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what are markets for?

• markets allocate optimally resources 
(It is not from the benevolence of the butcher, the brewer, or the baker 
that we expect our dinner, but from their regard to their own interest. 
A. Smith)

• markets incorporate efficiently available 
information in prices (Fama)
statistical regularities correspond to what agents are not (yet) doing

• markets allow individuals to cope with 
uncertainty and reduce risk
statistical features show what traders are doing

(individual optimum) x N ≠ global optimum



Outline

• Data:
Why are stock prices so correlated?
Why are correlations so volatile?

• A phenomenological model

• A micro-economic model



correlation between assets

N stocks
T = window size
t0 = initial time
Δt = time scale (1 day)
τ = time shift (=0 here)

∆xPFE

∆xGE

CovGE,PFE = E[∆xGE∆xPFE ]



Can you really understand market dynamics 
by looking at a single price?

• Translation invariance:

• center of mass - market mode                  (herding/non-informed trades)

• relative coordinates - ex-market returns   (informed trades)

• Time-scale invariance of correlations of ex-market returns

pi → λpi, ⇔ xi = log pi → xi + x0 ∀assets i

(see C. Borghesi, MM. S. Micciche PRE 2007)
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More precisely:

log prices

log returns

avg return

covariance

volatility

correlation

i, j = 1, . . . , N

Δt = 1 day
xi(t) = log pi(t)

∆xi(t) = xi(t + ∆t)− xi(t)

ri(t) = µ
∑

t′≤t

(1− µ)t−t′xi(t′)

Covi,j(t) = µ
∑

t′≤t

(1− µ)t−t′ [∆xi(t′)− ri(t)][∆xj(t′)− rj(t)]

Voli(t) = Covi,i(t) = µ
∑

t′≤t

(1− µ)t−t′ [∆xi(t′)− ri(t)]2

Corri,j(t) =
Covi,j(t)√

Voli(t)Volj(t)



The market mode
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matrix of daily returns of N=41 stocks of 
NYSE on T=6910 days (1980-2007)

Same for correlation matrix
(e.g. S&P500, Laloux et al.)



How do correlations form?
The Epps effect: correlation grows with Δt

(J. Kwapien, S. Drozdz, J. Speth,
Toth, Kertesz, Eisler)

Information is aggregated faster

today than in the past in bigger companies

... and what about the structure?
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FIG. 1: Distribution of correlation coefficients Ai,j and Bi,j for dif-
ferent time-horizons τ (top) and at the intraday time-horizon for dif-
ferent datasets (NYSE data).

Before analyzing the structure of correlations, it is of inter-
est to provide some estimate of the relative strength of global
correlations and of noise in the correlation matrices Â. Fig.
2 plots the share of correlation carried by the largest eigen-
valueΛ (which is Λ/N , by normalization) for set Â of NYSE,
LSE and PB, as a function of time-horizon τ . As a man-
ifestation of the Epps effect [12], Λ/N increases with τ in
a way which is reasonably well approximated by a logarith-
mic growth. The ratio of the second largest eigenvalue λ to
the largest, which could be taken as a measure of the relative
strength of inter-asset correlations against global correlations,
has a declining trend with τ for small time-horizons and then
saturates at around 0.1.
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FIG. 2: Largest eigenvalue Λ/N , divided by the number of assets,
of the matrix Âτ as a function of τ for NYSE, LSE and PB (full
symbols). Ratio λ/Λ of the second largest to the largest eigenvalue
of Âτ , as a function of τ (open symbols).

