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Arrow of time and ergodicity

The arrow of time

How to know the direction of increasing time?
* Entropy always increases
» Example: diffusion (continues forever in infinite systems)

)t *+ € 1
Interesting exception: quantum localized systems — time reversal
symmetry even in infinite systems

Ergodicity

Fundamental postulate of thermodynamics:
State of maximal entropy (=equilibrium) is reached in finite time.

—>—e L(

But: NO full equilibration when ergodicity is broken
> N * (Eq)

Occurs in particular in certain disordered systems: Glasses




Interrelation between
arrow of time and ergodicity?

Two notions associated with time evolution and dynamics

Consider two types of ergodicity breakers or « glasses »!



Two types of « glasses »

Frustrated disordered systems Quantum localized systems

e.g. Spin glass e.g. Anderson insulator (Fermi glass)
Arbitrarily large energy barriers AE ~ Vanishingly small matrix elements
between metastable states between distant states in Hilbert
AE >> temperature T (classical) space

AE >> tunneling I" (quantum) (no energy barriers necessary)

Pure states differ in global density Non-ergodic sectors differ by local
profiles density matrices

Number of pure states: Exponential number of non-ergodic
Me?m ﬁ.eld: e>.<p0nential in N sectors a7 exp[V / Lfoc

Finite dimensions ?

Destroyed by large T Robust to T (if fully localized)
Robust to dephasing/coupling to Destroyed by a dephasing bath

environment
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Two mechanisms of ergodicity breaking:
Mutual enhancement or competition?



Mean field quantum glass models

* Nature and spectrum of collective excitations in
quantum glasses ?

o J. =0
Transverse field Ising spin glass H=-T X Z z i
— o —)o.J.0o;
(Sherrington-Kirkpatrick SK) zl’ ! gj’ v — J?
— Deep quantum glass phase: Jij B N

find Ohmic bath of collective modes; extrapolate to finite d

* Interplay of glassiness and superfluidity -
delocalization of hard core bosons: 0; <> 2n, —1

Meanfield model for “superglass”

- ' t
amorphous, glassy supersolid H = _NZ Gix G;.C _ 2 Giz Jij G;

i<j i<j

— superglass, interesting features
due to competition
superfluidity < glass order




Transverse field SK model

Static approximation
A. Bray, M. Moore JPC (’88); Y.Y. Goldschmidt and P.Y. Lai, PRL (‘90)

Critical behavior at the Q-Glass transition Phase diagram
J. Miller, D. A. Huse, Phys. Rev. Lett. (’93)

1.25 [

clagsical PM

Effective field theory (Landau expansion) 100 |
S. Sachdev, N. Read, J. Ye (°93,95) 05 |

K. Takahashi PRB (’07) T/J

050 |

QMC in the paramagnet, critical line :
M. J. Rozenberg, D. R. Grempel, PRL (*98); 000

Exact diagonalization in finite N~20 SK model
L. Arrachea, M. J. Rozenberg, PRL (‘01) Goldsc

idt, Lai, JRL (‘90):
Static appgox

Other mean field quantum glasses: BU»t ??
Spherical, O(N), p-spin type models — often QPT is first order, unlike SK!
T. Nieuwenhuizen; F. Ritort; G. Biroli, L. Cugliandolo et al.



SK: Known properties

Transverse field Ising spin glass

H=-TY o} -) 0,0

i<j

J SK: mean field limit,
Infinite coordination z = oo:

1.00 _
~ / ! Phase transition into a glass state:
I / J 0.50
- Glass - Many long-lived metastable states
0.25

- replica symmetry breaking

Spectral gap closes (Miller, Huse PRL 1993)

° remains closed in the glass phase!
Read, Sachdev, Ye, PRL (1993)



Quantum TAP equations

(Thouless, Anderson, Palmer ‘77: Classical SK model; Biroli, Cugliandolo '01, MM, loffe ‘07)

H = —FZ O; — ZGfJU.O'j.

i<j

How to obtain insight into excitations
and dynamics 1n the deep quantum
glass?

1. Physical, qualitative arguments
a la T.A.P. (Thouless, Anderson, Palmer)
2. Rigorous solution of mean field equations



Quantum TAP equations

(Thouless, Anderson, Palmer ‘77: Classical SK model; Biroli, Cugliandolo '01, MM, loffe ‘07)

H=-TY o} -) 0,0

i<j

Effective potential as a function of magnetizations imposed by external
auxiliary fields A~ :

G({<Gf>:mi})=ZGf . ——Zml ; J——ZJUI dty,(t 0(\/1/—N)

l¢] li]

G/ (ml) =-T\/1-m’

%i(w — O) = dmi/dhi = %i(mi)

Local minima (E)G /om, = ()) (in static approximation)

aGO
—> |h = ZJl]m] mE‘]uxJ( )

1- m J#i J#i




Quantum TAP equations

(Thouless, Anderson, Palmer ‘77: Classical SK model; Biroli, Cugliandolo '01, MM, loffe ‘07)

H=-T) o - 0.],0;

i<j

Local minima (9G/dm, = 0)

