Nernst effect and quantum critical magnetotransport in superconductors and graphene



#### Markus Müller

in collaboration with Sean Hartnoll (KITP) Pavel Kovtun (KITP) Subir Sachdev (Harvard)



FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION



UCSB, 7<sup>th</sup> March, 2008

## Outline

- Nernst experiments in superconductors
- Hydrodynamic analysis of the thermo-electric response functions
- Applications to graphene: quantum critical transport and collective cyclotron motion
- Obtain hydrodynamic results *exactly* for a critical gauge theory via the AdS/CFT correspondence
- Comparison with experiments in high T<sub>c</sub>'s

# $La_{2-x}Sr_{x}CuO_{4}$ (LSCO)



 $La_{2-x}Sr_{x}CuO_{4}$  (LSCO)



 $La_{2-x}Sr_{x}CuO_{4}$  (LSCO)



- Undoped x=0: antiferromagnetic Mott insulator
- Underdoped-optimally doped 0.05 < x < 0.17: Strong Nernst signal up to  $T=(2-3)T_c$
- Overdoped 0.17 < x: BCS-like transition, very small Nernst signal above T<sub>c</sub>

In the presence of a magnetic field: Transverse voltage due to a thermal gradient

(Hall effect:  $-\vec{\nabla}T \rightarrow \vec{E}$ )



Nernst signal: 
$$e_N \equiv N = \frac{E_y}{-\vec{\nabla}_x}$$

In the presence of a magnetic field: Transverse voltage due to a thermal gradient

"Particle" view
 "Vortex" view



$$e_N \equiv N = \frac{E_y}{-\vec{\nabla}_x T}$$

In the presence of a magnetic field: Transverse voltage due to a thermal gradient

2. "Vortex" view  

$$2eV_J = \hbar\partial_t \varphi$$

$$= 2\pi \ \hbar\partial_t n_V$$

Nernst signal:

$$e_N \equiv N = \frac{E_y}{-\vec{\nabla}_x T}$$

In the presence of a magnetic field: Transverse voltage due to a thermal gradient

2. "Vortex" view  

$$2eV_J = \hbar\partial_t \varphi$$

$$= 2\pi \ \hbar\partial_t n_V$$



Nernst signal:

$$e_N \equiv N = \frac{E_y}{-\vec{\nabla}_x T}$$

In Fermi liquids:  $e_N$  very small  $\rightarrow$ Big Nernst signal above  $T_c \leftrightarrow$ Evidence for a "vortex liquid"?

## Vortex liquid?

Two scenarii for superconducting transition:

 $\Psi = |\Psi| e^{i\varphi}$ 

- 1) BCS-type: Amplitude vanishes at  $T_c$  $\langle |\Psi|^2 \rangle \rightarrow 0$
- Phase fluctuations kill long range order: (in purely 2d: Kosterlitz-Thouless)

$$\left\langle e^{i\varphi}\right\rangle \rightarrow 0$$

while a "vortex (Cooper pair) liquid" with local pairing amplitude  $|\Psi|^2 > 0$  survives. Pseudogap  $\leftrightarrow$  "Preformed Pairs (bosons)?

## Vortex liquid?

Two scenarii for superconducting transition:

 $\Psi = |\Psi| e^{i\varphi}$ 

- 1) BCS-type: Amplitude vanishes at  $T_c$  $\langle |\Psi|^2 \rangle \rightarrow 0$
- Phase fluctuations kill long range order: (in purely 2d: Kosterlitz-Thouless)

$$\left\langle e^{i\varphi}\right\rangle \rightarrow 0$$

Probe with Nernst effect!

while a "vortex (Cooper pair) liquid" with local pairing amplitude  $|\Psi|^2 > 0$  survives. Pseudogap  $\leftrightarrow$  "Preformed Pairs (bosons)? LSCO Phase diagram



LSCO Phase diagram



Dip in  $T_c$  near x=1/8 indicates proximity of insulator

## Nernst effect in Nb<sub>0.15</sub>Si<sub>0.18</sub>



(A. Pourret, H. Aubin, J. Lesueur, C. A. Marrache-Kikuchi, L. Bergé, L. Dumoulin, K. Behnia, arxiv:0701376 (2007))

# Nernst effect in Nb<sub>0.15</sub>Si<sub>0.18</sub>



| $\alpha_{xy}$      | C                                   | <i>C</i>                 |
|--------------------|-------------------------------------|--------------------------|
| $\overline{B}^{-}$ | $\overline{1 + (\xi_d / \ell_B)^4}$ | $-\frac{1}{1+(B/B_0)^2}$ |

(A. Pourret, H. Aubin, J. Lesueur, C. A. Marrache-Kikuchi, L. Bergé, L. Dumoulin, K. Behnia, arxiv:0701376 (2007))