III. DATA CLUSTERING

We performed data clustering analysis following the
method of Ref. [6]. Here we only sketch the basic idea of
the method and we refer the interested reader to Ref. [6] for
details. In brief, assume we wish to cluster N standardized
[25] time series xi(t) in K groups having a similar dynam-
ics. This task can be formalized in the problem of finding the
labels si = 1, . . . , K of the group which the ith time series
belongs to. Ref. [6] assumes that xi(t) is generated according
to the model

xi(t) = gsi
ηsi

(t) +
√

1 − g2
si

εi(t), t = 1, . . . , T (8)

where ηs(t) and εi(t) are independent gaussian variables with
mean zero and unitary variance. Here ηs(t) describes the
component of the dynamics which is common to all time se-
ries xi(t) with si = s whereas εi(t) describes idiosyncratic
fluctuations. Eq. (8) is consistent with a correlation ma-
trix Xi,j = 〈xixj〉 which has a block diagonal structure for
T → ∞: Xi,j = g2

si
if si = s, i &= j (Xi,i = 1) and

Xi,j = 0 otherwise. The parameters gs entering Eq. (8) as
well as the cluster structure {si} can be determined by max-
imum likelihood estimation. Approximate maximization of
the log-likelihood can be done following an hierarchical clus-
tering procedure [26]: start with N clusters, each composed
of a single asset (s(N)

i = i). From the configuration {s(K+1)
i }

withK + 1 clusters, compute the log-likelihood of all config-
urations obtained by merging two clusters. The configuration
{s(K)

i } with K clusters is the one corresponding to the max-
imal log-likelihood LK . This operation can be iterated with
K going from N − 1 to 1, and the optimal configuration can
be chosen as that for which LK is maximal. This also pre-
dicts the optimal number K∗ of clusters which describes our
dataset. This method has already been used to analyze stock
market data: in Refs. [6] the emergent clusters were found to
be highly correlated with economic activity. Furthermore the
method was extended to perform noise undressing. In Ref.
[7] the method has been applied to investigate market dynam-
ics, showing that well defined recurrent states of market wide
activity can be defined.
Here we apply this method to investigate how the structure
of market’s correlations evolves as the time lag τ increases
from the high-frequency range to the daily scale. We shall
first focus on NYSE and then discuss the differences found in
other markets.

A. NYSE

Fig. 3 shows the evolution of the number of clusters with
the time-horizon τ for the different datasets in the NYSE. For
Âwe find fewer clusters then with othermethods and the num-
ber of clusters increases with τ . This is consistent with results
of Refs. [9] which observe an evolution of the structure of cor-
relations, where more and more details are added as the time-
horizon increases. The other datasets, however, reveal that this
is due to the fact that Â includes the correlations induced by



Time-horizon invariant structure
without center of mass
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The dynamics of covariance

moving average on window of size 1/μ  

Covi,j(t) = µ
t∑

t′=1

(1− µ)t−t′ [xi(t′)− ri(t)][xj(t′)− rj(t)]

ri(t) = µ
t∑

t′=1

(1− µ)t−t′xi(t′)

Sliding window with exponential average

t

1/μ 



The dynamics of the market mode
(largest eigenvalue of Cov)

dow

tsx

(see also Drozdz et al.)

Distribution of fluctuations of Λ

Dow
Dax
Tsx
Asx
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Where do correlations come from?

• extend GARCH to dynamical conditional correlation models 
(Engle, Bauwens et al.)

• excess comovement from correlated demand (Greenwood) or 
index participation (Barberis et al.)

• aggregate liquidity shocks (Brunetti)

• large portfolio manager in illiquid market (1 risky asset - 1 
riskless - Bank)

• ...

13



Where do correlations come from?

• Portfolio investment:
agents spread investment across stocks to minimize risk 
(i.e. avoid correlations)
In doing this, they invest in a correlated way in the 
market → they create correlations

• Simple models describing this feedback

Ĉ = B̂ + F̂ (Ĉ) + Ω̂
Economics            Finance                  Noise 



Phenomenological 
approach



Multi-asset markets as many 
“particle” interacting systems

• Prices ≠ correlated random walks

xi(t) = log pi(t) i = 1, . . . , N

(N = # assets)

✦“Bound state”

✦Collective motion



Phenomenological approach
(as little discipline as possible)
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∆!x(t) = !x(t + 1)− !x(t) = !F
(
!x(t), ∂t!x(t), ∂2

t !x(t), . . . ,!a(t′), ∂t!a(t), . . . ,!b(t′), . . .
)

= !F (0, 0, . . . ; t) +
∂ !F

∂!x

∣∣∣∣∣
0,0,...

