
Problem Sheet 9

I. CUMULANT EXPANSION

In statistical physics it occurs very often that one has to average expression like∫
dxP (x)eA(x). (1.1)

We have seen examples in the lecture, e.g.,∫
dxP (x)[...] →

∫
d3pd3q

(2π~)3
e−βHcl(p, q)[...] (1.2)

A(x) → −βδH(p, q) (1.3)

where δH is a classical potential perturbation, or a quantum perturbation of the classical

Hamiltonian, for example.

If A(x) can be considered small, it makes sense to expand e(A) in powers of A and to

re-exponentiate the average in a systematic series in powers of A and its moments:

〈
eA(x)

〉
:=

∫
dxP (x)eA(x) =

〈
∞∑
k=0

Ak(x)

k!

〉
= exp[

∞∑
k=1

Ck(A)

k!
]. (1.4)

C1(A) = 〈A(x)〉, C2(A) = (〈A2(x)〉 − 〈A(x)〉2)/2, etc. The terms Ck(A) is called the k’th

cumulant of A.

a) Show that it can be defined formally as

Ck(A) =
dk

∂λk
(
log
[〈
eλA(x)

〉])
|λ=0 (1.5)

b) Find the first 4 cumulants Ck(A) in terms of the moments of A, Mk(A) :=
〈
Ak
〉
. In

turn, express the 3rd and 4th moments as functions of the cumulants, e.g.,

M1(A) = C1(A) (1.6)

M2(A) = C2(A) + C1(A)2 (1.7)

M3(A) = ? (1.8)

c) Try to generalize the pattern you find by guessing the connection between the coef-

ficients and the number of partitions of k objects into subgroups with a given number of

objects in the subgroups. Challenge: Prove your guess!



A. Corrections in the ideal gas equation due to exchange and interactions

In the lecture we have seen that several corrections lead to deviations from non-interacting

classical systems. In the classical limit we saw that the partition function can be written as

ZN =
1

N !

(
V

λ3

)N ∫
d3Nq

V N
exp

(
−β

[∑
i<j

Vcl(qi − qj) + Vs(qi − qj) + Vq(qi − qj)

])
(1.9)

where the quantum corrections of the potential are given by Vq(qi − qj)λ
2

48
∂2
qi
Vcl(qi − qj) to

lowest order ~. For simplicity we neglect the three body term

V3 ∼
∑
i 6=j 6=k

λ2∂qiVcl(qi − qj)∂qiVcl(qi − qk) (1.10)

which is of the same order as the two-body quantum correction.

In the above Vcl is the (classical) interaction potential, which we assume to be of Lenard-

Jones type:

VLJ(r) = 4ε

[(r0
r

)12

−
(r0
r

)6
]

(1.11)

and Vs is the ”statistical interaction” (which is not a true interaction of course)

Vs(qi − qj) = −T log(1± e−2π(qi−qj)2/λ2

). (1.12)

i) Calculate the second virial coefficient due to Vs

B2 =
1

2

∫
d3q(1− exp(−βVs(q))). (1.13)

and discuss its effect on the equation of state!

ii) Estimate the contribution to B2 from the other two terms as well. At which tempera-

ture and density does the quantum correction to the potential become as important as the

potential itself?

Discuss which of the three terms becomes important first (at fixed density) when coming

from high temperature! Show that the answer depends on the ratio of the typical interaction

potential at the given density and the quantum degeneracy temperature!

In fermionic systems with Coulomb interactions this ratio is known as the parameter rs
which is defined as the ratio between Coulomb energy and Fermi energy, rs = ECb/EF .

When rs � 1 the system can form a so-called Wigner crystal, which is an insulator as

opposed to the conducting, metallic Fermi sea. (The critical value of rs depends on the

dimension, but it is rather large.)

iii) Show that up to a factor of order O(1), rs is also the ratio between interparticle

distance at density n and the Bohr radius aB!

iv) Note that you have 4 typical length’s in your problem: r0, λ, aB and n1−/3. Assume

you are in a liquid phase where n−1/3 ≈ r0. Rephrase the conditions for the importance of

the two quantum corrections in terms of these length scales!
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II. PERTURBATION THEORY FOR INTERACTING BOSONS AT LOW T

In boson systems at low enough density (n � 1/a3 where a is the so-called scattering

length of the two-boson potential) the Hamiltonian can be approximated by the ”s-wave

pseudopotential”

H = H0 +H1 =
N∑
i=1

p2
i

2m
+

4πa~2

m

∑
i<j

δ(~qi − ~qj) (2.1)

i) Determine the normalized, symmetrized eigenfunctions of H0! Pay attention to the

case when several momentum states are multiply occupied!

ii) Before calculating: What is the order of magnitude that you expect for your result?

(There is only one dimensionless result which makes sense!)

iii) Calculate to first order in perturbation the effect of the interactions H1 on the ground

state of H0.

iv) Challenge: Calculate to first order in perturbation the effect of the interactions H1

on the eigenstates of H0! Show that the ground state receives the smallest shift upward in

energy!

v) What happens in the attractive case? Argue that the Hamiltonian above has an

instability: The energy can be lowered indefinitely by concentrating the particles on an

arbitrarily small volume. In practice this will not really happen because of short range

repulsions, but one must nevertheless be careful with calculations in this case.
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