Relativistic magnetotransportin graphene

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

Markus Müller

in collaboration withLars Fritz (Harvard)Subir Sachdev (Harvard)Jörg Schmalian (Iowa)

Landau Memorial Conference June 26, 2008

Outline

- • Relativistic physics in graphene, quantum critical systems and conformal field theories→ Relativistic signatures in magnetotransport:
el +th_conductivity_Peltier_Nernst effect etc el.+th. conductivity, Peltier, Nernst effect etc.
- Hydrodynamic description
	- → Collective, collision-broadened cyclotron resonance
- \bullet Boltzmann equation
	- \rightarrow Recover and refine hydrodynamics with Boltzmann
 \rightarrow Describe relativistic-to-Fermi liquid crossover
	- → Describe relativistic-to-Fermi liquid crossover
→ Go beyond bydrodynamics
	- \rightarrow Go beyond hydrodynamics

(Semenoff '84, Haldane '88)

Honeycomb lattice of C atoms

(Semenoff '84, Haldane '88)

Honeycomb lattice of C atoms

Tight binding dispersion

2 massless Dirac cones in the Brillouin zone:(Sublattice degree of freedom \leftrightarrow pseudospin)

Close to the two Fermi points **K**, **K'**:

$$
H \approx \mathbf{v}_F \left(\mathbf{p} - \mathbf{K} \right) \cdot \sigma_{\text{sublattice}}
$$

\n
$$
\rightarrow E_{\mathbf{k}} = \mathbf{v}_F |\mathbf{k} - \mathbf{K}|
$$

(Semenoff '84, Haldane '88)

Honeycomb lattice of C atoms

Tight binding dispersion

2 massless Dirac cones in the Brillouin zone:(Sublattice degree of freedom \leftrightarrow pseudospin)

Fermi velocity (speed of light")

Close to the two Fermi points **K**,**K'**:

$$
H \approx \mathbf{V}_F \left(\mathbf{p} - \mathbf{K} \right) \cdot \sigma_{\text{sublattice}}
$$

\n
$$
\rightarrow E_{\mathbf{k}} = \mathbf{V}_F |\mathbf{k} - \mathbf{K}|
$$

$$
v_F \approx 1.1 \cdot 10^6 \text{ m/s} \approx \frac{c}{300}
$$

(Semenoff '84, Haldane '88)

Honeycomb lattice of C atoms

Tight binding dispersion

2 massless Dirac cones in the Brillouin zone:(Sublattice degree of freedom \leftrightarrow pseudospin)

Close to the two Fermi points **K**, **K'**:

v

$$
H \approx \mathbf{v}_F \left(\mathbf{p} - \mathbf{K} \right) \cdot \sigma_{\text{sublattice}}
$$

\n
$$
\rightarrow E_{\mathbf{k}} = \mathbf{v}_F |\mathbf{k} - \mathbf{K}|
$$

Fermi velocity (speed of light")

$$
v_F \approx 1.1 \cdot 10^6 \text{ m/s} \approx \frac{c}{300}
$$

 $\left(1\right)$ 1v2*OeF*≡=εhα

Coulomb interactions: Fine structure constant

Relativistic fluid at the Dirac point

Expect relativistic plasma ^physics of interacting particles and holes!

D. Sheehy, J. Schmalian, Phys. Rev. Lett. 99, 226803 (2007).

Expect relativistic plasma ^physics of interacting particles and holes!

Conductivity in and across the relativistic regime?

J.-H. Chen et al. Nat. Phys. 4, 377 (2008).

Conductivity in and across the relativistic regime?