!x(t) +
∂ !F

∂(∂t!x)

∣∣∣∣∣
0,0,...

∂t!x(t) + . . .

whatever Δx could depend on 

1- small fluctuations → expand in powers of argument

2- high frequency → expand in time derivatives

3- eliminate terms which cannot appear

4- study the simplest non-trivial model

5- add complication 



Dirac’s bra-kets

• Vectors

• Scalar product

• Direct product 
(matrix)

• Basis

18

|x〉 =




x1
...

xN



 , 〈x| = (x1, . . . , xN )

〈x|y〉 =
N∑

i=1

xiyi

|x〉〈y| =





x1y1 x1y2 . . . x1yN

x2y1 x2y2 . . . x2yN
...

...
. . .

...
xNy1 xNy2 . . . xNyN





|k〉, k = 1, . . . , N, 〈k|j〉 = Nδk,j , Î =
1
N

N∑

k=1

|k〉〈k|

|v〉 =
1
N

N∑

k=1

v(k)|k〉, v(k) = 〈k|v〉



Optimal Portfolios
• Problem: Invest |z〉 → stochastic return =〈Δx|z〉

 - expected return =〈r|z〉= R,                |r〉= E[|Δx〉]
 - wealth = 〈1|z〉= W,                              |1〉=(1,...,1)

so as to minimize risk Σ(|z〉)

• Solution (if Σ(|z〉)=Var(〈Δx|z〉)):

• Note: 
no impact on market, unique solution. 
What if many traders invest in this same way? 
Will this have some impact?

|z∗〉 = arg min
|z〉,λ,ν

[
1
2
〈z|Ĉ|z〉 − λ(〈r|z〉 − R) − ν(〈1|z〉 − W )

]



A generic phenomenological model:

low frequency expansion+
r, zk, small → power expansion

K components of optimal portfolios 
with parameters Rk, Wk, µk

Fundamentalists+
speculators 
(noise traders)

Chartists, 
trend followers

Risk managers

∆|xt〉 = |xt+1〉 − |xt〉

=
∣∣∣F

(
t, |rt〉, |z(1)

t 〉, . . . , |z(K)
t 〉,∆|rt〉,∆|z(1)

t 〉, . . . ,∆|z(K)
t 〉, . . .

)〉

= |F (t, 0, 0, . . .)〉 +
∂|F 〉
∂〈r|

∣∣∣∣
0

|rt〉 +
∂|F 〉
∂∆〈r|

∣∣∣∣
0

∆|rt〉 + . . . +

K∑

!=1

[
∂|F 〉

∂〈z(!)|

∣∣∣∣
0

|z(!)
t 〉 +

∂|F 〉
∂∆〈z(!)|

∣∣∣∣
0

∆|z(!)
t 〉 + . . .

]
+ . . .

= |αt〉 + βt|rt〉 + β̃t∆|rt〉 + . . . +
K∑

!=1

[
ν(!)

t |z(!)
t 〉 + ν̃(!)

t ∆|z(!)
t 〉 + . . .

]
+ . . .