### Organic superconductors



M. Nam, A. Ardavan, S. J. Blundell, and J. A. Schlueter, Nature 449, 584 (2007).

#### Quantum criticality

#### Proximity to transition: Superconductor ↔ Mott insulator



Bose-Hubbard model

$$H = -t\sum_{\langle ij\rangle} b_j^+ b_i + U\sum_i n_i^2 - \mu \sum_i n_i$$

Coupling  $g \equiv \frac{t}{U}$  tunes the SI-transition



**Bose-Hubbard model** Superfluid  $H = -t\sum b_j^+ b_i + U\sum n_i^2 - \mu \sum n_i$ Commensurate Mott insulator 0 Coupling  $g \equiv \frac{t}{I^{T}}$ tunes the SI-transition Superfluid Effective action around  $g_c (\mu = 0)$ :  $\mathcal{S} = \int d^2 r d au ~ \left| \left| \partial_ au \psi 
ight|^2 + v^2 ~ \left| ec 
abla \psi 
ight|^2 - g |\psi|^2 + rac{u}{2} |\psi|^4 
ight|^2$ 



 $\rightarrow$  Relativistic (conformal) CFT in d=2+1



 $\rightarrow$  Relativistic (conformal) CFT in d=2+1

Bose-Hubbard model

$$H = -t\sum_{\langle ij\rangle} b_j^+ b_i + U\sum_i n_i^2 - \mu \sum_i n_i$$

Coupling  $g \equiv \frac{t}{U}$  tunes the SI-transition



Bose-Hubbard model

$$H = -t\sum_{\langle ij\rangle} b_j^+ b_i + U\sum_i n_i^2 - \mu \sum_i n_i$$

Coupling  $g \equiv \frac{t}{U}$  tunes the SI-transition

Perturb the CFT with

- a chemical potential  $\mu$
- a magnetic field *B*



$$egin{aligned} \mathcal{S} &= \int d^2 r d au \left[ \left| (\partial_ au - \mu) \psi 
ight|^2 + v^2 \left| (ec 
abla - i ec A) \psi 
ight|^2 - g |\psi|^2 + rac{u}{2} |\psi|^4 
ight] \ 
onumber 
onumber$$

Bose-Hubbard model

$$H = -t\sum_{\langle ij\rangle} b_j^+ b_i + U\sum_i n_i^2 - \mu \sum_i n_i$$

Coupling  $g \equiv \frac{t}{U}$  tunes the SI-transition

Perturb the CFT with

- a chemical potential  $\mu$
- a magnetic field *B*

![](_page_23_Figure_7.jpeg)

$$egin{aligned} \mathcal{S} &= \int d^2 r d au \left[ \left| (\partial_ au - \mu) \psi 
ight|^2 + v^2 \left| (ec 
abla - i ec A) \psi 
ight|^2 - g |\psi|^2 + rac{u}{2} |\psi|^4 
ight] \ 
onumber 
onumber$$

Hydrodynamic Approach

## Fluid Dynamics

Two transport regimes:

I. Ballistic regime (collisonless)

Short times, Small scales

![](_page_25_Picture_4.jpeg)

II. Hydrodynamic regime (collision-dominated)

Long times Large scales

![](_page_25_Picture_7.jpeg)

## Recall: Hydrodynamics

II. Hydrodynamic regime (collisiondominated)

Short times, Large scales

![](_page_26_Picture_3.jpeg)

## **Recall: Hydrodynamics**

II. Hydrodynamic regime (collisiondominated)

![](_page_27_Figure_2.jpeg)

- Study relaxation towards global equilibrium
- Slow modes: Diffusion of the density of conserved quantities:
  - Charge
  - Momentum
  - Energy

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Energy-momentum tensor 
$$T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + \tau^{\mu\nu}$$

- Current 3-vector  $J^{\mu} = \rho u^{\mu} + \nu^{\mu}$ 
  - $u^{\mu}$ : Energy velocity:  $u^{\mu} = (1,0,0) \rightarrow$  No energy current
  - $V^{\mu}$ : Dissipative current ("heat curreny")
  - $\tau^{\mu\nu}$ : Viscous stress tensor (Reynold's tensor)

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Energy-momentum tensor 
$$T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + \tau^{\mu\nu}$$

- Current 3-vector  $J^{\mu} = \rho u^{\mu} + \nu^{\mu}$ 
  - $u^{\mu}$ : Energy velocity:  $u^{\mu} = (1,0,0) \rightarrow$  No energy current  $V^{\mu}$ : Dissipative current ("heat curreny")  $\tau^{\mu\nu}$ : Viscous stress tensor (Reynold's tensor)

+ Thermodynamic relations

$$\varepsilon + P = Ts + \mu\rho, \quad d\varepsilon = Tds + \mu d\rho,$$

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

$$J^{\mu} = \rho u^{\mu} + \nu^{\mu} \qquad T^{\mu\nu} = (\varepsilon + P) u^{\mu} u^{\nu} + P g^{\mu\nu} + \tau^{\mu\nu}$$

