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Outline
• Review of single-particle and many-body 

localization.

• Experiments suggesting purely electronic 
conduction in insulators
(i.e. “many-body delocalization”).

• Theory of electron-assisted transport
Major ingredient: strongly correlated, 
quantum glassy state of electrons close to the 
metal-insulator transition.

• Remnants of many-body localization close to 
the superconductor-to-insulator transition?



Review of  localization 
and insulators



Review of  localization 
and insulators

Still little understanding beyond 
the simple model!!



Anderson localization (3D)
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On the Bethe lattice: (Abou-Chacra, Thouless, Anderson (1973))



Localization with interaction? 
L. Fleishman and P. W. Anderson, PRB, 21, 2366 (1980).

Q: Does localizationpersist in the presence of interactions? 
In other words: Does conductivity vanish exactly without phonons?
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Localization with interaction? 
L. Fleishman and P. W. Anderson, PRB, 21, 2366 (1980).

Q: Does localizationpersist in the presence of interactions? 
In other words: Does conductivity vanish exactly without phonons?

A: Fleishman and Anderson: 1st order perturbation theory:
Yes: for short range interactions.
No: for long range interactions: Electron-assisted hopping is possible.



Localization with interaction? 

Single hop: Energy mismatch because of local point spectrum.
→ No charge transport at this level

L. Fleishman and P. W. Anderson, PRB, 21, 2366 (1980).

Q: Does localizationpersist in the presence of interactions? 
In other words: Does conductivity vanish exactly without phonons?

A: Fleishman and Anderson: 1st order perturbation theory:
Yes: for short range interactions.
No: for long range interactions: Electron-assisted hopping is possible.

Reason: Energy conservation impossible if there is no continuous bath!



Localization with interaction? 

Multiparticle rearrangements: 
Transition energies remain discrete for weak interactions and low T

L. Fleishman and P. W. Anderson, PRB, 21, 2366 (1980).

Q: Does localizationpersist in the presence of interactions? 
In other words: Does conductivity vanish exactly without phonons?

A: Fleishman and Anderson: 1st order perturbation theory:
Yes: for short range interactions.
No: for long range interactions: Electron-assisted hopping is possible.

Reason: Energy conservation impossible if there is no continuous bath!



Localization with interaction? 
Investigation to all orders in perturbation theory:

I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, PRL 95, 206603 (2005). 
D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. 321, 1126 (2006).

Assumption: Very weak interactions:  Vint << level spacing δξ.
Conclusion: An energy crisis (i.e., a metal-insulator transition without 
phonons) occurs at high temperature due to “localization in Fockspace”.

Argument: 
Same as Anderson localization: 
1) Sites → many body states

2) Perturbation theory in hopping →
Perturbation theory in interactions

etc.   1
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Could there be instantons??



Implications of manybody
localization  

• A true quantum glass: non-ergodic systems, 
despite of interactions!

• Defeat of cardinal assumption of 
thermodynamics: that infinitesimal interactions 
will eventually lead to equilibration

• Perfect, collective insulators at finite T

• Quantum computing/information:
Preserved quantum coherence due to limited 
entanglement of local degrees of freedom



What about experiment?

• No metal-insulator transition observed at finite T

• Rather: Evidence for e-assisted hopping (many-body 
delocalization)

Why this difference from theoretical predictions!?



Electron assisted hopping
Doped GaAs/AlxGa1-xAs heterostructure

S. I. Khondaker et al., PRB 59, 4580 (1999) 
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Efros-Shklovskii variable 
range hopping:

In stark contrast with standard 
phonon-assisted hopping!

Mott and Davies (1979), Aleiner et al. (1994)

Nearly universal prefactor!



Open Questions

? ?

• Experimental evidence for e-assisted  hopping 
→ Caveat in theories of manybody localization?

• Can one have an insulator and electron-electron
interaction-induced conductivity at finite T?

• How to explain the nearly universal electronic
prefactor ?

Theory for electron-assisted transport in insulators ?

2eh



Model system

Cbdiskin VVHH ++=

Single particle Anderson problem → Diagonalize!

Assumption about disorder

Single particle problem 
close to the Anderson transition ( ) 1−= dνξδξ

→ Large localization length  ξ >> n-1/3, 
→ Small level spacing 

Electrons with disorder + Coulomb interactions in 3d or quasi 2d



Model system

∑ ∑∑∑ +++=
kji lkji

l
t
kj

t
iijklkj

t
iijk

ji
jiji

i
ii ccccuncctnJnnH

,, ,,,,

ε

Cbdiskin VVHH ++=

Single particle Anderson problem → Diagonalize!

Hamiltonian in single particle basis (wavefunctionsϕi):
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Coulomb interaction (partial screening from high energy states)

Cbdiskin VVHH ++=

Single particle Anderson problem → Diagonalize!