The simplest model:
Closed dynamical model, self-generated fluctuations/correlations

• |xt+1〉= |xt〉 + |bt〉 + vt |zt〉

|bt〉 = “bare” returns

• vt = portfolio investment rate

• Where

• Average return and correlation matrix (µ ~ 1/Taverage)

 |rt+1〉 = (1-μ) |rt〉 + μ [|xt+1〉-|xt〉]

 Ct+1 = (1-μ) Ct + μ |δxt〉〈δxt|          |δxt〉= |xt〉 - |xt-1〉- |

|zt〉 = arg min
|z〉,λ,ν

[
1
2
〈z|Ĉt|z〉 − λ(〈rt|z〉 − R) − ν(〈1|z〉 − W )

]

^^

E [|bt〉] = b̄|1〉 + σ|2〉,
E [|bt〉〈bt′ |] = BÎδt,t′

E [vt] = v̄, Var [vt] = ∆
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Dynamic instability as W→W*



…and close to W*

TSX, 
DAX, 
DOW, 
ASX

model

TSX

model
(shifted)

returns



Theory: low frequency limit µ→0

• for µ→0 

Ct, |rt〉independent of t → |zt〉 independent of t, Δ|zt〉=0

• Λ = B+N Δ f(R/N,W/N,v) 

• Self-consistent equations
→ phase transition at W* to 
dynamically unstable phase

• Small µ expansion
→ scaling 

Λ

δΛ
Λ
∼

√
µ

W ∗ −W

∂Λ
∂W

∼ |W −W ∗|−1/2

Rescaled
pdf of returns

W



Instability in the general model:

1. the phase transition is robust
– for any risk measures of agents

– independent of higher order derivative terms

– noise filtering cannot help 

2. the market is less stable
– the larger the volume of trading 

– the smaller the return demanded
(i.e. the more agents are risk averse!)

– the stronger are trend followers

– the larger or less diversified “bare” returns (~ dividends)

– the more correlated are stocks a priori

w̄ =
1
N

∑

!

ε!W !

r̄ =
1
N

∑

!

ε!R!

"Z⊥ =
∑

!

ε!"z!
⊥

"z!
⊥ ·"b = 0

µ→ 0 limit : !r = !b + α!r +
∑

!

ε!!z!

1
4
δb2 − (b̄ + w̄)w̄ + (1− α)r̄ − 1

N
#Z2
⊥ ≥ 0



What does it really 
depend on?

• Impact of portfolio strategies changes 
one constraints from hyper-plane to 
hyper-sphere (ε ≠ 0)

• no risk free asset

z2

z1

ε=0

z2

z1

ε>0



Back to real markets

1. Fit model to real market data
1. compute likelihood

2. maximize → parameters
3. markets are close to instability

2. Compare market’s and model’s behaviors
1. what picture does the model provide?
2. does that picture agree with market data? 

27



The model:
Switching among the two principal directions
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|bt〉 = b̄|1〉 + σ|2〉
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The model’s picture:
Covariance, volatility and correlation
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Summary I

• log p translation invariance suggests different 
dynamics of center of mass and relative coordinates

• Complex dynamics of global correlations

• Simple model for the feedback of correlations through 
portfolio strategies
– exhibit market mode
– develops complex dynamics at a phase transition
– suggests markets are close to a phase transition

• Real markets seem to be more complex

31



Economics inspired approach

32

(+ M. Anufriev, G. Bottazzi, P. Pin)



What micro-economics?

• CARA models (Chiarella, Dieci, He)
– demand independent of wealth
– stationary equilibrium

• price growth exogenous

• prices can go negative

• CRRA models
– demand proportional to wealth
– dynamic equilibrium

• price growth endogenous

• positive prices 33



Multi-asset market: 1 agent
• N assets (1 unit) + risk free asset (return rf)

• discrete time; t=1, 2, ...