Conservation laws (equations of motion):

 $\partial_{\mu}J^{\mu} = 0$  Charge conservation

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

$$J^{\mu} = \rho u^{\mu} + \nu^{\mu} \qquad T^{\mu\nu} = (\varepsilon + P) u^{\mu} u^{\nu} + P g^{\mu\nu} + \tau^{\mu\nu}$$

Conservation laws (equations of motion):

 $\partial_{\mu}J^{\mu} = 0$  Charge conservation

 $\partial_{\nu}T^{\mu\nu} = F^{\mu\nu}J_{\nu}$  Energy/momentum conservation

$$F^{\mu\nu} = \begin{pmatrix} 0 & E_x & E_y \\ -E_x & 0 & B \\ -E_y & -B & 0 \end{pmatrix}$$
$$\vec{E} = -i\vec{k}\frac{2\pi}{|k|}\rho_{\vec{k}}$$

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

$$J^{\mu} = \rho u^{\mu} + \nu^{\mu} \qquad T^{\mu\nu} = (\varepsilon + P) u^{\mu} u^{\nu} + P g^{\mu\nu} + \tau^{\mu\nu}$$

Conservation laws (equations of motion):

$$\partial_{\mu}J^{\mu} = 0 \quad \text{Charge conservation} \qquad F^{\mu\nu} = \begin{pmatrix} 0 & E_{x} & E_{y} \\ -E_{x} & 0 & B \\ -E_{y} & -B & 0 \end{pmatrix}$$
$$\partial_{\nu}T^{\mu\nu} = F^{\mu\nu}J_{\nu} \quad \text{Energy/momentum conservation} \qquad \vec{E} = -i\vec{k}\frac{2\pi}{|k|}\rho_{\vec{k}}$$
$$\partial_{\nu}T^{\mu\nu} = F^{\mu\nu}J_{\nu} + \frac{1}{\tau_{\text{imp}}}T^{0\nu}\delta_{\mu0} \quad \text{Momentum relaxation}$$

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

$$J^{\mu} = \rho u^{\mu} + \nu^{\mu} \qquad T^{\mu\nu} = (\varepsilon + P) u^{\mu} u^{\nu} + P g^{\mu\nu} + \tau^{\mu\nu}$$

Conservation laws (equations of motion):

**Q**:

$$\partial_{\mu}J^{\mu} = 0 \quad \text{Charge conservation} \qquad F^{\mu\nu} = \begin{pmatrix} 0 & E_{x} & E_{y} \\ -E_{x} & 0 & B \\ -E_{y} & -B & 0 \end{pmatrix}$$

$$\partial_{\nu}T^{\mu\nu} = F^{\mu\nu}J_{\nu} \quad \text{Energy/momentum conservation} \qquad \vec{E} = -i\vec{k}\frac{2\pi}{|k|}\rho_{\vec{k}}$$

$$\partial_{\nu}T^{\mu\nu} = F^{\mu\nu}J_{\nu} + \frac{1}{\tau_{\text{imp}}}T^{0\nu}\delta_{\mu0} \quad \text{Momentum relaxation}$$

How to determine the dissipative terms  $v^{\mu}$ ,  $\tau^{\mu\nu}$ ?

(Landau-Lifschitz)

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

$$J^{\mu} = \rho u^{\mu} + \nu^{\mu} \qquad T^{\mu\nu} = (\varepsilon + P) u^{\mu} u^{\nu} + P g^{\mu\nu} + \tau^{\mu\nu}$$

Conservation laws (equations of motion):

$$\partial_{\mu}J^{\mu} = 0 \quad \text{Charge conservation} \qquad F^{\mu\nu} = \begin{pmatrix} 0 & E_x & E_y \\ -E_x & 0 & B \\ -E_y & -B & 0 \end{pmatrix}$$
$$\partial_{\nu}T^{\mu\nu} = F^{\mu\nu}J_{\nu} \quad \text{Energy/momentum conservation} \qquad \vec{E} = -i\vec{k}\frac{2\pi}{|k|}\rho_{\vec{k}}$$
$$\partial_{\nu}T^{\mu\nu} = F^{\mu\nu}J_{\nu} + \frac{1}{\tau_{\text{imp}}}T^{0\nu}\delta_{\mu0} \quad \text{Momentum relaxation}$$

A: Heat current  $Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu} \rightarrow \text{Entropy current } Q^{\mu}/T$ 

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

$$J^{\mu} = \rho u^{\mu} + \nu^{\mu} \qquad T^{\mu\nu} = (\varepsilon + P) u^{\mu} u^{\nu} + P g^{\mu\nu} + \tau^{\mu\nu}$$

