that the number of Nash equilibria grows exponentially with NV, with a growth
rate ¥ which depends on « as shown in Fig. 9.2.

The properties of the Nash equilibria (NE) are quite different from the sta-
tionary states of the Minority Game (with naive agents). In particular:

e Nash equilibria are local minima of o2 whereas the stationary state of the
Minority Game with naive agents corresponds to minimum of H.

e There are (exponentially) many disconnected Nash equilibria. Naive agents
reach a single stationary state, degenerate on a connected set for a < a..

27In the Minority Game as well as in the El Farol bar problem, one imagines that the
interaction is repeated in time, neglecting all the strategic intricacies which arise from the
inter-temporal nature of repeated games (such as reputation, punishment or signalling). It is
reasonable to assume that complications of this sort play a marginal role in a context such as
the one we are interested in, where the number of agents is very large. Actually El Farol bar
goers consider it just too complex to undertake a strategic behaviour even in each single stage.
Each of them could be better off deciding her action a; at each stage. If they resort to the
recommendations a"i of their look-up tables, it means that there are implicit computational
and implementation costs which make them prefer simple, though sub-optimal, rules of thumb.
This is more or less the same attitude as agents in the original Minority Gameln principle,
players may be forced to one of the types of behaviour prescribed by their repertoire of look-up
tables by some other constraints. In this case, it is important that players do not know the
value of i before deciding which strategy to use, because otherwise they could take a decision
st which depends on p.
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Figure 15: Logarithm of the average number of Nash Equilibria divided by N
as a function of a.

e Sophisticated players use pure strategies in NE whereas naiive agents al-
ternate strategies. As a result H = o2 in NE whereas H < o2 in the
original Minority Game.

e The NE to which the learning dynamics of sophisticated agents converges
is selected by the initial conditions. As the initial conditions vary the NE
changes discontinuously. On the other hand, the learning dynamics of
naive agents converges to a stationary state which for a < a. is unequiv-
ocal and depends continuously on the initial conditions.

e In the stationary state of the Minority Game with naive agents for a < av,
a feedback of fluctuations from microscopic degrees of freedom to macro-
scopic quantities leads to a dependence of 0% on the learning rate I'. This
effect is absent for all values of a from the learning dynamics of sophisti-
cated agents, who converge to a NE with no fluctuations.

e The behaviour of the Minority Game with naive agents is qualitatively
the same both under endogenous and exogenous information (see paper
[Cavagna, 1999] but also Ref. [Challet and Marsili, 2000]). In contrast,
the learning dynamics of sophisticated agents under endogenous informa-
tion is very different from that under exogenous information®. Hence
the origin of information is not irrelevant when agents account for their
market impact.

The fact that sophisticated agents have so many Nash equilibria at their
disposal where to converge to raises interesting questions: how do agents manage
to coordinate and select the same Nash equilibrium? How much time do agents
need to “learn” it? These questions are crucial in realistic cases where agents

28Tn few words—we refer to Ref. [Marsili et al., 2000] for more details—the dynamics of
1(t) become deterministic because all agents get frozen, and it locks into a periodic orbit of
period ~ v/P. Almost all information patterns p’, those not on the orbit, are never visited in
the stationary state.
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have a finite memory, i.e. forget about the past. Having a finite memory may
seem a further limitation but is actually a necessity to adapt optimally if the
environment is changing (either because interactions change or because other
agents change). A finite memory is modeled introducing a forgetting rate A into
the dynamics,

A

Ui,s(t + 1) = (1 — N) UZ’,s(t) + iui[s,s_i(t)] (82)

N

by which agents learn about the payoffs u;[s, s_;()] that they receive from strat-
egy s. Ref. [Marsili et al., 2001] has found a phase transition from a phase where
agents manage to coordinate efficiently, when their memory extends sufficiently
far into the past (A < 0.46T") to a random phase where no coordination takes
place. This transition, which is continuous in a stationary setting, becomes
discontinuous in a “changing world”. As Ref. [Marsili et al., 2001] puts it, the
occurrence of a dynamical transition “is further evidence that an analysis in
terms of Nash equilibria may not be enough to predict the collective behaviour
of a system. Agents may fail to coordinate [to] Nash equilibria because of purely
dynamical effects.”

