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Volatility and the emergence of
socio-economic networks

• Background (empirical studies) and motivation
• Simple models: searching/coordinating with/learning from
   others in volatile networks
• General conclusion



Collective social phenomena: 
anecdotical evidence

Many bars in a central area of Trieste

a crowd of hundreds teenagers forms every tuesday 
evening in front of bar Costa

No crowd on different days and in different bars, no such 
effect two years ago

How did such dense “social network” arise?

Why tuesday? Why bar Costa? How did they coordinate?



Networks everywhere

• Labor markets  (Granovetter, Topa, Calvó-A. & Jackson)

• Crime/social pathologies (Crane, Glaeser et al, Harding)

• R&D partnerships  (Gulati et al, Hagerdoorn)

• Scientific collaboration  (Newman, Goyal et al) 

• Patterns of trade   (Kranton & Minehart, Rauch, Greif)

• Organizational performance (Radner, Garicano, Cabrales et al)

• Industrial districts (Jacobs, Saxenian)



The rise of networks

R&D partnerships, joint 
ventures (Hagendoorn)

Scientific collaboration networks 
(Goyal, Newman)

Web communities (del.icio.us)

...



Networks → Economics

Economic performance correlates with 
social capital (Putnam)

Finding jobs (Granovetter, Topa, Calvó-
A. & Jackson)

Resilience of industrial districts 
(silicon valley vs route 128: Jacobs, 
Saxenian)

Diffusion of ideas and technological 
progress (Diamond)
 



Link formation limited by:
- reputation/trust
- coordination
- similarity/proximity
- information diffusion

Links are purposefully chosen by agents, costs and benefits 
→ Game theory (Jackson, Goyal, Vega-Redondo, ...)

but choices alone can only explain simple structures (e.g. 
star, complete/empty graph) 

Economics → Networks

max
s

Ui(s) s = strategy = (action,links)



Chance and necessity
Necessity: economic incentives

Chance: environmental volatility

Both the links and the agents themselves change as a 
result of several (often unobservable) factors (e.g. 
partnership may turn unprofitable)

Opportunities of new connections are affected by factors 
beyond agents’ control (e.g. searching partners).

→ The Red Queen effect: “It need all the running you can 
do to keep in the same place” (Carrol)

Under what conditions do dense networks emerge? 

(Monod)



Minimal models of volatile networks

Links decay at a constant rate

Links formation limited by
- similar technological levels
- similar opinions
- coordination
- reputation
- search through friends

Dense network promotes 
similarity/proximity/
coordination/information 
diffusion/searchability/..

e.g. R&D network

network
density

technological
growth

technological
heterogeneity



Node and link volatility
Both links (relationships) and nodes (individuals) 
are not permanent in general

Under what conditions do dense and efficient 
social networks emerge? 
How stable should the composition of a society 
be to speak meaningfully of a social network?

A simple model: 
Learning to coordinate in a volatile world
(efficiency = coordination)



is this statistical physics?

Topology
    ↓

Interaction + noise
    ↓

collective behavior
(phase transitions,
order/disorder, growth, 
synchronization, ...)



A stylized model of a society:
• A society of N agents 

Each agent adopts one of q possible norms: 
si=1,…,q 

• Norm revision
At a rate ν each agent updates his norm to
a random norm if isolated (experimentation)
the norm of one his neighbors (e.g. voter)

• Link formation
At a rate η agent i meets an agent j drawn at 
random. If si=sj they establish a link

• Environment volatility
1- A profitable cooperation may turn
    unprofitable: each link decays at a rate 1
2- Agent turnover: 
    each node loses all links at rate α

disorder – low link density

order – high link density

Agents         Norms
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No agent turnover
(no node volatility) 

α=0 



The Master equation

• Microscopic state
– Network + norms: ω = {ai,j, si}, 

ai,j= 0 (no link i-j) or 1 (i-j linked)
si=1,…,q

• Link creation
ω ω’={ω−i,j, ai,j=1},   W[ω ω’]=2η(1-ai,j)/(N-1)

• Link removal
ω ω’={ω−i,j, ai,j=0},   W[ω ω’]=λai,j

• Norm revision
ω ω’={ω−i, ri=r’},   W[ω ω’]=ν, r’ majority norm



The stationary state I

• Let

• All states in Ω= are ergodic, all states in Ω/Ω= are transient

– Proof: 
links between agents with different s are never created
all states in Ω= can be reached passing from the empty network

• The invariant measure is

– Proof: detailed balance



The stationary state II

• The distribution of the fraction ns of agents with si=s is given by

• For N large, {ns} is a.s. given by the minima of

• The solution can be characterized by the number L+ of ns=n+ where n+ (n-) 
is the largest (smallest) solution of

             n0=fraction of isolated nodes (k=0)

• The L+=0 solution exists and is a minimum for all z≤1
L+>1 solutions are saddle points
L+=1 solution is a minimum iif n+ z



the “free-energy”
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The dynamics (t finite, N∞)

• Mean field dynamics

• If nsns* then

• The stationary states ns* are the same as those 
found above (min f  stability)
– Proof: The Poisson transformation

lim
t→∞

nk,s(t) = n∗s
(zn∗s)k

k!
e−zn∗



Finite t and N: theory and simulations
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Summary: if volatility affects links

As a consequence of the feedback between 
networking efforts of individuals and the 
benefits the network provides in terms of 
coordination, information and innovation 
diffusion, social cohesion, … 

Sharp transitions: socio-economic networks 
are expected to emerge in an abrupt 
manner 

Resilience: once dense networks form, they 
are robust to deterioration of external 
conditions

Coexistence: for the same environmental 
parameters, the network can either be 
dense or very sparse, depending on the 
history

What about node volatility (agents’ turnover)?



A stylized model of a society:
• A society of N agents 

Each agent adopts one of q possible norms: 
si=1,…,q 

• Norm revision
At a rate ν each agent updates his norm to
a random norm if isolated (experimentation)
the norm of one his neighbors (e.g. voter)

• Link formation
At a rate η agent i meets an agent j drawn at 
random. If si=sj they establish a link

• Environment volatility
1- A profitable cooperation may turn
    unprofitable: each link decays at a rate 1
2- Agent turnover: 
    each node loses all links at rate α

disorder – low link density

order – high link density

Agents         Norms



Node volatility: α>0 
• The dynamics:

• The network:
each component has average degree 
degree distribution interpolates between Poisson (α=0) and 
exponential (α→∞)

• The distribution of component sizes:

ṅk,σ = (k + 1)nk+1,σ − knk,σ − αnk,σ + xσ(nk−1,σ − nk,σ) k > 0

ṅ0,σ = α
∑

k>0

nk,σ + n1,σ − xσn0,σ +
ν

q

q∑

σ′=1

(n0,σ′ − n0,σ)

xσ = η
∞∑

k=0

nk,σ

xσ/(1 + α), σ = 1, . . . , q

ηn0,σ =
ηn0

q
= αxσ

∫ 1

0
duuα−1exσ(u−1) ≡ Gα(xσ)

+ normalization
q∑

σ=1

xσ = η
k=0

k>0,
s=q

k>0, 
s=1

k>0,
s=2

k>0,
s=3 ...

...
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• The symmetric solution:

stable only if                     (i.e. if              )

• The asymmetric solution α<1 only

solutions with more than one 

large component unstable

n0 =
q

η
Gα (η/q)

G′
α (η/q) > 0 〈k〉 ↗ η

Gα(x+) = Gα(x−)
x+ + (q − 1)x− = η
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Results and phase diagram
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As node volatility increases, it gets harder and harder to 
achieve coordination. For α>1 there is no coordination at all



Critical behavior

• Order parameter
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Similar effect in other models

• E.g. searching partners on the network 
in a volatile world

MM, F. Slanina, F. Vega-Redondo, PNAS 2004



Summary:
Links formation is enhanced by coordination, 
similarity or proximity

Link volatility: Links decay when no more useful 
(i.e. at a constant rate)

   → Discontinuous 
   phase transitions
   + coexistence, 
   hysteresis/resilience
 

 when node volatility (agents’ turnover) 
dominates, the transition becomes continuous and 
no system wide coordination takes place 
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Summary

• Generic class of models
- easier to establish interaction
   with similar/close agents
- linked agents become more
  similar/closer

                      ↓
sharp transition, coexistence, 
hysteresis if agents’ turnover is 
weak

• Empirical evidence?
Rise of networks and type of 
volatility

• Spatial models?
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Knowledge/technology level

• Link formation at rate 1 if |hi-hj| < δh

                                   η otherwise

• Volatility λ 

i j i j

i j i j

• linked agents tend to become similar

• interaction is easier between similar nodes/agents

hi(t)

hi(t)→ hi(t+) =






maxj∈Ni hj(t) techology adoption

1
|Ni|

∑
j∈Ni

hj(t) knowledge diffusion



hi ~ v t

Technology adoption:

• Spread of hi ↓ c

→ link formation rate ↑ c

• Phase with slow growth, 
sparse network and large 
fluctuations of h

• Phase with fast growth, 
dense network and small 
fluctuations of h 

• Sharp transition, 
coexistence and 
hysteresis η/λ



Knowledge diffusion

• Distribution of         from spectral density of Laplacian on 
random graphs (Dorogotsev et al., Rodgers & Bray, ...)