Conservation laws (equations of motion):

$$\partial_{\mu}J^{\mu} = 0 \quad \text{Charge conservation} \qquad F^{\mu\nu} = \begin{pmatrix} 0 & E_{x} & E_{y} \\ -E_{x} & 0 & B \\ -E_{y} & -B & 0 \end{pmatrix}$$
$$\partial_{\nu}T^{\mu\nu} = F^{\mu\nu}J_{\nu} \quad \text{Energy/momentum conservation} \qquad \vec{E} = -i\vec{k}\frac{2\pi}{|k|}\rho_{\vec{k}}$$
$$\partial_{\nu}T^{\mu\nu} = F^{\mu\nu}J_{\nu} + \frac{1}{\tau_{\text{imp}}}T^{0\nu}\delta_{\mu0} \quad \text{Momentum relaxation}$$

A: Heat current  $Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu} \rightarrow \text{Entropy current} \quad Q^{\mu}/T$ 

Positivity of  
entropy production: 
$$\longrightarrow \quad \partial_{\mu} \left( \frac{Q^{\mu}}{T} \right) = a_{1\mu} \partial^{\mu} T + a_{2\mu} \partial^{\mu} \mu + a_{3\mu} F^{\mu\nu} u_{\nu} + b_{\mu\nu} \partial^{\mu} u^{\nu} \ge 0$$
### **Relativistic Hydrodynamics**

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

$$J^{\mu} = \rho u^{\mu} + \nu^{\mu} \qquad T^{\mu\nu} = (\varepsilon + P) u^{\mu} u^{\nu} + P g^{\mu\nu} + \tau^{\mu\nu}$$

Conservation laws (equations of motion):



### **Relativistic Hydrodynamics**

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

$$J^{\mu} = \rho u^{\mu} + \nu^{\mu} \qquad T^{\mu\nu} = (\varepsilon + P) u^{\mu} u^{\nu} + P g^{\mu\nu} + \tau^{\mu\nu}$$

Conservation laws (equations of motion):



### **Relativistic Hydrodynamics**

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

$$J^{\mu} = \rho u^{\mu} + \nu^{\mu} \qquad T^{\mu\nu} = (\varepsilon + P) u^{\mu} u^{\nu} + P g^{\mu\nu} + \tau^{\mu\nu}$$

Conservation laws (equations of motion):



## Relativistic hydrodynamics

- at the S-I transition
- in graphene! MM, and S. Sachdev, cond-mat 0801.2970.

 $\rightarrow$  Get a feel for the "quantum critical"  $\sigma_Q$  in graphene: Calculation from a quantum Boltzmann equation

L. Fritz, J. Schmalian, MM, and S. Sachdev, cond-mat 0802.4289.

## Relativistic plasma in graphene

MM, and S. Sachdev, cond-mat 0801.2970.

Honeycomb lattice of C atoms



# Relativistic plasma in graphene

MM, and S. Sachdev, cond-mat 0801.2970.

### Honeycomb lattice of C atoms

Tight binding dispersion





Close to the two Fermi points **K**, **K**':

$$H \approx \mathbf{v}_F (\mathbf{p} - \mathbf{K}) \cdot \boldsymbol{\sigma}_{\text{sublattice}}$$
$$\rightarrow E_{\mathbf{k}} = \mathbf{v}_F |\mathbf{k} - \mathbf{K}|$$

Relativistic (Dirac) cones

# Relativistic plasma in graphene

MM, and S. Sachdev, cond-mat 0801.2970.

### Honeycomb lattice of C atoms

Tight binding dispersion





Close to the two Fermi points **K**, **K**':

$$H \approx \mathbf{v}_F (\mathbf{p} - \mathbf{K}) \cdot \boldsymbol{\sigma}_{\text{sublattice}}$$
$$\rightarrow E_{\mathbf{k}} = \mathbf{v}_F |\mathbf{k} - \mathbf{K}|$$

$$v \equiv v_F \approx 10^6 \,\text{m/s} \approx \frac{c}{300}$$
$$\sim 500 \,v_{\text{high } T_c} \,!$$

Relativistic (Dirac) cones

# Universal conductivity $\sigma_Q$

### Standard situation: No particle-hole symmetry ( $\rho \neq 0$ )

- Current is carried predominantly by majority carriers
- Finite current implies finite momentum:



• In the absence of impurities: Momentum conservation implies infinite conductivity!

# Universal conductivity $\sigma_Q$

Quantum critical situation: Particle-hole symmetry ( $\rho = 0$ )

• Charge current without momentum (energy current)



Pair creation/annihilation leads to current decay

• Finite quantum critical conductivity!