Hamiltonian in single particle basis (wavefunctionsϕi):

Single particle energies

Assumption about disorder

Single particle problem 
close to the Anderson transition

Electrons with disorder + Coulomb interactions in 3d or quasi 2d
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( ) 1−= dνξδξ

→ Large localization length  ξ >> n-1/3, 
→ Small level spacing 



Wavefunctions at the mobility edge

H. Aoki, PRB, 33, 7310 (1986).

Theory: Mirlin et al.; Kravtsov et al.;

Eigenstates of the non-interacting Anderson problem: 
Spatially overlapping fractal wavefunctions



Coulomb interactions are strong at 
the Metal-insulator transition!
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Quantum electron glass
Theoretical model: Mean field-like quantum electron glass
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Quantum electron glass
Theoretical model: Mean field-like quantum electron glass

→ Expect quantum glass state: 
Many local minima with many soft 
collective excitations! 
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Quantum electron glass
Theoretical model: Mean field-like quantum electron glass
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Quantum electron glass
Theoretical model: Mean field-like quantum electron glass

∑∑∑ ++=
lkji

l
t
kj

t
iijkl

ji
jiji

i
ii ccccunJnnH

,,,,

ε

δ
δ

>>>>⋅≈≈ J
J

JTE cact

→ Large control parameter!

Number of “active” neighbors of given electron:
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Quantum electron glass

Program: 

• Understand the collective modes 
(plasmons)of the quantum electron glass 
within mean field theory.

• Infer the existence of a gapless phonon-
like bathwhich can resolve the energy 
conservationproblem in hopping 
conductivity. 



Reduction to a quantum spin glass
Idea: 
• Classical frustrated glass+ quantum fluctuations
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Reduction to a quantum spin glass
Idea: 
• Classical frustrated glass+ quantum fluctuations
• Spin representation for level occupation: 0,1        1 =⇔±= i
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Reduction to a quantum spin glass
Idea: 
• Classical frustrated glass+ quantum fluctuations
• Spin representation for level occupation: 

• Dynamical mean field description (good for z2 >> 1) 

0,1        1 =⇔±= i
z
i nσ

Inertial, non-dissipative dynamics 
↔ virtual exchange processes of electrons with 
the “bath” of neighboring sites, no decay



Reduction to a quantum spin glass
Idea: 
• Classical frustrated glass+ quantum fluctuations
• Spin representation for level occupation: 

• For the purpose of collective dynamics:
→ Describe quantum fluctuations by a self-

consistent effective transverse field teff with
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Reduction to a quantum spin glass
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Aim: 
• Obtain collective delocalized modes→ continuous bath.
• Show that the system remains an insulator(single particle
excitations remain sharp close to the Fermi level) 

• Construct the theory of electron-assisted hopping.
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• Spin representation for level occupation: 

• For the purpose of collective dynamics:
→ Describe quantum fluctuations by a self-

consistent effective transverse field teff with



Quantum TAP equations
(Thouless, Anderson, Palmer 1977: Classical SK model)

Transverse field Ising spin glass 
(quantum Sherrington Kirkpatrick-model at z = ∞)
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Transverse field Ising spin glass 
(quantum Sherrington Kirkpatrick-model at z = ∞)

For infinite coordination z = ∞:
Phase transition into a glass state: 
- Broken ergodicity
- Many long-lived metastable states
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For infinite coordination z = ∞:
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Quantum TAP equations
(Thouless, Anderson, Palmer 1977: Classical SK model)
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Transverse field Ising spin glass 
(quantum Sherrington Kirkpatrick-model at z = ∞)

For infinite coordination z = ∞:
Phase transition into a glass state: 
- Broken ergodicity
- Many long-lived metastable states
- Self-organized criticality
(marginal stability)of the states 
within the glass phase



Quantum TAP equations

{ }( ) ( )( ) ( ) ( )∑ ∑ ∑ ∫
≠ ≠

∞
−−+==

i ji ji
jiijjijii

ex
iiii

z
i dJmJmmhmEmG

0

2

2

1

2

1 τχττχσ

(Thouless, Anderson, Palmer 1977: Classical SK model)

( ) ∑∑ ++=
ji

z
jij

z
i

i

x
ieff

z
iieff JtH

,2

1 σσσσε

Constrained free energyas a function of magnetizations imposed by 
external auxiliary fields        (total local field:            ) at large zex

ih i
ex
ii hh ε+=

( ) ( )

( ) ii

ii

iii

effiii

dhdm

mE
dhdEm

thhE

=→

⇒






=

+−−=

0

22 22

ωχ



Quantum TAP equations
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Quantum TAP equations

Local minima ( )0=∂∂ imG

(Thouless, Anderson, Palmer 1977: Classical SK model)
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Soft collective modes
Spectrum of the Hessian   ↔
Distribution of “restoring forces” [ ] ( )
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Soft collective modes
Spectrum of the Hessian   ↔
Distribution of “restoring forces”

→ N collective oscillators with mass M ~ 1/teff and frequency Mλω =

Mode density

Semiclassics:
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Soft collective modes
Spectrum of the Hessian   ↔
Distribution of “restoring forces”

→ N collective oscillators with mass M ~ 1/teff and frequency Mλω =

Mode density
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Continuous bath  with 
spectral function 
(in the regime of delocalized modes!)