0
EE’G =S am = m, S, (m)

1-— m J#i J#i

Environment of a local minimum (potential landscape):

Hessian: H, = 0°G/om,0m, = J, + diagonal terms

Spectrum of curvatures in a minimum

(at small A)




Soft collective modes

Spectrum of curvatures <«
Distribution of “restoring forces”

Semiclassical picture:

— N collective oscillators with mass M ~ 1/’ and frequency @=+/4/M

Continuous bath with y 1 o | | Independent of T
Ohmic spectral function 2" (@)= M—a)p ()~ 7l foro<T M

Generalization of known spectral function at the quantum glass transition!
[Miller, Huse (SK model); Read, Ye, Sachdev (rotor models)]




Rigorous confirmation

. ‘ A. Andreanov, MM, ‘10
Mean field equations

exp|—[Feg] = Tr'T exp Sesr

B B
/ z z / 1 / z z / x
Sog = J? /O/ drdr [; Qa0 (T)op (") + 3 za: Qua(m — ol (T)oZ ()| +T za:O/dT ox(T)

Qaa(T — 7_/) = (o,(T)o,, (T,)>Seff

Selfconsistency:

Qab = {05(T)05 (7)) 50 — ()

To prove: r«r, - (cZ(T)o’(T")) = const x ’5}—2’

1) Permanent gaplessness, Ohmic spectral function
11) Constant 1s independent of I



Rigorous confirmation

. A. Andreanov, MM, ‘10
1) Gaplessness + Ohmic spectrum

a<b

B B
Sop = J? // drdr’ [Z Quvo’(T)of (T + % Z Qaa(T — 02 (T)oZ(T')| + T Z / dr o (1)

* Full replica symmery breaking ansatz for Q,
* Hubbard Stratonovich off-diagonal part — distribution P(y) of frozen fields y; = X J;m;
* Obtain susceptibility in a given frozen field y

_ i (y) € Il%roper politrgablljy :
1 — J2R(w)IL, (y) w—o(y) = 1o (y)w

R(T) - Qaa(T) - Qaa(oo) — Qaa(T) - q(x — 1)

Xw(y) = (02,08)y.c

* Selfconsistency equation  (6Z(7)0Z (7' ))s..c = R(w) = [ dyP(y)xw ()

a a

e Low frequency: R(w) = Ry + 6R,, SR, = clw| + O(w?)

* Marginal stability everywhere in the glass (full RSB) / dyP(y)xa(y) =1



Rigorous confirmation

A. Andreanov, MM, ‘10

SR, = clw| + O(w?)

2) Proof that coefficient ¢ is independent of I';

* Assume scaling functions, such as:

2 I (lyl J>y>T Linear pseudogap in
W~7\T  y<T e i) dlig e,
(Palmer, Thouless; Pankov "06)
L.
Xo(y) = FxX(y/T,w/T)

* Obtain a selfconsistency problem which is independent of T,
its solution yields ¢ = O(1) !



What survives of the

phenomenology beyond mean
field?

* Criticality ?
* Gapless collective modes ?
Expect:

Large connectivity — MF describes well the
spectrum, except at the lowest energies



Beyond mean field

Quantum spin glass with
* Exchange matrix J; random, |J;| ~J
* Large connectivity z

Repeat Quantum-TAP / semi-classical analysis!



Beyond mean field

Quantum spin glass with
* Exchange matrix J; random, |J;| ~J
* Large connectivity z

Eigenvalue and eigenvector spectrum of random matrix Jj; (D>2)
172 Feigelman, loffe, Dotsenko (95)

Corrections to MF

|

Semicircle

+ Corrections in
regime ~1/z°:

* localization

* spectral deviations

PJ"

. | ;
177,56 8 _1y756



Beyond mean field

Quantum spin glass with
* Exchange matrix J; random, |J;| ~J
* Large connectivity z

Eigenvalue spectrum ot the TAP Hessian H;; (d>3)

[}
NG o>z 1
Corrections to MFE
; + semiclassical treatment
| of oscillators
: ; | ; S e, -
/ 31z 0 -Jz>® 5

Delocalized low-energy excitations, at least down to _



Beyond mean field?

Preliminary conclusions

* Criticality of quantum glass
— large density of soft collective modes
delocalized to very low energies
(provided the connectivity of the exchange matrix is large enough)
Similar to boson peak in structural gasses!

* Marginality reflects the competition of many metastable minima:
— Spin glass-type ergodicity breaking counteracts quantum localization.

— Instead it may enhance transport of energy and charge, as well as
decoherence (as compared to a pure, ordered, but gapped phase).

Open questions: How does the low energy spectrum really look like?
Is there a mobility gap for many body excitations?



Ordering transitions 1n random
SYStemS Hertz, Fleishman, Anderson, PRL (79)

Bray, Moore, J. Phys. C (80)

Scenario for the ordering transitions in
* Disordered magnets

. Spin glasses | N 4 sz (T0y0p = I 1508 5, * S, +*§-U§) (A
* Dirty superfluids (SI transition) e !

Hamiltonian

Susceptibility matrix (> 0!)