# Universal conductivity $\sigma_0$

### Quantum critical situation: Particle-hole symmetry ( $\rho = 0$ )

• Charge current without momentum (energy current)

(particle) (hole) (hole)  $\vec{r}$ 



Pair creation/annihilation leads to current decay

- Finite quantum critical conductivity!
- Quantum criticality: Relaxation time set by temperature alone (interaction strength:  $\alpha = e^2/hv$ )



# Universal conductivity $\sigma_0$

#### Quantum critical situation: Particle-hole symmetry ( $\rho = 0$ )

• Charge current without momentum (energy current)

(particle) (hole)  $\vec{t} \neq 0$ 



Pair creation/annihilation leads to current decay

- Finite quantum critical conductivity!
- Quantum criticality: Relaxation time set by temperature alone (interaction strength:  $\alpha = e^2/hv$ )



→ Universal quantum critical conductivity

$$\sigma_{Drude} = \frac{e}{m} \rho \tau \rightarrow \sigma_{Q} \sim \frac{e}{k_{B}T/v^{2}} \left( e \frac{(k_{B}T)^{2}}{(\hbar v)^{2}} \right) \frac{\hbar}{\alpha^{2}k_{B}T} \sim \frac{1}{\alpha^{2}} \frac{e^{2}}{h}$$

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Quantum critical situation: Particle-hole symmetry ( $\rho = 0$ ), no impurities

Quantum Boltzmann equation



L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Quantum critical situation: Particle-hole symmetry ( $\rho = 0$ ), no impurities

Quantum Boltzmann equation

$$\left(\partial_t + e\mathbf{E} \cdot \frac{\partial}{\partial \mathbf{k}}\right) f_{\pm}(\mathbf{k}, t) = I_{\text{collision}}\left[\left\{f_{\pm}(\mathbf{k}', t)\right\}\right] \quad \propto \alpha^2$$

Linearization:

$$f_{\pm}(\mathbf{k},t) = f_{\pm}^{eq}(\mathbf{k},t) + \delta f_{\pm}(\mathbf{k},t)$$

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Quantum critical situation: Particle-hole symmetry ( $\rho = 0$ ), no impurities

Quantum Boltzmann equation

$$\left(\partial_t + e\mathbf{E} \cdot \frac{\partial}{\partial \mathbf{k}}\right) f_{\pm}(\mathbf{k}, t) = I_{\text{collision}}\left[\left\{f_{\pm}(\mathbf{k}', t)\right\}\right] \quad \propto \alpha^2$$

Linearization:

$$f_{\pm}(\mathbf{k},t) = f_{\pm}^{eq}(\mathbf{k},t) + \delta f_{\pm}(\mathbf{k},t)$$

Great simplification: Divergence of collinear scattering amplitude

$$\operatorname{Amp}\left[\longrightarrow\longrightarrow\rightarrow\overrightarrow{}\right]\rightarrow\infty$$

 $\rightarrow$  Equilibration along unidimensional spatial directions

$$f_{\pm}(\mathbf{k},t) = f_{\pm}^{eq}(\mathbf{k},\mu \to \mu_{eq} + \delta\mu(t)); \ \delta\mu = C(t)\frac{\mathbf{E}\cdot\mathbf{k}}{k}$$

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Quantum critical situation: Particle-hole symmetry ( $\rho = 0$ ), no impurities

Quantum Boltzmann equation

$$\left(\partial_{t} + e\mathbf{E} \cdot \frac{\partial}{\partial \mathbf{k}}\right) f_{\pm}(\mathbf{k}, t) = I_{\text{collision}}\left[\left\{f_{\pm}(\mathbf{k}', t)\right\}\right] \quad \propto \alpha^{2}$$

Linearization:

$$f_{\pm}(\mathbf{k},t) = f_{\pm}^{eq}(\mathbf{k},t) + \delta f_{\pm}(\mathbf{k},t)$$

Great simplification: Divergence of collinear scattering amplitude

$$\operatorname{Amp}\left[ \longrightarrow \longrightarrow \right] \rightarrow \infty$$

 $\rightarrow$  Equilibration along unidimensional spatial directions

$$f_{\pm}(\mathbf{k},t) = f_{\pm}^{eq}(\mathbf{k},\mu \to \mu_{eq} + \delta\mu(t)); \ \delta\mu = C(t)\frac{\mathbf{E}\cdot\mathbf{k}}{k}$$

$$\longrightarrow \sigma(\omega=0) \approx \frac{0.76}{\alpha^2} \frac{e^2}{h}$$

### Thermoelectric response

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Charge and heat current:  $J^{\mu} = \rho u^{\mu} + \nu^{\mu} \qquad Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu}$ 

Thermo-electric response in the particle picture

$$\begin{pmatrix} \vec{J} \\ \vec{Q} \end{pmatrix} = \begin{pmatrix} \hat{\sigma} & \hat{\alpha} \\ T\hat{\alpha} & \hat{\vec{\kappa}} \end{pmatrix} \begin{pmatrix} \vec{E} \\ -\vec{\nabla}T \end{pmatrix} \qquad \qquad \hat{\sigma} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ -\sigma_{xy} & \sigma_{xx} \end{pmatrix} \quad \text{etc.}$$