Independent of teff!

Generalization of known spectral function at the quantum glass transition.
[Miller, Huse (SK model); Read, Ye, Sachdev (rotor models)]
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Localization of collective modes ?



Localization of collective modes ?

In 3D: Random matrix Jij couples every localized 
level i to z >> 1 close spatial neighbors. 

= z



Localization of collective modes ?

Spectrum of Jij

Eigenvalue and eigenvector spectrum of a random matrix Jij (3D)

z = ∞

z < ∞



Localization of collective modes ?

TAP: Spectrum of Hessian

1~ >>activeNz

Eigenvalue and -vector spectrum of TAP Hessian Hij (3d)



Localization of collective modes ?

Delocalizedlow-energy plasmons down to JJzE <<− 61
min ~

Eigenvalue and -vector spectrum of TAP Hessian Hij (3d)

1~ >>activeNz

TAP: Spectrum of Hessian
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are beyond perturbation theory)
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Further, we have checked that:

• Single particle excitationsremain very sharp at the 
Fermi level:
Level broadening from decay processes (1/T1) 
and pure dephasing (1/T2) is smaller than level 
spacing δ.



Summary of results

• The quantum electron glass possesses a continuous 
bathof collective uncharged excitations, (which 
are beyond perturbation theory)

Further, we have checked that:

• Single particle excitationsremain very sharp at the 
Fermi level:
Level broadening from decay processes (1/T1) 
and pure dephasing (1/T2) is smaller than level 
spacing δ.

( ) ∞→→ 0Tρ→ The system remains an insulator:
At finite temperature: conduction by hopping, 
stimulated by collective electron modes.



Bottom line: Variable range hopping

A collective mode (plasmon) can provide the exact energy 
difference in a single electron hop because of the continuous 
spectrum of the bath.
All electron levels acquire a finite if small width due to their
coupling to plasmons. Hence, there is no manybody localization.

Electron hopping out 
of localization volume



Bottom line: Variable range hopping
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Variable range hopping

As in phonon-assisted hopping but with
different prefactor reflecting the plasmonbath!

• Stretched exponential in T: 
Single electrons optimize activation energy vs
transition probability (length of hops)
→ elementary resistors (Miller-Abrahams)
• Percolation problem for the network of resistors
(Ambegaokar et al., Pollak, Shklovskii)
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Bottom line: Variable range hopping
Variable range hopping

S. I. Khondaker et al., PRB 59, 4580 (1999) 

Doped GaAs/AlxGa1-xAs heterostructure
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(Ambegaokar et al., Pollak, Shklovskii)



Many body localization: 
where to find it best?

Two problems: 

• Four-fermion scattering introduces strong quantum 
fluctuations

• Long range Coulomb interactions spoil localization, 
even at low density

Possible way out: insulators with strong superconducting 
correlations (fermions bound into preformed pairs), with 
suppressed/screened Coulomb interactions 



Why to expect many body 
localization at the SIT? 

• Electrons are bound in localized pairs (Anderson pseudospins)

• Phase volume for inelastic processes is strongly reduced as 
compared to the single electron problem MIT

↔

Cooper + hard core 
repulsion Coulomb
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(Anderson, Ma+Lee, Feigelmann+Ioffe)

Pairs: doubly occupied localized wavefunctions (hard core bosons)

Disorder (→insulator) Kinetic energy of pairs (→superconductivity)



Why to expect many body 
localization at the SIT? 

• Electrons are bound in localized pairs

• Phase volume for inelastic processes is strongly reduced as 
compared to the single electron problem MIT

↔

Cooper + hard core 
repulsion

Coulomb

Tc, Ec

SC

Tc Ec

Conjecture (for insulator):
At T=0 all excitations 
with E < Ec are localized
Experimental indications 
for such a secnario!

(collective) Ins

Disorder



Conclusions 

• Model for purely electron-assisted hoppingin 
insulators. 

• Collective soft modesprovide a bath with continuous 
spectrum and ensure energy conservationduring a 
hopping event. → No manybody localizationexpected 
close to the Metal-insulator transition

• Possibly different, and conceptually very interesting 
situation close to dirty superconductor-insulator 
transitions