Xmlhmzup = T- 1<‘9_m1ps.mzu>

% 3 £ Hartree-Fock Hamiltonian
6‘C
T

) ple e 4 P

€ ! €T ‘
(T) Cap) HY | %' p')
(a) b (c) '
’—'[J .—uZ‘ G )\)\6 1]6 r—uG HED e
FIG. 1. Hartree-Fock density of states at three dif- xx X T oo
ferent terrfperatures (schematic): (a) Fo? high T,.pH F —s Transition when extended
~p =density of eigenvalues of J; (b) for intermediate
T, tail of localized states moves to keep to the left of Hartree Fock state condenses

T; (c) for T reaching the mobility edge, no localized

states remain. — HF modes at finite energy are

delocalized
— Does a mobility edge re-
emerge after the SG transition??



Ordering transitions 1n random
SYStemS Hertz, Fleishman, Anderson, PRL (79)

Bray, Moore, J. Phys. C (80)

Scenario for the ordering transitions in
* Disordered magnets

=Sp S 1D (T6y ey — T )8, * B, HUD B,
* Dirty superfluids (SI transit@ ¥1¥2 Xy

Susceptibility matrix (> 0!)

xm_”'zup =1 1<S”‘lu S_'"zu>

% £ £ Hartree-Fock Hamiltonian
€
T

Hamiltonian

}ple e 4 pte)

' €T
T Cop] HY¥ | 2 ')
@ (® (e = [Jxx' - HE)\G,;, . )\5” ']6 !~ quxw'ﬁxx'
Remark: Dirty bosons: transition when single particle — Transition when extended
density matrix acquires delocalized zero-mode. — Expect ~ Hartree Fock state condenses
a finite mobility edge of (many-body) excitations and — HF modes at finite energy are
Arrhenius transport before the SI transition! (d > 3) delocalized

MM °09; loffe, Mézard "09, Feigelman, loffe, Mézard ‘10 — Does a mobility edge re-
emerge after the SG transition??



What about glassiness
AND
superfluidity?

“superglasses” = amorphous, glassy
supersolids

Motivation: supersolidity observed in

defectful (glassy?) quantum solids
(Chan, Dalibard)



Superglasses ?!

Xiaoquan Yu, MM ‘10

i<j

H=-T)o'-)o

Z Z
40

<>

H = —%ZO’?G}C — ZGfJUO'j.

<) A

i<j

/

“Self-generated transverse field”



Superglasses ?!

Xiaoquan Yu, MM ‘10

H=-T) o/ -) 0{J,0:

i<j

<>
!
H = ——265“6}‘ — Zafjl.jof.
N i<j i<j
. . 1 T _ i< z>2
Competing order parameters: M = N(az- ) IeA = 779

M signals ferromagnetism or
superfluidity of hard core bosons ol & 2n —1

If M and qg, exist simultaneously — Meanfield model for superglasses



« Superglass »

Carleo, Tarzia, Zamponi PRL (09)

Gingras, Melko et al PRL (10)

2.0 1.0 0.8
16 0.8 0.7 EiRe
T/t1.2 Rk /g g§
08 | 0.4 - .
o 0.2 0.4 Superfluid
' 0.0 0.3
3 35 4 45
Vi 0.2
0.1
QMC (3d) “Mean field” 0 05 1 15 2 25 3 35 4
v
Z Vij(ni —1/2)(n; — 1/2) — tZ bTb + b, b“) Figure 2: Finite temperature phase diagram at half-filling.
(i) (i) QMC and cavity
Quenched randomness Random, frustrated lattice
? Low T behavior — QPT ? H= -ty [bjbj n bib;‘.] +V'S niny,

? Local structure of the superglass ? (ird) (i:3)



Mean field superglass

Xiaoquan Yu, MM ‘10

H = —%ZO’?G}C — Zafjl.jof.

I<j I<j

X 1 z
i) qQEA = N<O-z'>2

* Static approximation 1s exact when M = 0!
— obtain T = 0 phase transition glass-to-
superglass exactly!

* For superfluid-to-superglass transition: Use
static approximation



Phase diagram

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1.4 T T T T T T T T T T T T T 1.4

1.2

Ansition
0.8

Th
0.6

0.4

0.2

" / dyP(y)x"" = 11' Suppres.sion of superfluidity
i by the linear pseudogap!
Xy = % 30 5 Transition at finite J/t = 0.97

Analogue with LR interactions in finite d?



Structure of the superglass

 Superfluid and glass try to avoid each other:

(s¥) and (s7)* are anticorrelated

* Superfluid order parameter M 1s non-monotonous with T

J=0.724 R
05 4

Order parameters

of the glass (= disorder) !



Conclusions

* Quantum spin glass:

* Low energy excitations of the MF quantum glass:
collective oscillators — Ohmic bath
 Extrapolation to finite dimensions:

spin glass order favors soft collective excitations,
tendentially counteracting quantum localization
Ergodicity broken — Arrow of time intact

* Superglass:

* Coexistence of superfluid and glassy density order

* Long range interactions suppress density of states and
thus superfluidity down to T=0

* Non-monotonous superfluid order in the superglass