• homogeneous investors (=1 agent): wealth wt 
portfolio

• market clearing:

• wealth dynamics

• excess returns and dividend yields (or news arrival process)

• how is |x〉chosen by the agent?

|pt〉 = wt|xt〉

|xt〉 = (x1
t , . . . , x

N
t )

ra
t+1 =

pa
t+1 − pa

t

pa
t

− rf |δt〉 ∈ N (|d〉, D̂)

wt+1 = wt [1 + rf + 〈xt|rt+1〉 + 〈xt|δt+1〉]



Equilibrium 

• Time indep. portfolio

• Returns
(ex-dividend)

• Expected return

• Covariance matrix

Ĉ = D̂ +
〈x|D̂|x〉

(1 − 〈1|x〉)2 |1〉〈1| +
|1〉〈x|D̂ + D̂|x〉〈1|

1 − 〈1|x〉

= D̂ +
〈d|D̂−1|d〉

γ2
|1〉〈1| +

|1〉〈d| + |d〉〈1|
γ

|rt+1〉 =
〈x|δt+1〉
1 − 〈1|x〉 |1〉

=
〈d|D̂−1|δt+1〉

γ
|1〉

|xt+1〉 = |xt〉 = |x〉 =
D̂−1|d〉

γ〈d|D̂−1|1〉

Prices grow at the same rate
(apart from dividends, there is a 
only one game)

Price volatility is ~N times 
higher than dividend volatility

Large eigenvector (~N) in Cov 
and Corr

Separation “Theorem”: 
equilibrium is independent of rf

|c〉 =
〈x|d〉

1 − 〈1|x〉 |1〉 + |d〉

=
〈d|D̂−1|d〉

γ
|1〉 + |d〉

Note: 
singularity when 〈x|1〉→ 1



“Strong” CAPM

• the excess return of each asset a is given by

– valid for all t, not just for expected values

– same beta’s

ra
t =

〈δt|x〉
1 − 〈x|1〉 =

1
〈x|1〉 〈rt|x〉

βa =
1

〈x|1〉 =
Cov(ra

t , 〈rt|x〉)
Var(〈rt|x〉)

=
γ + 〈1|D̂−1|d〉

〈1|D̂−1|d〉
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Mean–variance strategies: CRRA γ

The agents are CRRA and choose a portfolio taking into account expected first and

second moments

They compute mean vector

|ct〉 = Et [|rt+1〉 + |δt+1〉] and variance–covariance matrix

Ĉt = Covt

(

|rt+1〉 + |δt+1〉, |rt+1〉 + |δt+1〉
)

They choose the portfolio

|x〉 = 1
γ

Ĉ−1
t |ct〉, where γ is a positive parameter of risk aversion.

Equilibrium:

|x〉 =
1

γ + 〈1|D̂−1|d〉
D̂−1|d〉

No short selling:

xi > 0 , 1 − 〈x|1〉 > 0

Excess Covariance and Dynamic Instability in a Multi-Asset Model – p. 12/24



Mean–variance strategies:

portfolio managers

The agents are risk–neutral portfolio managers with a constraint

They also compute mean vector |ct〉 and variance–covariance matrix Ĉt

They fix an excess return ρ = R = 〈x|c〉 , minimizing risk Σ = 1
2 〈x|Ĉ|x〉

Solution is |x〉 = R
Ĉ−1|c〉

〈c|Ĉ−1|c〉

Analogy: γ as R

〈c|Ĉ−1|c〉

Equilibrium:

|x〉 =
1

N
(

Rd̄ + d̄2 + σ2
) R|d〉

No short selling also here!

Excess Covariance and Dynamic Instability in a Multi-Asset Model – p. 13/24



Relation to CAPM (2/2)

We can normalize expected return and variance by the risky portfolio

ρ = 〈x|c〉
1−〈x|1〉 + rf , and Σ =

√
〈x|Ĉ|x〉

1−〈x|1〉 .