### Thermoelectric response

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Charge and heat current:  $J^{\mu} = \rho u^{\mu} + \nu^{\mu} \qquad Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu}$ 

Thermo-electric response in the particle picture

Thermo-electric response in the vortex picture

$$\begin{pmatrix} \vec{E} \\ \vec{Q} \end{pmatrix} = \begin{pmatrix} \hat{\rho} & \hat{\vartheta} \\ T \hat{\vartheta} & \hat{\kappa} \end{pmatrix} \begin{pmatrix} \vec{J} \\ -\vec{\nabla}T \end{pmatrix} \qquad \begin{array}{c} \text{Nernst signal} & \text{Nernst coefficient} \\ e_N \equiv \vartheta_{yx} & \nu = e_N/B \end{array}$$

### Thermoelectric response

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Charge and heat current:  $J^{\mu} = \rho u^{\mu} + \nu^{\mu} \qquad Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu}$ 

Thermo-electric response in the particle picture

Thermo-electric response in the vortex picture

$$\begin{pmatrix} \vec{E} \\ \vec{Q} \end{pmatrix} = \begin{pmatrix} \hat{\rho} & \hat{\vartheta} \\ T \hat{\vartheta} & \hat{\kappa} \end{pmatrix} \begin{pmatrix} \vec{J} \\ -\vec{\nabla}T \end{pmatrix} \qquad \begin{array}{c} \text{Nernst signal} \\ e_N \equiv \vartheta_{yx} \\ v = e_N / B \end{array} \qquad \begin{array}{c} \text{Nernst coefficient} \\ \nu = e_N / B \\ \end{array}$$

Task: i) Solve linearized hydrodynamic equations;ii) Read off the response functions (Kadanoff & Martin 1960)

## Results

Symmetry  $z \rightarrow -z$ :  $\sigma_{xy} = \alpha_{xy} = \kappa_{xy} = 0$ 

Longitudinal conductivity:

$$\sigma_{xx}(\omega,k;B=0) = \left(\sigma_Q + \frac{\rho^2}{P+\varepsilon}\frac{\tau}{1-i\omega\tau}\right)$$

Universal conductivity at the quantum critical point  $\rho = 0$ 

Drude-like conductivity, divergent for Momentum conservation ( $\rho \neq 0$ )!  $\tau \to \infty, \omega \to 0, \rho \neq 0$ 

Symmetry  $z \rightarrow -z$ :  $\sigma_{xy} = \alpha_{xy} = \kappa_{xy} = 0$ 

Longitudinal conductivity:

$$\sigma_{xx}(\omega,k;B=0) = \left(\sigma_Q + \frac{\rho^2}{P+\varepsilon} \frac{\tau}{1-i\omega\tau}\right)$$

non-relativistic limit: 
$$\frac{\varepsilon + P}{\rho} \rightarrow mv^2$$
 "energy (enthalpy) per particle"

Symmetry  $z \rightarrow -z$ :  $\sigma_{xy} = \alpha_{xy} = \kappa_{xy} = 0$ 

Longitudinal conductivity:

$$\sigma_{xx}(\omega,k;B=0) = \left(\sigma_Q + \frac{e^2\rho}{m}\frac{\tau}{1-i\omega\tau}\right)$$
  
non-relativistic limit:  $\frac{\varepsilon+P}{\rho} \to mv^2$  "energy (enthalpy) per particle"

Symmetry  $z \rightarrow -z$ :  $\sigma_{xy} = \alpha_{xy} = \kappa_{xy} = 0$ 

Longitudinal conductivity:  $\begin{aligned}
& Coulomb correction \\
& (g = 2\pi e^2)
\end{aligned}$   $\sigma_{xx}(\omega, k; B = 0) = \left(\sigma_Q + \frac{\rho^2}{P + \varepsilon} \frac{\tau}{1 - i\omega\tau}\right) \left[1 - \frac{igk}{\omega} \left(\sigma_Q + \frac{\tau}{1 - i\omega\tau} \frac{\rho^2}{P + \varepsilon}\right)\right] + O(k^2)
\end{aligned}$ 

Symmetry  $z \rightarrow -z$ :  $\sigma_{xy} = \alpha_{xy} = \kappa_{xy} = 0$ 

Longitudinal conductivity:  $\begin{aligned}
& Coulomb correction \\
& (g = 2\pi e^2)
\end{aligned}$   $\sigma_{xx}(\omega, k; B = 0) = \left(\sigma_Q + \frac{\rho^2}{P + \varepsilon} \frac{\tau}{1 - i\omega\tau}\right) \left[1 - \frac{igk}{\omega} \left(\sigma_Q + \frac{\tau}{1 - i\omega\tau} \frac{\rho^2}{P + \varepsilon}\right)\right] + O(k^2)$ 

Thermal conductivity:

$$\kappa_{xx}(\omega, k; B = 0) = \sigma_Q \frac{\mu^2}{T} + \frac{s^2 T}{P + \varepsilon} \frac{\tau}{1 - i\omega\tau} + \mathcal{O}(k^2).$$

Relativistic Wiedemann-Frantz-like relations between  $\sigma$  and  $\kappa$ !

