
Problem Sheet 6

I. THE FERMI GAS

A. Sommerfeld expansion

The evaluation of thermodynamic properties of Fermi systems involves the calculation of

integrals of the type

I =

∫ ∞

0

g(ε)

e(ε−µ)/T + 1
dε, (1.1)

where g(ε) is a product of the density of states ν(ε) and some energy dependent observable,

e.g., g(ε) = ν(ε) for the density I = N/V = n; or g(ε) = ν(ε)ε for the energy density

I = E/V .

Derive the systematic expansion of such integrals in powers of T/µ � 1! Recipe: Note

that at T = 0

fFD(ε, T ) =
1

e(ε−µ)/T + 1

T→0→ Θ(ε− µ), (1.2)

where Θ(x) = 1 if x > 0 and 0 otheriwse. Substitute fFD(ε, T ) = Θ(ε − µ) + fFD(ε, T ) −
Θ(ε−µ). Write the T -dependent part as a single integral over the distance from the chemical

potential, divided by T , z = |ε−µ|/T and neglect that the bottom of energy is finite (under

which circumstances is that allowed?). Expand the integrand in T and obtain the first two

terms! (Look up the integrals, or remember the Riemann ζ function!)

Obtain the final result:

I =

∫ µ

0

g(ε)dε+
π2

6
T 2g′(µ) +

7π4

360
T 4g′′′(µ) + ..., (1.3)

B. Application: specific heat

Consider the Fermi sea at low T : Estimate roughly the fraction of the electrons which

are ”thermally active”. By thermally active I mean electrons in single particle states which

are only partly occupied, say with 0.1 < nε < 0.9. It is always these ’active’ electrons that

contribute to thermodynamic response! What behavior (power law of T ) do you thus expect

for the specific heat at low T → 0?

Calculate the specific heat with the help of Sommerfeld’s expansion! (Calculate E(T )

and derive it with respect to T !).
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C. Pauli paramagnetism

In a magnetic field the electrons of a metal have energies εk,s=±1 = (~k)2/2m + sµBH,

where µB = e~
2mc

is the Bohr magneton. The magnetic field thus favors spins with orientation

opposite to H.

The spin up and spin down electrons separately form a Fermi sea up to wavevectors k±F
such that µ = (~k±F )2/2m ± µBH. The magnetization is equal µB times the excess of spin

up over spin down electrons,

M = µB(N↑ −N↓), (1.4)

with N = N↑ +N↓. Calculate the Pauli susceptibility χpara = ∂M/∂H at T = 0!

D. Graphene: Density of states

Graphene is a newly discovered two-dimensional semimetal (a monolayer of graphite)

which causes a lot of excitement these days, among others because of its electronic properties

and its special band structure: the tight-binding dispersion ε(k = (kx, ky)) is such that the

energy surface in momentum space forms two cones, centered at two inequivalent points

K,K ′ in the Brillouin zone. The energy is counted from the energy level of these points,

that is we choose a reference point for energy such that εK,K′ = 0. Around these points, the

dispersion can be approximated as

ε(k = K + p) = ~vF |p| (1.5)

with the ”Fermi velocity” or group velocity vF ≡ ∂|ε/∂~k| which has the value vF =

106m/s = c/300. Note that electrons go really fast in metals! A lot of the excitement

about graphene is due to the fact that this dispersion is the same as for ultrarelativistic

particles (or photons) whose mass is negligible as compared to energy, mc2 � E.

Neutral graphene has the special property that all the electronic states are filled up to

the tip of the cones. The Fermi surface consists in just one point there! However, one can

introduce more electrons (or less electrons) with an external gate voltage, controlling their

density n. One thus fills more (n > 0) or less levels (n < 0) in the cones in the Brillouin

zone. This shifts the chemical potential µ away from the cone tip and creates a finite Fermi

surface, like in a metal. Show that when the temperature is bigger than µ, there are both

”electron” (ε > 0), and ”hole” states (ε < 0) which are only partly occupied, say with

0.1 < nε < 0.9. In this regime graphene behaves like an ultrarelativistic fluid of particles

and antiparticles!

i) Calculate the density of states of this material! Why do you not find ν(ε) ∼ εd/2−1 =

const., even though you are in two dimensions?
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ii) Find the chemical potential µ (i.e., the Fermi energy) at T = 0 as a function of the

gate-controlled extra density of electrons n! Before calculating: draw a picture of the DOS

and the Fermi function and predict whether you will obtain an increase or a decrease of µ!

iii) Calculate the change in chemical potential at finite T , to lowest order in T � µ.

(Hint: Use the Sommerfeld expansion to calculate n(µ, T ) and determine µ(T ) imposing a

fixed density n!)

You will find a result which is similar to a Fermi sea in 3d with parabolic dispersion

ε(k) = (~k)2/2m. How will the chemical potential behave in 1d and 2d systems with

parabolic dispersion?
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