9.3 From naive to sophisticated agents

That players should stick to just one strategy—the best one—is intuitive at
first sight. Indeed the nature of the game is very similar to that of typical
coordination games [Bottazzi et al., 2003]. If a player has an optimal strategy,
adopting this strategy is the best that he can do to reduce o?. This is the
choice which the opponents welcome the most and that they anticipate. There
is no reason why the agents should resort to mixed strategies in the Minority
Game.?? The reason why naive agents do not stick to a single strategy in the
usual Minority Game has nothing to do with game theory. Rather they do so
because they neglect their market impact.

In order to see this, and to understand how to relate the Minority Game
behaviour with that of Nash equilibria—which appears completely different—
paper [Challet et al., 2000c] suggested studying a learning dynamics

Uis(t +1) = Ui s (1) — aD A(t) + 00, 5,00 (83)

with an additional term rewarding the strategy actually played by agent i.
With n = 0 this clearly reproduces the behaviour of naive agents in the Minority
Game, whereas with 1 = 1 it reproduces the behaviour of sophisticated agents3°.

Fig. 16 shows the dramatic influence that n has one the fluctuations in
the stationary state. In the information rich phase (o > «a.) global efficiency
improves smoothly with the reward . This corresponds to crossing the full line
boundary between the two phases in Fig. 17. But in the informational efficient
phase (a < a.), even an infinitesimal reward is able to reduce volatility by a

29The typical case where agents have strict incentives to randomize, i.e. to play a mixed
strategy, is the matching penny game where disclosing information about your choice makes
your opponent win, whereas you lose (e.g. goal-keeper/penalty shooter interaction).
n(t)  p(t)
1,8 i,8;(t)’
[Mansilla, 2000]. However, this has the same effect as +nd, ;) on the long term behaviour,
because @;,s; 5, (1) = 05,5, (t)-

30To be precise, the last term should be +na as observed in Mansilla
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Figure 16: Effect of accounting for market impact in the Minority Game with
' = oo (full symbols) and I' <« 1 (open symbols). Squares refer to a > a,
whereas diamonds to a < ae.

finite amount (which amounts to crossing the dashed line in Fig. 17). The effect
is more spectacular if agents are very reactive (I' = oco) than if they learn at
a low rate (I' « 1). What is remarkable is that the phase transition at a.
completely changes its nature for n > 0 and it disappears when agents account
properly for the market impact (n = 1). This is what we alluded to when we
stated, at the end of the previous chapter, that stylized facts disappear if agents
account for their market impact.

Understanding what happens in the («,n) space of this generalized Minor-
ity Game model requires some technicalities which we deal with in the next
subsection, for the interested reader. The result is shown in Fig. 17 and can
be summarized as follows: the properties of the Minority Game with naive
agents generalize to the whole RS region of the phase diagram. There we find
a single (replica symmetric) stationary state, independent of initial conditions.
Beyond the transition line in Fig. 17, the system has properties similar to those
of Nash equilibria (replica symmetry breaking): there are many disconnected
states which are selected by the choice of initial conditions. It is possible to
show [Marsili et al., 2000] that o> decreases and all individual payoffs increase
when 7 increases. The transition is continuous for a > a., but it becomes dis-
continuous for a < a.. The segment between the origin and the point («.,0) is
rather peculiar: the stationary state is degenerate on a continuous set and its
properties change abruptly as this line is crossed. As anticipated, the interested
reader can find more details in the next section.

9.4 The AT-MO line

The asymptotic regime of the dynamics provided by Eq. (83) have been related,
in Ref. [Martino and Marsili, 2001], to the local minima of

Hy, = (1—n)H + no’. (84)

This work has shown that a phase transition separates, in the (a,n) plane,
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Figure 17: Phase diagram of the Minority Game in the a, n plane. The phase
below the line is replica symmetric and the stationary state is unique whereas
above the line there are many different stationary states. The transition is
continuous across the full line (a > a.) and discontinuous across the dashed
thick line (o < a.). The stationary state has a continuous degeneracy on the
line n = 0 for 0 < a < . The light dashed line is the locus of Nash equilibria

(n=1).

the behaviour of the Minority Game (7 = 0) from that of NE (n = 1). At this
phase transition, replica symmetry breaks down, as shown by the calculation of
the stability of the replica symmetric solution®'. The line 7.(«) above which the
replica symmetric solution become unstable is shown in Fig. 17 and it is usually
called the AT line after de Almeida and Thouless [de Almeida and Thouless, 1978§],
who first discussed it for spin glasses.

In order to understand the meaning of this result, let us focus on the Mi-
nority Game with S = 2 strategies per agent. The replica symmetric solution is
characterized by the equality @ = ¢ of the diagonal and off-diagonal overlaps.
These are defined considering two replicas of the same system corresponding to
two dynamical paths starting from different initial conditions. If m; and m/} are

the averages of the strategic choices s;(t) in the two replicas, the overlaps are
defined as

X X
_ ey _ 2
4= % ;_1 m;m;, Q= N ;_1 m;. (85)

The equality ( = ¢ means that the two replicas are characterized by the
same behaviour in the stationary state: m; = mj. This indeed is what one
should expect when the stationary state is unique. When the replica symmetric
solution breaks down the off-diagonal overlap ¢ takes, in principle, a whole range
of values from —@Q to @, signalling that beyond the line 7.(a) the minimum of
‘H,, and hence the stationary state, are no longer unique. Different replicas, i.e.
dynamical realizations starting from different initial conditions, may converge
to different stationary states.

31 Actually the transition line in Ref. [Martino and Marsili, 2001] is affected by a computa-
tional error, corrected in paper [Heimel and Martino, 2001].
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The line 7.(a) can also be derived within the generating functional approach
[Heimel and Coolen, 2001], as shown in paper [Heimel and Martino, 2001}, where
it is called the memory onset (MO) line. Indeed Heimel and De Martino show
that above the MO line n.(«) the dynamics acquire long term memory. In loose
words, for n < n.(a) the dynamics always “asymptotically forgets” perturba-
tions in the early stages. On the contrary, for n > n.(a), perturbation in the
early stages of the dynamics may lead to a different stationary state: hence
the system “remembers” early perturbations. This is exactly what one should
expect if at 7.(«) the uniqueness of the minimum of #,, ceases to hold.

Indeed there is a very simple derivation of the AT or MO line. At 7.(«)
the unique minimum of H,, must turn into a saddle point. H, is a quadratic
function of the m;,

Hy=c+ Zgimi + ZmiTi,jmj (86)
i ij

where ¢ and g; are constants and
Ti’j :%(1 —m?) —ng (]. —mf) (SiJ' (87)

The minimum of H,, becomes a saddle point when the smallest of the eigen-
values of T' becomes negative. Note that 7' = J - D where J; ; = §;& — né26; ;
and D;; = (1 —m?)d;; is diagonal. In particular, T;; = 0 if j is a frozen
agent (m; = %1), because D, ; = 0. Hence each frozen agent corresponds to a
trivial zero eigenvalue of the matrix 7. The non-trivial part of the eigenvalue
spectrum of T is that relative to the sector of non-frozen—or fickle—agents. Let
Ny, = (1 — ¢)N be the number of fickle agents. In order to focus on the sector
of fickle agents, call A® the N, x N, matrix obtained from a generic matrix
A by deleting all the N — N,, rows and columns corresponding to frozen agents.
The smallest eigenvalue of T turns negative when the determinant of 7w
vanishes. But det7(® = detJ(®detD™ and D™ is a positive definite matrix.
The minimum of H, becomes a saddle point when the smallest eigenvalue of
J® vanishes. The distribution of eigenvalues of matrices such as J®  which
are proportional to §;&;, is known (see e.g. [Sengupta and Mitra, 1999]). In

particular, this allows us to compute the smallest eigenvalue of J (v) " which is

A:%{(l—ﬁf—n}. (88)

Therefore A_ vanishes when

n(@) = (1- VA 0)/a) (59)

which is exactly the AT or MO line32.

32paper [Heimel and Martino, 2001] reports the result 1 — ¢ = a [1 — n(1 + x)]? which co-
incides with Eq. 89. Indeed, using the saddle point equations, one finds that x = 1/\/7 —1
on the line n.(c).
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This calculation can also be read as the stability analysis of stationary states
for the dynamics in the continuum time limit®®. This shows that the replica
symmetric solution becomes dynamically unstable for o < a.(n). Naively speak-
ing, for each negative eigenvalue we have a bifurcation point of the dynamics
which gives rise to the degeneracy of stationary states.

A Replica method for the MG

As in Ref. [Challet et al., 2000d], for the sake of generality, we consider three
different population of agents:

1. the first population is composed of N speculators. These are adaptive
agents and they have each two speculative strategies aiu, a’iu for i =
1,...,Nand p=1,...,P. These are drawn at random from the pool of
all strategies, independently for each agent. We allow a correlation among
the two strategies of the same agent:

c
Playl,a-1) = 5 [5a+1,+15a,1,+1 +6a+1,716a,1,71]
1—c¢
+ 5 [6a+1,716a,1,+1 + 6a+1,716a,1,+1] (92)

Note that, for ¢ = 0 agents choose just one strategy a1 and fix a_1 =
—ay1 as its opposite, whereas for ¢ = 1 they have one and the same
strategy a+1 = a_1. The original random case [Challet and Zhang, 1997,
Savit et al., 1999] corresponds to ¢ = 1/2. These agents assign scores
Us,i(t) to each of their strategies and play the strategy s;(¢) with the
highest score, as discussed in the text. Therefore for speculators:

Aspec(t) = agi((tt))’i. (93)

. indep __
2. then we consider N ;" =

and independently drawn strategy b so

pN producers: They have only one randomly

aproa(t) = b0 (94)

Producers have a predictable behavior in the market and they are not
adaptive. Instead of pN independent producers one can also consider
NP correlated producers who all have the same predictable behavior

prod
o
bprod'
33The dynamics in the continuum time limit reads
J N
i . . —
=G0 ) &g tanh(y;) + n€7 tanhyi + G (90)
=1

where (; is the stochastic force. Take the average over the ensemble of realizations y;(7) with
the same initial conditions and define y;(7) = arctanhm; + dy;(7), where m; is the solution
of min#,. Then, to linear order in dy;, for fickle agents |m;| < 1, we find

d(dyi) _ Z Ty, (6;) + O(3y2). (91)

dr
j fickle

This dynamics become unstable when T; ; acquires a negative eigenvalue, i.e. when n > nc(a).
Note that, to this order, the dynamics is independent of T'.
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3. Finally we consider n/N noise traders. These are defined as agents whose
actions are given by
Gnoise (t) = randomsign. (95)

Each noise trader as a random number generator which is independent of
each other agent.

It has been shown [Challet et al., 2000c, Marsili et al., 2000] that the sta-
tionary state properties of the MG are described by the ground state of H.
Note that this approach fails however to reproduce the anti-persistent behavior
which is at the origin of crowd effects in the symmetric phase. In our case

A(t) = AspeC(t) + Aprod(t) + Anoise(t) (96)
where
N
Aspec(t) = a0} (97)
j=1
and
pN
Aproa(t) = 3 b4 = 40 (98)
j=1

and Apoise(t) = 2k(t) — nN where k(t) is a binomial random variable with
P(k) = ("5)2*’71\’. Since H = (A)? and the contribution of noise traders to
(A*) vanishes (Apoise) = 0, the collective behavior of the system is independent
of n. Noise traders shall contribute a constant n/N to o and will not affect other
agents. We can then reduce to the study of speculators and producers only.

i n— AW H
Let us define, for convenience, A" = AL ..+ AA[ ; where

1+s; 1—s;
ail,i—Q +aly; 5 (99)

N

v E :
Aspec -

i=1

and Agmd is given in Eq. (98). Here s; is the dynamical variable controlled by
speculator ¢. We shall implicitly consider directly time averaged quantities so
s; is a real variable in [—1,1] rather than a discrete one. The parameter A is
inserted so that, once we have computed the energy H = (Agpec + AAprod)? we
can compute the total gain Gproq of producers by

10H

vod = —Adprod = — S|
Cproa Prod T 9N |,

The gain of speculators is obtained subtracting this contribution and that of
noise traders from the total gain —o?

Gspec = —0’2 + nN — Gprod- (100)

A.1 Replica calculation

The zero temperature behavior of the Hamiltonian H can be studied with spin
glass techniques [Mézard et al., 1987]. We introduce n replicas of the system,
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each with dynamical variables s; ., labeled by replica indices ¢,d = 1,...,n.
Then we write replicated partition function:

(Z"(B)) = Tr, H< (A")2> b (101)

a,

where the average is over the disorder variables a ;, bj" and Tr is the trace on
the variables s; . for all ¢ and ¢. Following standard procedures [Mézard et al., 1987],
we introduce a Gaussian variable z# so that we can linearize the exponent in
Eq. (101). This allows us to carry out the averages over a’s and b’s explicitly.
Then we introduce new variables Q. 4 and 7. 4 with the identity

1
/dQc,d5 (Qc,d - N zl: Si,dsi,d>
/draddQC’de—azﬁrc,d(NQc,d—Ei SicSi,d)

for all ¢ > d, which allow us to write the partition function (to leading order in
N) as:

(2°(8)) = [ dQare-NnoT@

with
FQ,7) = BTH gT+—Zrchcd
c<d
aB?
- %bg [’I‘r ez Ec<d’"c-d“d]. (102)

The matrix 7' is given by

2
Ta,b = 5a,b + EB [C +p+ (1 - C)Qa,b] :

For correlated producers we would have obtained the same result but with p —
p + p?Ne?, where e measures the bias of producers towards a particular action
for a given u, or equivalently the correlation between the actions of two distinct
producers. More precisely € is the average of bj'b§ for i # j and for all p.
Therefore the limit p — oo also corresponds to a small share of producers p < 1
with a small bias € # 0. Note that a bias € ~ VN corresponds indeed to ~ N
independent producers. Equivalently ~ /N correlated producers, with e finite
are equivalent to ~ N independent producers.
With the replica symmetric ansatz

Qe,a=q+ (Q —q)deq, Te,d = 2r + (R —2r)dc q

the matrix 7" has n — 1 degenerated eigenvalues A\g = 1 + w and

one eigenvalue equal to A; = wn +1+ w therefore, after
standard algebra,

o o114 20-08@Q —0)

F(BS)
(g,7) 35 "
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afe+p+(1=0g _ af
+—(RQ—r
at2(l-0p@Q-g 2 e
1 1
- = <log / dseBVZ(s)> (103)
g —1
where we found it convenient to define the “potential”
V.(s) = —Wﬁ —Varzs (104)

so that the last term of F(%5) looks like the free energy of a particle in the
interval [—1, 1] with potential V,(s) where z plays the role of disorder.
The saddle point equations are given by:

OF(RS) A1 =o)e+p+(1—0)q]
7 s e By 1oy 103
DF(ES) e 2(1—-c)
oo~ T R ose—g MY
(RS)
Mem =0 = Q=) (107)
L CErE b (108)

where ((-)) stands for a thermal average over the above mentioned one particle
system.

In the limit 8 — 0 we can look for a solution with ¢ — @ and r — R. It is
convenient to define

x=2(1_6)B(Q_q)’ and CZ—\/EB(R—’“) (109)

«a

and to require that they stay finite in the limit § — oo. The averages are
easily evaluated since, in this case, they are dominated by the minimum of the
potential V,(s) = \/ar((s*/2 — zs) for s € [-1,1]. The minimum is at s = —1
for z < —Cand at s = +1 for z > (. For —( < z < ¢ the minimum is at s = z/(.
With this we find ¢

(52 = gt () (110)

With some more algebra, one easily finds:

and

7)1
= |ajerf | =) -1 112
= [osert (- (112
Finally ( is fixed as a function of a by the equation
2e /2 1 ¢ @ 1+p
2 - =Jerf [ =) +==-—"F 11
T ¢ +( <2)er (ﬂ)+<2 ¢ 3
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Note that ¢ only depends on the combination (1 + p)/(1 — ¢) which runs from
1 - for p = ¢ = 0 i.e. no producers and “perfect” speculators — to co. The
latter limit occurs either if ¢ — 1, i.e. when speculators become producers, or
if p — oo (many producers).

Eq. (112) means that y diverges when a — a.(p,¢)t, which then implies
that at the critical point

%)
erf | =—= | =a = a,. 114
(ﬁ ()
This back in the other saddle point equations, yields the following equation for
¢ =Ce 2
2e ¢ /2 ¢ 1+p
— fl— )= . 11
T ¢ (ﬁ) 1—c (115)

The free energy, at the saddle point, for § — oo, is

1_
(1+x)?
where @) and x take their saddle point values Eqgs. (111) and (112).
The gain of producers, from Eq. (103), is
Gprod 14
- 117
N 14+ x (117)

and that of speculators is obtained from Eq. (100).

At a, x — oo so that F(BS) — 0. Note that the loss of producers vanishes
Lproa — 0 as @ — g, whereas the loss of speculators Lgpec = (1 — Q)/2 is
always positive below a..

The phase diagram is shown in figure 18. More details on the behavior of
the solution are discussed in Ref. [Challet et al., 2000d].
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