## B > 0 : Cyclotron resonance

E.g.: Hall conductivity

$$\sigma_{xy}(\omega,k) = -\frac{\rho}{B} \frac{\omega_c^2 + \gamma^2 + 2\gamma(1/\tau - i\omega)}{(\omega + i/\tau + i\gamma)^2 - \omega_c^2}$$
  
Poles in the response 
$$\omega = \pm \omega_c^{rel} - i\gamma - i/\tau$$

Collective cyclotron frequency of the relativistic plasma

$$\omega_{c}^{rel} = \frac{v^{2}}{c^{2}} \frac{2e B}{(\varepsilon + P)/\rho c} \iff \omega_{c}^{nonrel} = \frac{2e B}{mc}$$

## B > 0 : Cyclotron resonance

E.g.: Hall conductivity

$$\sigma_{xy}(\omega,k) = -\frac{\rho}{B} \frac{\omega_c^2 + \gamma^2 + 2\gamma(1/\tau - i\omega)}{(\omega + i/\tau + i\gamma)^2 - \omega_c^2}$$
  
Poles in the response 
$$\omega = \pm \omega_c^{rel} - i\gamma - i/\tau$$

Collective cyclotron frequency of the relativistic plasma

$$\omega_{c}^{rel} = \frac{v^{2}}{c^{2}} \frac{2e B}{(\varepsilon + P)/\rho c} \iff \omega_{c}^{nonrel} = \frac{2e B}{mc}$$

$$) + \rightarrow 0$$

Intrinsic, interaction-induced broadening (↔ Galilean invariant systems: No broadening due to Kohn's theorem)

$$\gamma = \sigma_Q \frac{v^2}{c^2} \frac{B^2}{\varepsilon + P}$$

## B > 0 : Cyclotron resonance

Longitudinal conductivity

$$\sigma_{xx}(\omega,k) = \sigma_Q \frac{(\omega+i/\tau)\left(\omega+i/\tau+i\gamma+i\omega_c^2/\gamma\right)}{\left(\omega+i/\tau+i\gamma\right)^2 - \omega_c^2}$$

Poles in the response

$$\omega = \pm \omega_c^{rel} - i\gamma - i/\tau$$



## Cyclotron resonance in graphene!

MM, and S. Sachdev, cond-mat 0801.2970.



$$\omega = \pm \omega_c^{rel} - i\gamma - i/\tau$$

$$v = 1.1 \cdot 10^6 m/s$$

$$\approx c/300$$



## Cyclotron resonance in graphene!

MM. and S. Sachdev. cond-mat 0801.2970.



$$\omega = \pm \omega_c^{rel} - i\gamma - i/\tau$$

$$v = 1.1 \cdot 10^6 \, m \, / \, s$$
$$\approx c \, / \, 300$$



### Conditions to observe resonance

Negligible Landau quantization  $E_{LL} = \hbar v \sqrt{\frac{2eB}{\hbar c}} << k_B T$ Hydrodynamic,  $\hbar \omega_c^{rel} \ll k_B T$ collison-dominated regime Negligible broadening  $\gamma, \tau^{-1} < \omega_c^{rel}$ Relativistic, quantum critical regime  $\rho \le \rho_{th} = \frac{(k_B T)^2}{(\hbar v)^2}$ 

$$T \approx 300K$$
$$B \approx 0.1T$$
$$\rho \approx 10^{11} cm^{-2}$$
$$\omega_c \approx 10^{13} s^{-1}$$

### AdS/CFT correspondence:

Recover magnetohydrodynamics from String theory techniques

The AdS/CFT correspondence (Maldacena, Polyakov) relates CFTs to the quantum gravity theory of a black hole in Anti-de Sitter (AdS) space.

The AdS/CFT correspondence (Maldacena, Polyakov) relates CFTs to the quantum gravity theory of a black hole in Anti-de Sitter (AdS) space.



- 2+1 dimensional CFT holographically represents the black hole physics, the CFT living on the boundary of AdS<sub>3+1</sub> space
- The temperature of the CFT equals the Hawking temperature of the black hole.