• average degree

•  

31

hi(t)

6

modes hµ =
∑

i vµ
i hi satisfy

ḣµ = −νµhµ − ζµ (11)

where, in view of the orthogonality of the transformation

i → µ, ζµ is again a white noise with the same statistical

properties of ζi. The fluctuations of hµ in the stationary state

are 〈(hµ − 〈hµ〉)2〉 = ν∆
2µ . Back transforming to the variables

hi one finds that

〈(hi − 〈hi〉)
2〉 =

∑

µ>0

ν∆

2µ
=

ν∆

2

∫

dµ

µ
ρ(µ) (12)

where ρ(µ) is the density of eigenvalues of the Laplacian ma-
trix, which has been computed in the limit n → ∞ [31]. No-

tice that we disregard finite size clusters, which contribute to

a µ = 0 peak in the spectrum, assuming that the hi value of

these nodes is broadly distributed so that di,j > d̄ whenever i
or j are not in the giant component. There is no simple closed
form for ρ(µ), so one has to resort to numerical calculation.
To our level of approximation, it is sufficient to stick to a sim-

ple approximation [31], where

ρ(µ) = −
1

π
Im

1

µ − T (µ)
. (13)

and T (µ) is the solution of

T (µ) =
1

〈k〉

∑

k

kP (k)

kµ + iε− (k − 1)T (µ)
(14)

with ε → 0+. The key features are that:

• the integral

R(〈k〉) =

∫

dµ

µ
ρ(µ)

for Erdos-Renyi graphs, is a function of the average de-

gree 〈k〉 alone.

• The function R(c) decreases monotonically and it di-
verges as c → 1+, when the giant component vanishes

This allows us to estimate the probability

P{|hi − hj | < d̄} = θ(〈k〉 − 1)erf
[

d̄/
√

2ν∆R(〈k〉)
]

(15)

where the θ function implies that this probability vanishes for
disconnected graphs. Equating the link formation and removal

rate, finally provides an equation for 〈k〉 which reads

λ

2η
〈k〉 = ε+(1− ε)θ(〈k〉− 1)erf

[

d̄/
√

2ν∆R(〈k〉)
]

. (16)

Fig. 3 reports the numerical solution of this equation for the

same parameters as in the simulations. This agreement is rea-

sonably good in view of the approximations made. Again the

mean field approach overestimates the size of the coexistence

region. The mean-field calculation reproduces the main qual-

itative behavior, even though it (again) overestimates the size

of the coexistence region.

The emergence of features (a)-(c) depends crucially on the

divergence of R(〈k〉) on the average degree when 〈k〉 ≈
1. This divergence gets smoothed when ν decreases, which
suggests that the discontinuous transition should turn into a

smooth crossover beyond a critical value νc. This scenario,

which is reminiscent of the behavior at the liquid-gas phase

transition, is indeed confirmed by numerical simulations.

VI. COORDINATING IN A CHANGINGWORLD

We now consider a further specialisation of the general

framework where link formation requires some form of co-

ordination, synchronisation, or compatibility. For example, a

profitable interaction may fail to occur if the two parties do

not agree on where and when to meet, or if they do not speak

the same languages, and/or adopt compatible technologies and

standards. In addition, it may well be that shared social norms

and codes enhance trust and thus are largely needed for fruit-

ful interaction.

To account for these considerations, we endow each agent

with an attribute xi which may take one of q different values,
xi ∈ {1, 2, . . . , q}. xi describes the internal state of the agent,

specifying e.g. its technological standard, language, or the so-

cial norms she adopts. The formation of a new link ij requires
that i and j display the same attribute, i.e. xi = xj . This is a

particularisation of the general Eq. (1) with dij = 1 − δxi,xj

and 0 < d̄ < 1. For simplicity we set ε = 0 since in the
present formulation there is always a finite probability that

two nodes display the same attribute and hence can link. We

assume each agent revises its attribute at rate ν, choosing xi

dependent on its neighbours’ xjs according to:

P{xi(t) = x} =
1

Z
exp



β
∑

j:ij∈g(t)

δx,xj(t)



 (17)

where β tunes the tendency of agents to conform with their

neighbours and Z provides the normalisation. This adjust-

ment rule coincides with the Kawasaki dynamics, which is

known to sample the equilibrium distribution of the Potts

model of statistical physics [32] with temperature T =
1/(kBβ). Eq. (17) has been used extensively, mainly for
q = 2, in the socio-economic literature as a discrete choice
model [33, 34, 35].

This model describes a situation where agents are engaged

in bilateral interactions which however require a degree of co-

ordination among partners (i.e. xi = xj ). The agents attempt

to improve their situation both by coordinating their value of

xi with that of neighbours and by searching for neighbours in

their same state and linking with them. Link removal mod-

els decay of links, e.g. due to obsolescence considerations.

The stochastic nature of the choice rule (17) captures a de-

gree of volatility or un-modelled features on which the inter-

action depends (e.g. one might think that agent i might have
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FIG. 2: Mean degree 〈k〉 (top) and growth rate v (bottom) as a
function of η, found from numerical simulations of the model with

Eq. (8). Shown are simulations with n = 500 (plusses) and 1000
(crosses). Arrows denote the approximate point at which the system

jumps from one phase to the other (this point can be dependent on

n). Here ε = 0.001, noise strength ∆ = 0.1, similarity threshold
d̄ = 2. The system was run up to t = 1000 for equilibration, then
from t = 1000 to t = 1100 for data taking.

network evolution which depends on the hi(t). It is this inter-
dependence and the corresponding positive feedback which

produces the discontinuous transition and phase coexistence.

The similarity of the behavior of this model with that of the

previous section can be understood by analyzing a particular

limit. Consider indeed the case where ηi = 1 with probability
a and ηi = 0 otherwise. When νa ! η innovations take place
at a rate much smaller that that over which new links form. In

the limit where the dynamics of hi is fast enough (ν " η), we
can assume that each new innovation (i.e. each event ηi = 1)
taking place on a connected component instantaneously prop-

agates to the entire set of connected nodes. Hence, if d̄ < 1,
link creation will occur with probability one on nodes in the

same connected component, whereas nodes in different com-

ponents will likely have distinct values of hi, so that links will

form at rate ηε. Note also that, in this particular limit, the
growth rate v is proportional to the size of the largest con-
nected component.

B. Conforming to neighbors

The second alternative considered has diffusion embody a

uniform merging of the neighbourhood’s levels, formalised as

follows

D{hj} =

{ 1
|Ni|

∑

j∈Ni(t)
hj(t) Ni(t) #= ∅

hi Ni(t) = ∅
(9)

where |Ni(t)| is the number of agents in i’s neighborhood.
This second formulation can be conceived as reflecting a pro-

cess of opinion exchange (with no idea of relative “advance”

in the levels displayed by different individuals) [27, 29]. Al-

ternatively, it could be viewed as reflecting a context where

interaction payoffs are enhanced by compatibility (say, of a
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FIG. 3: Mean degree 〈k〉 (top) and probability that two randomly
chosen nodes are within d̄ of each other, π (bottom), as a function
of η. Shown are simulations with n = 200 (plusses) and n = 500
(crosses). Also theory for the high connected phase (dashed line).

For large η, the data points converge towards the theory curve as n
increases. Arrows denote the approximate point at which the system

jumps from one phase to the other. Here ε = 0.001, noise strength
∆ = 1, similarity threshold d̄ = 2. The system was run up to

t = 1000 for equilibration, then from t = 1000 to t = 1100 for data
taking.

technological nature) and agents will naturally tend to adjust

towards their neighbours’ levels. In these cases, interaction

promotes conformity and conformism constraints the creation

of new links. At any rate, this specification of the model al-

lows us to understand how the results of the previous section

depend on the directionality of the diffusion process.

Fig. 3 shows that this model exhibits the same generic phe-

nomenology of a sharp transition and the coexistence of sparse

and dense network phases. The key consideration, in this case,

is that when the link density is high, the distribution of hi in

the population is narrow and hence link creation proceeds at a

relatively fast rate.

This intuition is captured by a simple mean field approach.

We will assume that the network can be well approximated by

an Erdos-Renyi random graph with average degree 〈k〉. When
ν " η, λ, we can assume that the distribution of hi adjusts

adiabatically to the changing network. In this limit the dy-

namics is well described by the Edwards-Wilkinson Langevin

equation [30].

ḣi = −
ν

|Ni|

∑

j∈Ni

(hj − hi) + ζi ≡ −ν
∑

j

Li,jhj + ζi (10)

This can be seen by considering a small time interval dt. If
νdt " 1, the number of updates on each site is large and can
be approximated with the central limit theorem with the two

terms in Eq. (10). In this equation, ζi(t) is a white noise term
with zero average and 〈ζi(t)ζj(t′)〉 = ν2∆δi,jδ(t − t′) and
we have introduced the (normalized) Laplacian matrix of the

graph L. The dynamics of this model is easily integrated in
the normal modes of the diffusion operator. In other words, let

'vµ be the eigenvectors of L, i.e. L'vµ = µ'vµ, then the normal

P{|hi − hj | < δh}

η/λ