Explicit curves for optimal portfolios are:

R portfolio managers: Σ =
√

D
N(d̄2+σ2)

(

ρ − rf

)

CRRA γ: Σ =
√

D
N(d̄2+σ2)

√

1 + d̄2+σ2

d̄(ρ−rf )

(

ρ − rf

)

Excess Covariance and Dynamic Instability in a Multi-Asset Model – p. 16/24

How does the market depends on 
agent’s behavior?
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Dynamic of the system

under a learning process

µ updating and ν inertia

i) |xt〉 = (1 − ν)|xt−1〉 + ν
γ

Ĉ−1
t−1|ct−1〉

ii) ri
t =

〈xt−1|δt〉x
i
t+(1+rf )(1−〈xt−1|1〉)x

i
t

(1−〈xt|1〉)xi
t−1

− 1 − rf

iii) |ct〉 = (1 − µ)|ct−1〉 + µEδ

[

|rt−1〉 + |δt−1〉
]

iv) Ĉt = (1 − µ)Ĉt−1 + µCov(|rt−1〉 + |δt−1〉)

D̂ = DÎ

The expectation over |δt〉 could be simply equal to last observation

Excess Covariance and Dynamic Instability in a Multi-Asset Model – p. 17/24

Learning to be a mean-variance 
investor



Stability in the limit µ → 0

Assuming µ → 0, ν → 0 (randomness→ 0),

and ν
µ

≡ λ, we can take continuum limit (τ ≡ µt)

d|x〉
dτ

= −λ|x〉 + λ
γ

Ĉ−1|c〉

d|c〉
dτ

= −|c〉 + 〈x|d〉
1−〈x|1〉 |1〉 + |d〉

dĈ
dτ

= −Ĉ + 〈x|D̂|x〉
(1−〈x|1〉)2

|1〉〈1| + |1〉〈x|D̂+D̂|x〉〈1|
1−〈x|1〉 + D̂

D̂ = DÎ: we consider only projections on |1〉 and |2〉
(as in equilibrium)

We have a 7–dimensional system: its Jacobian has all negative eigenvalues

For the R portfolio managers case we change
d|x〉
dτ

: it is still stable

Excess Covariance and Dynamic Instability in a Multi-Asset Model – p. 21/24
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Evolutionary stability

A part of the population changes slightly from |x〉 to |x + ε〉
(still in the |1〉–|2〉 plane)

We can compute the gradient of a variation that brings higher expected wealth growth

∂E
[

log
(

wt+1,ε

wt,ε

/

wt+1

wt

)]

∂〈ε|
= E

[

|δt+1〉 + rt+1|1〉
1 + rf + rt+1 + 〈ε|δt+1〉 + rt+1〈ε|1〉

]

# E

[

|δt+1〉 + rt+1|1〉
1 + rf + rt+1

]

Since yields |δt+1〉 are all positive:

Evolutionary pressure brings towards in-

stability

Excess Covariance and Dynamic Instability in a Multi-Asset Model – p. 23/24

Evolutionary (in)-stability



Many (M) agents, many (N) assets

• Portfolios
• Wealths

• ex-dividend returns

• non-linear coupled dynamics

43

|xt,a〉, a = 1, . . . ,M

capital gaingain from risk free asset and dividends

wt+1,a = wt.a [(1 + rf )(1 − 〈xt,a|1〉 + 〈xt,a|δt〉] + wt,a〈xt,a|Rt+1〉

Ri
t+1 =

pi
t+1

pi
t

=
∑

a wt+1,axi
t+1,a∑

a wt,axi
t,a



Numerical simulations

i) more than one agent survives!

ii)  non-trivial fluctuations when M > N
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Summary

• Multi-asset model:
– structure of correlations (market mode)
– Single agent

• picture of how agents shape the market

• stability of learning dynamics

• evolutionary pressure towards instability

• stable correlations: no non-trivial fluctuations

– Many agents
• stable correlations with few types

• non-trivial fluctuations with many types (numerical)
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Thanks

46

C. Borghesi, MM. S. Micciche PRE 2007

G. Raffaelli, MM JSTAT L08001 (2006)

MM, B. Ponsot, G. Raffaelli submitted JECD

M. Anufriev, G. Bottazzi, MM, P. Pin forthcoming

marsili@ictp.it

mailto:marsili@ictp.it
mailto:marsili@ictp.it