Black hole

### Goal:

- Solve exactly a conformal field theory (CFT), obtain  $\sigma_0$
- Soluble theories: Supersymmetric Yang-Mills theory, perturbed by
  - a chemical potential
  - a magnetic field

Simplest gravitational dual to CFT<sub>2+1</sub>: Einstein-Maxwell theory

$$I = \frac{1}{g^2} \int d^4 x \sqrt{-g} \left[ -\frac{1}{4}R + \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{3}{2} \right]$$

(embedded in M theory as  $AdS_4 \times S^7$ :  $1/g^2 \sim N^{3/2}$ )

It has a black hole solution (with electric and magnetic charge):

$$ds^{2} = \frac{\alpha^{2}}{z^{2}} \left[ -f(z)dt^{2} + dx^{2} + dy^{2} \right] + \frac{1}{z^{2}} \frac{dz^{2}}{f(z)},$$

 $F = h \alpha^2 dx \wedge dy + q \alpha dz \wedge dt$ ,  $f(z) = 1 + (h^2 + q^2)z^4 - (1 + h^2 + q^2)z^3$ .

Electric charge q and magnetic charge, h

 $\leftrightarrow \mu$  and *B* for the CFT

AdS<sub>3+1</sub>

z = 0

Black hole

Simplest gravitational dual to CFT<sub>2+1</sub>: Einstein-Maxwell theory

$$I = \frac{1}{g^2} \int d^4 x \sqrt{-g} \left[ -\frac{1}{4}R + \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{3}{2} \right]$$

(embedded in M theory as  $AdS_4 \times S^7$ :  $1/g^2 \sim N^{3/2}$ )

It has a black hole solution (with electric and magnetic charge):



### Main results

- Precise agreement with MHD, *without* imposing the principle of positivity of entropy production!
- Exact value for  $\sigma_Q$ .
- Proven potential to go beyond MHD
   S. Hartnoll+Ch. Herzog: beyond small B, calculation of τ<sub>imp</sub>(ρ,B).
Comparison of hydrodynamics with experiments in high  $T_c$ 's

# Nernst signal (B > 0)

$$e_N \equiv N = \frac{E_y}{-\vec{\nabla}_x T} \qquad (\vec{J} = 0)$$

Nernst signal

$$e_{N} = \left(\frac{k_{B}}{2e}\right) \left(\frac{\varepsilon + P}{k_{B}T\rho}\right) \left[\frac{\omega_{c}/\tau_{\rm imp}}{(\omega_{c}^{2}/\gamma + 1/\tau_{\rm imp})^{2} + \omega_{c}^{2}}\right]_{160}^{180} \qquad La_{2.x}Sr_{x}CuO_{4}$$
Quantum unit of the Nernst signal 
$$\frac{k_{B}}{2e} = 43.086 \ \mu \text{V/K}$$

## Comparison with experiment: Peltier coefficient

$$\alpha_{xy} = \left(\frac{2ek_B}{h}\right) \left(\frac{s/k_B}{B/\phi_0}\right) \left[\frac{\gamma^2 + \omega_c^2 + \gamma/\tau_{imp}\{1 - \mu\rho/(Ts)\}}{(\gamma + 1/\tau_{imp})^2 + \omega_c^2}\right]$$

Quantum critical scaling:  $\varepsilon, P = \#T^3$ ;  $s = \#T^2$ ;  $\sigma_Q = \#T^2$ 

$$\alpha_{xy} \propto \frac{BT^{2} (\# \rho^{2} \tau_{imp} + \# T^{3})}{T^{6} + \# B^{2} \rho^{2} \tau_{imp}^{2}}$$

## Comparison with experiment: Peltier coefficient

$$\alpha_{xy} = \left(\frac{2ek_B}{h}\right) \left(\frac{s/k_B}{B/\phi_0}\right) \left[\frac{\gamma^2 + \omega_c^2 + \gamma/\tau_{imp}\{1 - \mu\rho/(Ts)\}}{(\gamma + 1/\tau_{imp})^2 + \omega_c^2}\right]$$

Quantum critical scaling:  $\varepsilon, P = \#T^3$ ;  $s = \#T^2$ ;  $\sigma_Q = \#T^2$ 



## Comparison with experiment: Peltier coefficient

$$\alpha_{xy} = \left(\frac{2ek_B}{h}\right) \left(\frac{s/k_B}{B/\phi_0}\right) \left[\frac{\gamma^2 + \omega_c^2 + \gamma/\tau_{imp}\{1 - \mu\rho/(Ts)\}}{(\gamma + 1/\tau_{imp})^2 + \omega_c^2}\right]$$

Quantum critical scaling:  $\varepsilon, P = \#T^3$ ;  $s = \#T^2$ ;  $\sigma_Q = \#T^2$ 





Y. Wang et al., Phys. Rev. B 73, 024510 (2006).





B, T -dependence



Y. Wang, L. Li, and N. P. Ong, Phys. Rev. B 73, 024510 (2006).

## Conclusions

- General theory of transport in a weakly disordered "vortex liquid" state close to a QCP.
- Simplest model reproduces many trends of the Nernst measurements in cuprates.
- Collective cyclotron resonance observable in graphene
- Exact solutions via black hole mapping have yielded first exact results for transport co-efficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics.