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Outline

• Relativistic physics in graphene, quantum 
critical systems and conformal field theories
→ Relativistic signatures in magnetotransport: 
el.+th. conductivity, Peltier, Nernst effect etc. 

• Hydrodynamic description
→ Collective, collision-broadened cyclotron resonance

• Boltzmann equation
→ Recover and refine hydrodynamics with Boltzmann
→ Describe relativistic-to-Fermi liquid crossover
→ Go beyond hydrodynamics
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Relativistic fluid at the Dirac point

[ ]( )nn Λ+ ln 1 α

Expect relativistic plasmaphysics of 
interacting particles and holes!

D. Sheehy, J. Schmalian, Phys. Rev. Lett. 99, 226803 (2007).

“Quantum critical”
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Expect relativistic plasmaphysics of 
interacting particles and holes!

T<<ω
Hydrodynamics?
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Conductivity in and across 
the relativistic regime?

J.-H. Chen et al. Nat. Phys. 4, 377 (2008).

+ Magnetotransport?
e.g., Hall, Nernst effect?



Other relativistic fluids: 

• Bismuth (3d Dirac fermions with very small mass)

• Effective theories close to quantum phase transitions

• Conformal field theories 
E.g.: strongly coupled Non-Abelian gauge theories    

(QCD): tretament via AdS-CFT



Low energy effective 
theory at

quantum phase transitions 

Example: Superconductor-insulator transition (SIT)

Bhaseen, Green, Sondhi (PRL ’07).
Hartnoll, Kovtun, MM, Sachdev (PRB ’07)

Relativistic effective field theories ↔ z = 1; 
arise often due to particle-hole symmetry
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SI-transition: Bose Hubbard model

∑ ∑∑ −+−= +

ij i
i

i
iij nnUbbtH µ2

U

t
g ≡ tunes the SI-transition 

Effective action around gc (µ = 0): 

Bose-Hubbard model

Coupling

→ Relativistic field theory in d=2+1

0=ψ
0≠ψ

QCP
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Questions

• Transport characteristicsof the relativistic 
plasma in lightly doped graphene and 
close to quantum criticality?

• How does the relativistic regimeconnect to 
Fermi liquidbehavior at large doping?

• What is the range of validity of relativistic 
magneto-hydrodynamics?

• Beyond hydrodynamics?

impimp ~ ρT

µ=T
Relativistic, 

hydrodynamic 
regime

µ
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Model of graphene
dis10 HHHH ++=Graphene with Coulomb 

interactions and disorder 

Tight binding kinetic energy

Coulomb interactions

Disorder: charged impurities

Screening neglected (down by factor α)Coulomb marginally irrelevant!

cAeii /
rrr

−∇→∇B-field:



Time scales

1. Inelastic scattering rate
(Electron-electron interactions)

MM, L. Fritz, and S. Sachdev, cond-mat 0805.1413.
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3. Deflection rate due to magnetic field
(Cyclotron frequency of non-interacting 
particles with typical thermal energy )
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Regimes

1. Hydrodynamic regime:
(collision-dominated)

MM, L. Fritz, and S. Sachdev, cond-mat 0805.1413.
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Regimes

1. Hydrodynamic regime:
(collision-dominated)

MM, L. Fritz, and S. Sachdev, cond-mat 0805.1413.

ωτττ ,, 1
B

1
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1
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2. Ballistic magnetotransport
(large field limit)

T>>µ

ωτττ ,1
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1
B
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3. Disorder limited transport
(inelastic scattering ineffective due to 
nearly conserved momentum)

1
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1
ee    −− ττ <>



Hydrodynamic 
Approach



Hydrodynamics

Hydrodynamic collision-dominated regime
Long times,
Large scales eeτ>>t
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• Local equilibrium established:

• Study relaxation towards global equilibrium

• Slow modes: Diffusion of the density of conserved quantities:

• Charge 
• Momentum
• Energy

  
Tloc r( ) , µloc r( ) ;  r u loc r( )

Hydrodynamics

Hydrodynamic collision-dominated regime
Long times,
Large scales eeτ>>t

ωτττ ,, 1
B

1
imp

1
ee
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S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Relativistic Hydrodynamics

 :

 :

   :
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µ
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τ
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u ( ) →= 0,0,1µuEnergy velocity:

Dissipative current (“heat current”)

Viscous stress tensor (Reynold’s tensor)

Current 3-vector
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S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Relativistic Hydrodynamics

+ Thermodynamic relations

 :
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S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).
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Charge conservation

Heat current and viscous tensor?
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Relativistic Hydrodynamics

( ) µµµ µε JuPQ −+=Heat current

→ Entropy current TQS µµ =

Positivity of 
entropy production

(Second law):

Heat current and viscous tensor?

Landau-Lifschitz, 
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Relativistic Hydrodynamics

( ) µµµ µε JuPQ −+=Heat current

→ Entropy current TQS µµ =

Positivity of 
entropy production

(Second law):

Heat current and viscous tensor?

Landau-Lifschitz, 
Relat. plasma physics

Irrelevant for response at k → 0 One singletransport coefficient (instead of two)!

( ) ( )
( )

α
α

µνµνµν

µνµµ

αβµν
αβ

αµν
α

µ
µ

δτ
µν

τµνµ

BB

FuTA

FTBFTAS

×+×=
∂∂∂×=⇒

≥∂∂+∂∂≡∂

const.const.     

;,,const.  

    0 ,, ,,



Meaning of  σQ ?

• Dimension of electrical conductivity

• At zero doping (particle-hole symmetry):

= Universal d.c. conductivity of  the pure system

( )0imp == ρσσ xxQ

( )0imp =ρσ xx
Why is                       finite ?? 



Universal conductivity σQ

Particle-hole symmetry (ρ = 0)

• Key: Charge current without momentum (energy current)!

• Finite “quantum critical” conductivity!

Pair creation/annihilation 
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S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Thermoelectric response 

Charge and heat current:

( ) µµµ µε JuPQ   −+=

Thermo-electric response

etc.

µµµ νρ −= uJ  



S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Thermoelectric response 

i) Solve linearized hydrodynamic equations
ii) Read off the response functions (Kadanoff & Martin 1960)

Charge and heat current:

( ) µµµ µε JuPQ   −+=

Thermo-electric response

etc.

µµµ νρ −= uJ  



Results from Hydrodynamics



Response functions at B=0

Longitudinal conductivity:

0=== xyxyxy κασSymmetry z → -z :

Universal conductivity at the quantum critical point ρ = 0

Drude-like conductivity, divergent for 
Momentum conservation (ρ≠0)!

0,0, ≠→∞→ ρωτ
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Response functions at B=0

Longitudinal conductivity:

0=== xyxyxy κασSymmetry z → -z :

Coulomb correction

Thermal conductivity:

Relativistic Wiedemann-Franz-like 
relations between σ and κ in the quantum 

critical window!

( )2kO+

( )2 2 eg π=



Response functions at B=0

Longitudinal conductivity:

0=== xyxyxy κασSymmetry z → -z :

Coulomb correction

Thermopower:

( )2kO+

Only valid in theFermi liquidregime, 
but violated in the relativistic window.

Relativistic 
fluid!
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B > 0 : Cyclotron resonance

Collective cyclotron frequency of the relativistic plasma

Poles in the response τγωω iic −−±= QC
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= ω
ε

ρω

E.g.: Longitudinal conductivity



B > 0 : Cyclotron resonance

Collective cyclotron frequency of the relativistic plasma

Intrinsic, interaction-induced broadening
(↔ Galilean invariant systems:
No broadening due to Kohn’s theorem)

τγωω iic −−±= QCPoles in the response

E.g.: Longitudinal conductivity
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B > 0 : Cyclotron resonance

Poles in the response

Longitudinal conductivity

τγωω iic −−±= QC



Can the resonance be observed?
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Conditions to observe collective cyclotron resonance
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Does relativistic 
hydrodynamics apply?

• Do T and µ not break relativistic invariance?

• Validity at large chemical potential? 

• Beyond linearization in magnetic field?

• Treatment of disorder?



Boltzmann Approach

→ Recover and refine the 
hydrodynamic description

→ Describe relativistic-to-Fermi-
liquid crossover

→ Go beyond hydrodynamics

MM, L. Fritz, and S. Sachdev, cond-mat 0805.1413.



σQ from Boltzmann
L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat0802.4289
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σQ from Boltzmann
L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat0802.4289

Linearization: ( ) ( ) ( )tftftf eq ,,, kkk ±±± += δ
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σQ from Boltzmann
L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat0802.4289

Linearization: ( ) ( ) ( )tftftf eq ,,, kkk ±±± += δ
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Central element of analysis: Choose appropriate basis  

Momentum or energy-current mode
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Boltzmann equation in Born approximation
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General analysis in linear response:

Central element of analysis: Choose appropriate basis  ( ) ( )∑=±=
n

nn katkg ,, λφλ

Momentum or energy-current mode
Charge current mode

Relativistic dispersion ensures that ϕ0
only couples to ϕ1 for clean systems!

Boltzmann equation in Born approximation
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General doping:

Clean system:

( )
2

2

µ
µσ T

Q ∝

( )
h

e
Q

2

2

76.0
0

α
µσ ≈=

Will appear in all Boltzmann formulae below!

Gradual disappearance 
of relativistic physics

Precise expression 
for σQ!
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General doping:

Lightly disordered system:

Fermi liquid regime:

Maryland group (‘08):
Graphene
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J.-H. Chen et al. Nat. Phys. 4, 377 (2008).

← Correction to hydrodynamics

Universal Cb
limited conductivity

Impurity limited 
conductivity
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Magnetotransport

1
B

1
ee

−− >>ττ

• Strategy:describe the slow dynamics of the momentum mode ϕ0 in 
very weak disorder and moderate magnetic field

Result:Full thermoelectric response (for general B) obtained in terms 
of thermodynamic quantities + only 2 independent transport 
coefficients (collision matrix elements)! 

• At small B,  one transport coefficient is subdominant 
→ Relativistic hydrodynamics with only one transport coefficient σQ is 
recovered!

Hydrodynamics
Boltzmann

Cyclotron 
resonance:



Cyclotron resonance revisited
Crossover to Fermi liquid regime:

• Semiclassicalωc recovered at µ >> T

• Broadening goes to zero -Kohn’s theorem 
recovered: Non-broadening of the 
resonance for a single parabolic band.

( ) 0
T

Q

>>
→∝

µ
µσγ



Cyclotron resonance revisited
Beyond hydrodynamics: Towards ballistic magnetotransport

ωτττ ,1
imp

1
ee

1
B

−−− >>>Large fields

Resonance Damping

T=µ



Strongly coupled liquids 
Same trends as in exact (AdS-CFT)results for strongly coupled relativistic fluids!

S. Hartnoll, C. Herzog (2007)

Resonance Damping

B B

Graphene

Exact
Exact

MHD
MHD

N = 4 SUSY SU(N) gauge theory  [flows to CFT at low energy]



Summary
• Relativistic physics in graphene

and quantum critical systems

• Hydrodynamic description:
→ collective cyclotron resonancein the relativistic regime
→ covariance: 6 frequency dependent response functions 
given bythermodynamics andonly oneparameter σQ.

• Boltzmann approach
→ Confirmedand refined hydrodynamicdescription
→ Understood relativistic-to-Fermi liquid crossover:

• From universal Coulomb-limited to disorder-limited 
linear conductivity in graphene

• From collective-broadened to semiclasscial sharp 
cyclotron resonance  

→ Beyond hydrodynamics: describe large fields and disorder