Other relativistic fluids:

- Bismuth (3d Dirac fermions with very small mass)
- Effective theories close to quantum phase transitions
- Conformal field theories E.g.: strongly coupled Non-Abelian gauge theories (QCD): tretament via AdS-CFT

Low energy effective theory atquantum phase transitions

Relativistic effective field theories \leftrightarrow z = 1;
arise often due to particle-hole symmetry arise often due to particle-hole symmetry

Example: Superconductor-insulator transition (SIT)

Bhaseen, Green, Sondhi (PRL '07). Hartnoll, Kovtun, MM, Sachdev (PRB '07)

SI-transition: Bose Hubbard model

Bose-Hubbard model

$$
H = -t \sum_{\langle ij \rangle} b_j^{\dagger} b_i + U \sum_i n_i^2 - \mu \sum_i n_i
$$

U $g\equiv \frac{t}{t}$ tunes the SI-transition Coupling

SI-transition: Bose Hubbard model

Bose-Hubbard modelSuperfluid $=-t\sum_{\langle ij\rangle}b_j^{+}b_i^{-} + U\sum_{i}n_{i}^{2} -\mu\sum_{i}% ^{2}b_i^{-}b_j^{-} +U\sum_{i}a_i^{2}b_i^{-} \label{E.10}$ $H = -t \sum_{i} b_{j}^{+} b_{i}^{+} + U \sum_{i} n_{i}^{2} - \mu \sum_{i} n_{i}$ = \ket{ij} , and the set of i , and the set of i , and the set of i , and the set of i *i*Commensurate QCPMott insulator Ω Coupling $g \equiv \frac{t}{l}$ $= 0$ tunes the SI-transition $\langle \psi \rangle = 0$ $\langle \psi \rangle \neq 0$ *U*ψEffective action around g_c ($\mu = 0$):

SI-transition: Bose Hubbard model

 \rightarrow Relativistic field theory in d=2+1

Questions

• Transport characteristics of the relativistic plasma in lightly doped graphene and close to quantum criticality?

Questions

- Transport characteristics of the relativistic plasma in lightly doped graphene and close to quantum criticality?
- How does the relativistic regime connect to Fermi liquid behavior at large doping?

Questions

- Transport characteristics of the relativistic plasma in lightly doped graphene and close to quantum criticality?
- How does the relativistic regime connect to Fermi liquid behavior at large doping?
- What is the range of validity of relativistic magneto-hydrodynamics?
- Beyond hydrodynamics?

 Graphene with Coulomb interactions and disorder

$$
H = H_0 + H_1 + H_{\text{dis}}
$$

Tight binding kinetic energy

$$
H_0 = -\sum_{a=1}^{N} \int d\mathbf{x} \left[\Psi_a^{\dagger} \left(i v_F \vec{\sigma} \cdot \vec{\nabla} + \mu \right) \Psi_a \right]
$$

$$
H_0 = \sum_{\lambda = \pm} \sum_{a=1}^{N} \int \frac{d^2 k}{(2\pi)^2} \lambda v_F k \gamma_{\lambda a}^{\dagger}(\mathbf{k}) \gamma_{\lambda a}(\mathbf{k})
$$

 Graphene with Coulomb interactions and disorder

$$
H = H_0 + H_1 + H_{\text{dis}}
$$

Tight binding kinetic energy

$$
H_0 = -\sum_{a=1}^N \int d\mathbf{x} \left[\Psi_a^{\dagger} \left(i v_F \vec{\sigma} \cdot \vec{\nabla} + \mu \right) \Psi_a \right]
$$

$$
H_0 = \sum_{\lambda = \pm}^N \sum_{a=1}^N \int \frac{d^2 k}{(2\pi)^2} \lambda v_F k \gamma_{\lambda a}^{\dagger}(\mathbf{k}) \gamma_{\lambda a}(\mathbf{k})
$$

 Graphene with Coulomb interactions and disorder

$$
H = H_0 + H_1 + H_{\text{dis}}
$$

Tight binding kinetic energy

$$
H_0 = -\sum_{a=1}^{N} \int d\mathbf{x} \left[\Psi_a^{\dagger} \left(i v_F \vec{\sigma} \cdot \vec{\nabla} + \mu \right) \Psi_a \right]
$$

$$
H_0 = \sum_{\lambda = \pm}^{N} \sum_{a=1}^{N} \int \frac{d^2 k}{(2\pi)^2} \lambda v_F k \gamma_{\lambda a}^{\dagger}(\mathbf{k}) \gamma_{\lambda a}(\mathbf{k})
$$

 \rightarrow

 \rightarrow

 \rightarrow

Coulomb interactions

$$
H_1 = \frac{1}{2} \int \frac{d^2 k_1}{(2\pi)^2} \frac{d^2 k_2}{(2\pi)^2} \frac{d^2 q}{(2\pi)^2} \Psi_a^{\dagger}(\mathbf{k}_2 - \mathbf{q}) \Psi_a(\mathbf{k}_2) V(\mathbf{q}) \Psi_b^{\dagger}(\mathbf{k}_1 + \mathbf{q}) \Psi_b(\mathbf{k}_1)
$$

$$
V(\mathbf{q}) = \frac{2\pi e^2}{\varepsilon |\mathbf{q}|}
$$

 Graphene with Coulomb interactions and disorder

$$
H = H_0 + H_1 + H_{\text{dis}}
$$

Tight binding kinetic energy

$$
H_0 = -\sum_{a=1}^{N} \int d\mathbf{x} \left[\Psi_a^{\dagger} \left(i v_F \vec{\sigma} \cdot \vec{\nabla} + \mu \right) \Psi_a \right]
$$

$$
H_0 = \sum_{\lambda = \pm}^{N} \sum_{a=1}^{N} \int \frac{d^2 k}{(2\pi)^2} \lambda v_F k \gamma_{\lambda a}^{\dagger}(\mathbf{k}) \gamma_{\lambda a}(\mathbf{k})
$$

 \rightarrow

 \rightarrow

 \rightarrow

Coulomb interactions

$$
H_1 = \frac{1}{2} \int \frac{d^2 k_1}{(2\pi)^2} \frac{d^2 k_2}{(2\pi)^2} \frac{d^2 q}{(2\pi)^2} \Psi_a^{\dagger}(\mathbf{k}_2 - \mathbf{q}) \Psi_a(\mathbf{k}_2) V(\mathbf{q}) \Psi_b^{\dagger}(\mathbf{k}_1 + \mathbf{q}) \Psi_b(\mathbf{k}_1)
$$

Coulomb marginally irrelevant!

$$
\alpha \equiv \frac{e^2}{\varepsilon_r \hbar v_F} = O(1) \qquad \qquad \text{RG:}
$$

$$
\frac{d\alpha}{d\ell} = -\frac{\alpha^2}{4} + \mathcal{O}(\alpha^3)
$$

$$
\alpha(T) = \frac{\alpha^0}{1 + (\alpha^0/4)\ln(\Lambda/T)} \xrightarrow{T \to 0} \frac{4}{\ln(\Lambda/T)}
$$

 Graphene with Coulomb interactions and disorder

$$
H = H_0 + H_1 + H_{\text{dis}}
$$

Tight binding kinetic energy

$$
H_0 = -\sum_{a=1}^{N} \int d\mathbf{x} \left[\Psi_a^{\dagger} \left(i v_F \vec{\sigma} \cdot \vec{\nabla} + \mu \right) \Psi_a \right]
$$

$$
H_0 = \sum_{\lambda = \pm}^{N} \sum_{a=1}^{N} \int \frac{d^2 k}{(2\pi)^2} \lambda v_F k \gamma_{\lambda a}^{\dagger}(\mathbf{k}) \gamma_{\lambda a}(\mathbf{k})
$$

 \rightarrow

 \rightarrow

 \rightarrow

Coulomb interactions

$$
H_1 = \frac{1}{2} \int \frac{d^2 k_1}{(2\pi)^2} \frac{d^2 k_2}{(2\pi)^2} \frac{d^2 q}{(2\pi)^2} \Psi_a^{\dagger}(\mathbf{k}_2 - \mathbf{q}) \Psi_a(\mathbf{k}_2) V(\mathbf{q}) \Psi_b^{\dagger}(\mathbf{k}_1 + \mathbf{q}) \Psi_b(\mathbf{k}_1)
$$

Coulomb marginally irrelevant! $V(\mathbf{q}) = \frac{2\pi e^2}{\varepsilon |\mathbf{q}|}$ **Screening neglected (down by factor α)**

 Graphene with Coulomb interactions and disorder

$$
H = H_0 + H_1 + H_{\text{dis}}
$$

Tight binding kinetic energy

$$
H_0 = -\sum_{a=1}^{N} \int d\mathbf{x} \left[\Psi_a^{\dagger} \left(i v_F \vec{\sigma} \cdot \vec{\nabla} + \mu \right) \Psi_a \right]
$$

$$
H_0 = \sum_{\lambda = \pm}^{N} \sum_{a=1}^{N} \int \frac{d^2 k}{(2\pi)^2} \lambda v_F k \gamma_{\lambda a}^{\dagger}(\mathbf{k}) \gamma_{\lambda a}(\mathbf{k})
$$

 \rightarrow

 \rightarrow

 \rightarrow

Coulomb interactions

$$
H_1 = \frac{1}{2} \int \frac{d^2 k_1}{(2\pi)^2} \frac{d^2 k_2}{(2\pi)^2} \frac{d^2 q}{(2\pi)^2} \Psi_a^{\dagger}(\mathbf{k}_2 - \mathbf{q}) \Psi_a(\mathbf{k}_2) V(\mathbf{q}) \Psi_b^{\dagger}(\mathbf{k}_1 + \mathbf{q}) \Psi_b(\mathbf{k}_1)
$$

Coulomb marginally irrelevant! $V(\mathbf{q}) = \frac{\mathbf{q} + \mathbf{q}}{\varepsilon |\mathbf{q}|}$ $V(\mathbf{q}) = \frac{\mathbf{q}}{\|\mathbf{q}\|}$ Screening neglected (down by factor α)

Disorder: charged impurities

$$
H_{\rm dis} = \int d\mathbf{x} V_{\rm dis}(\mathbf{x}) \Psi_a^{\dagger}(\mathbf{x}) \Psi_a(\mathbf{x}) \qquad V_{\rm dis}(\mathbf{x}) = \sum_i \delta(\mathbf{x} - \mathbf{x}_i) \frac{Ze^2}{\varepsilon |\mathbf{x} - \mathbf{x}_i|}.
$$

Time scales

MM, L. Fritz, and S. Sachdev, cond-mat 0805.1413.

1. Inelastic scattering rate(Electron-electron interactions)

$$
\tau_{\rm ee}^{-1} \sim \alpha^2 \frac{k_B T}{\hbar} \frac{1}{\max[1, \mu/T]}
$$

Relativistic regime $(\mu < T)$: Relaxation rate set by temperature, like in quantum critical systems!

$$
\text{ure,} \qquad \qquad \boxed{\tau_{\text{ee}}^{-1} \sim \alpha^2 \frac{k_B T}{\hbar}}
$$

Time scales

MM, L. Fritz, and S. Sachdev, cond-mat 0805.1413.

1. Inelastic scattering rate(Electron-electron interactions)

$$
\tau_{\rm ee}^{-1} \sim \alpha^2 \frac{k_B T}{\hbar} \frac{1}{\max[1, \mu/T]}
$$

Relativistic regime $(\mu < T)$: Relaxation rate set by temperature, like in quantum critical systems!

$$
\text{ure,} \qquad \qquad \boxed{\tau_{\text{ee}}^{-1} \sim \alpha^2 \frac{k_B T}{\hbar}}
$$

2. Elastic scattering rate(Scattering from charged impurities) $\tau_{\text{imp}}^{-1} \sim \frac{\tau_{\text{imp}}^{-1}}{2\pi}$

$$
\tau_{\rm imp}^{-1} \sim \frac{\left(Ze^2/\varepsilon\right)^2 \rho_{\rm imp}}{\hbar} \frac{1}{\max[T,\mu]}
$$

Time scales

MM, L. Fritz, and S. Sachdev, cond-mat 0805.1413.

1. Inelastic scattering rate(Electron-electron interactions)

$$
\tau_{\rm ee}^{-1} \sim \alpha^2 \frac{k_B T}{\hbar} \frac{1}{\max[1, \mu/T]}
$$

Relativistic regime $(\mu < T)$: Relaxation rate set by temperature, like in quantum critical systems!

$$
\text{ure,} \qquad \qquad \boxed{\tau_{\text{ee}}^{-1} \sim \alpha^2 \frac{k_B T}{\hbar}}
$$

2. Elastic scattering rate(Scattering from charged impurities)

$$
\tau_{\text{imp}}^{-1} \sim \frac{\left(Ze^2/\varepsilon\right)^2 \rho_{\text{imp}}}{\hbar} \frac{1}{\max[T,\mu]}
$$

2. Elastic scattering rate

(Scattering from charged impurities)

Subdominant at high T

3. Deflection rate due to magnetic field

(Cyclotron frequency of non-interacting

particles with typical thermal energy)
 $\tau_{\text{inp$

Regimes

MM, L. Fritz, and S. Sachdev, cond-mat 0805.1413.

1. Hydrodynamic regime:(collision-dominated)

 τ $\tau_{\text{ee}}^{-1} >> \tau_{\text{imp}}^{-1}, \tau_{\text{B}}^{-1}, \omega$

Regimes

MM, L. Fritz, and S. Sachdev, cond-mat 0805.1413.

1. Hydrodynamic regime:(collision-dominated)

$$
\boxed{\tau_{\mathrm{ee}}^{-1}>>\tau_{\mathrm{imp}}^{-1},\tau_{\mathrm{B}}^{-1},\omega}
$$

2. Ballistic magnetotransport(large field limit)

$$
\left|\mathcal{T}_\mathrm{B}^{-1} > \mathcal{T}_\mathrm{ee}^{-1} >\!> \mathcal{T}_\mathrm{imp}^{-1}, \omega\right|
$$

Regimes

MM, L. Fritz, and S. Sachdev, cond-mat 0805.1413.

1. Hydrodynamic regime:(collision-dominated)

$$
\boxed{\tau_{\mathrm{ee}}^{-1}>>\tau_{\mathrm{imp}}^{-1},\tau_{\mathrm{B}}^{-1},\omega}
$$

2. Ballistic magnetotransport(large field limit)

$$
\boxed{\tau_{\mathrm{B}}^{-1} > \tau_{\mathrm{ee}}^{-1} >> \tau_{\mathrm{imp}}^{-1}, \omega}
$$

3. Disorder limited transport(inelastic scattering ineffective due to nearly conserved momentum)

Hydrodynamic Approach

Hydrodynamics

Hydrodynamic collision-dominated regime

Long times, Large scales

Hydrodynamics

• Energy
S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

I

 \int

y

x u

u

ρ

 ρ ρ I

 $\bigg)$

Energy-momentum tensor
$$
T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + \tau^{\mu\nu}
$$

$$
\begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & P & 0 \\ 0 & 0 & P \end{pmatrix}
$$

Current 3-vector \setminus $\bigg($

> : u^{μ} : Energy velocity: $u^{\mu} = (1,0,0) \rightarrow$ No energy current

 V^{μ} : Dissipative current (" Dissipative current ("heat current")

 $\tau^{\mu\nu}$: Viscous stress tensor (Reynold's tensor)

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

I

I

Energy-momentum tensor
$$
T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} + \tau^{\mu\nu}
$$

$$
\begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & P & 0 \\ 0 & 0 & P \end{pmatrix}
$$

Current 3-vector
$$
J^{\mu} = \rho u^{\mu} + v^{\mu} \begin{bmatrix} \rho \\ \rho u_x \\ \rho u_y \end{bmatrix}
$$

 : u^{μ} : Energy velocity: $u^{\mu} = (1,0,0) \rightarrow$ No energy current

$$
V^{\mu}
$$
: Dissipative current ("heat current")

 $\tau^{\mu\nu}$: Viscous stress tensor (Reynold's tensor)

+ Thermodynamic relations

$$
\varepsilon + P = Ts + \mu \rho, \quad d\varepsilon = Tds + \mu d\rho,
$$

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

$$
J^{\mu} = \rho u^{\mu} + v^{\mu} \qquad T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + P g^{\mu\nu} + \tau^{\mu\nu}
$$

Conservation laws (equations of motion):

 $\partial_\mu J^\mu = 0$ Charge conservation

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

$$
J^{\mu} = \rho u^{\mu} + v^{\mu} \qquad T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + P g^{\mu\nu} + \tau^{\mu\nu}
$$

Conservation laws (equations of motion):

 $\partial_{\mu}J^{\mu}=0$ Charge conservation $F^{\mu\nu} = \begin{pmatrix} 0 & E_x & E_y \\ -E_x & 0 & B \\ -E_y & -B & 0 \end{pmatrix}$ Energy/momentum conservation110 0 \mathbf{v} \mathscr{S}^{ν} *T*ν $^{\prime\prime} \delta$ *T* 2π $\overline{}$ $\$ $\overline{0}$ \mathbf{u} \mathbf{v}_{μ} μ_0 $\vec{E} = -i\vec{k} \frac{2\pi}{|k|} \rho$ $-ik\frac{2\pi}{|k|}\rho_{\vec{k}}$ Coulomb interaction $E = -ik$ τ $=-\iota\kappa$ $\tau_{\rm max}$ r *k k*impimp

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

$$
J^{\mu} = \rho u^{\mu} + v^{\mu} \qquad T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + P g^{\mu\nu} + \tau^{\mu\nu}
$$

Conservation laws (equations of motion):

 $\partial_{\mu}J^{\mu}=0$ Charge conservation $F^{\mu\nu} = \begin{pmatrix} 0 & E_x & E_y \\ -E_x & 0 & B \\ -E_y & -B & 0 \end{pmatrix}$ Energy/momentum conservation110 0 \mathbf{v} \mathscr{S}^{ν} *T*ν $^{\prime\prime} \delta$ *T* 2π $\overline{}$ $\$ $\overline{0}$ \mathbf{u} \mathbf{v}_{μ} μ_0 $\vec{E} = -i\vec{k} \frac{2\pi}{|k|} \rho$ $-ik\frac{2\pi}{|k|}\rho_{\vec{k}}$ Coulomb interaction $E = -ik$ τ $=-\iota\kappa$ $\tau_{\rm max}$ r *k k*impimp

Heat current and viscous tensor?

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Q

Landau-Lifschitz, Relat. plasma physics

Heat current and viscous tensor?

Heat current
$$
Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu}
$$

\n \rightarrow Entropy current $S^{\mu} = Q^{\mu}/T$

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Landau-Lifschitz, Relat. plasma physics

> Positivity of entropy production(Second law):

Heat current $Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu}$

Heat current and viscous tensor?

 \rightarrow Entropy current $S^{\mu} = Q^{\mu}/T$

($\mu^{\mu} = \text{const.} \times A^{\mu}(\partial T, \partial \mu, \partial u; F^{\mu\nu})$)() α α $\tau^{\mu\nu} = \text{const.} \times B^{\mu\nu} + \text{const.} \times \delta^{\mu\nu} B$ $\partial_{\alpha\beta}\big(\!\partial T,\partial\mu,F^{\mu\nu}\big)\tau^{\alpha\beta}$ μ ^{μ} α (α , α) α , α $\partial_{\mu}S^{\mu}\equiv A_{\alpha}(\partial T,\partial\mu, F^{\mu\nu})\nu^{\alpha}+B_{\alpha\beta}(\partial T,\partial\mu, F^{\mu\nu})\tau^{\alpha\beta}\geq0$ $V^{\prime\prime} = \text{const.} \times A^{\prime\prime} \left(dI\right), d\mu$ A^{μ} *ldT*, $\partial \mu$, $\partial \mu$; F $=$ const. $\times B^{n}$ + const. \times \Rightarrow $v^{\mu} = \text{const.} \times A^{\mu}(\partial T, \partial \mu, \partial \mu)$ $const. \times B^{\mu\nu}$ + const. ${\rm const.}{\times}A^{\mu}({\partial}T,{\partial}\mu,{\partial}u;$

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Landau-Lifschitz, Relat. plasma physics

> Positivity of entropy production(Second law):

Heat current $Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu}$

Heat current and viscous tensor?

 \rightarrow Entropy current $S^{\mu} = Q^{\mu}/T$

($\Big(\!\partial T,\partial\mu\big(\!F^{\mu\nu}\!\big)\!\Big)\nu^\alpha+B_{\alpha\beta}\Big(\!\partial T,\partial\mu\big)\!\Big(\!F^{\mu\nu}\Big)\tau^{\alpha\beta}$ $\mu^{\mu} = \text{const.} \times A^{\mu}(\partial T, \partial \mu, \partial u; F^{\mu\nu})$ α α $\tau^{\mu\nu}$ = const. $\times B^{\mu\nu}$ + const. $\times \delta^{\mu\nu}B$ αβ $\partial_{\alpha}(\partial T,\partial\mu,[F^{\mu\nu}])\nu^{\alpha}$ $\partial_{\mu}S^{\mu} \equiv A_{\alpha}(\partial T, \partial \mu (F^{\mu\nu}))\nu^{\alpha} + B_{\alpha\beta}(\partial T, \partial \mu (F^{\mu\nu}))\tau^{\alpha\beta} \ge 0$ \Rightarrow v^{μ} = const. \times $A^{\mu}(\partial T, \partial \mu, \partial u; F)$

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Landau-Lifschitz, Relat. plasma physics

> Positivity of entropy production(Second law):

Heat current $Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu}$ \rightarrow Entropy current $S^{\mu} = Q^{\mu}/T$

Heat current and viscous tensor?

($\mu^{\mu} = \text{const.} \times A^{\mu}(\partial T, \partial \mu, \partial u; F^{\mu\nu})$)() α α $\tau^{\mu\nu}$ = const. $\times B^{\mu\nu}$ + const. $\times \delta^{\mu\nu}B$ $\partial_{\alpha\beta}\big(\!\partial T,\partial\mu,F^{\mu\nu}\big)\tau^{\alpha\beta}$ μ ^{μ} α (α , α) α , α $\partial_{\mu}S^{\mu}\equiv A_{\alpha}(\partial T,\partial\mu, F^{\mu\nu})\nu^{\alpha}+B_{\alpha\beta}(\partial T,\partial\mu, F^{\mu\nu})\tau^{\alpha\beta}\geq0$ $V^{\prime\prime} = \text{const.} \times A^{\prime\prime} \left(dI\right), d\mu$ A^{μ} *ldT*, $\partial \mu$, $\partial \mu$; F $=$ const. $\times B^{n+}$ + const. \times \Rightarrow $v^{\mu} = \text{const.} \times A^{\mu}(\partial T, \partial \mu, \partial \mu)$ $const. \times B^{\mu\nu}$ + const. ${\rm const.}{\times}A^{\mu}({\partial}T,{\partial}\mu,{\partial}u;$

$$
\mathbf{v}^{\mu} = \sigma_Q (g^{\mu\nu} + u^{\mu} u^{\nu}) \left[(-\partial_{\nu}\mu + F_{\nu\lambda} u^{\lambda}) + \mu \frac{\partial_{\mu} T}{T} \right]
$$

$$
\tau^{\mu\nu} = - (g^{\mu\lambda} + u^{\mu} u^{\lambda}) \left[\eta (\partial_{\lambda} u^{\nu} + \partial^{\nu} u_{\lambda}) + (\zeta - \eta) \delta^{\nu}_{\lambda} \partial_{\alpha} u^{\alpha} \right]
$$

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Landau-Lifschitz, Relat. plasma physics

> Positivity of entropy production(Second law):

Heat current $Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu}$ \rightarrow Entropy current $S^{\mu} = Q^{\mu}/T$

Heat current and viscous tensor?

$$
\frac{\partial_{\mu} S^{\mu}}{\partial \mu} = A_{\alpha} (\partial T, \partial \mu, F^{\mu \nu}) \nu^{\alpha} + B_{\alpha \beta} (\partial T, \partial \mu, F^{\mu \nu}) \tau^{\alpha \beta} \ge 0
$$

\n
$$
\Rightarrow \nu^{\mu} = \text{const.} \times A^{\mu} (\partial T, \partial \mu, \partial u; F^{\mu \nu})
$$

\n
$$
\tau^{\mu \nu} = \text{const.} \times B^{\mu \nu} + \text{const.} \times \delta^{\mu \nu} B_{\alpha}^{\alpha}
$$

$$
v^{\mu} = \sigma_Q (g^{\mu\nu} + u^{\mu} u^{\nu}) \left[(-\partial_{\nu} \mu + F_{\nu\lambda} u^{\lambda}) + \mu \frac{\partial_{\mu} T}{T} \right]
$$

$$
\tau^{\mu\nu} = -(g^{\mu\lambda} + u^{\mu} u^{\lambda}) \left[\eta (\partial_{\lambda} u^{\nu} + \partial^{\nu} u_{\lambda}) + (\zeta - \eta) \delta^{\nu}_{\lambda} \partial_{\alpha} u^{\alpha} \right]
$$
B small!

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Landau-Lifschitz, Relat. plasma physics

> Positivity of entropy production(Second law):

Heat current $Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu}$ \rightarrow Entropy current $S^{\mu} = Q^{\mu}/T$

Heat current and viscous tensor?

($\mu^{\mu} = \text{const.} \times A^{\mu}(\partial T, \partial \mu, \partial u; F^{\mu\nu})$)()α α $\tau^{\mu\nu}$ = const. $\times B^{\mu\nu}$ + const. $\times \delta^{\mu\nu}B$ $\partial_{\alpha\beta}\big(\!\partial T,\partial\mu,F^{\mu\nu}\big)\tau^{\alpha\beta}$ μ ^{μ} α (α , α) α , α $\partial_{\mu}S^{\mu}\equiv A_{\alpha}(\partial T,\partial\mu, F^{\mu\nu})\nu^{\alpha}+B_{\alpha\beta}(\partial T,\partial\mu, F^{\mu\nu})\tau^{\alpha\beta}\geq0$ $V^{\prime\prime} = \text{const.} \times A^{\prime\prime} \left(dI\right), d\mu$ A^{μ} *ldT*, $\partial \mu$, $\partial \mu$; F $=$ const. $\times B^{\mu\nu}$ + const. \times \Rightarrow $v^{\mu} = \text{const.} \times A^{\mu}(\partial T, \partial \mu, \partial \mu)$ ${\rm const.}{\times}A^{\mu}({\partial}T,{\partial}\mu,{\partial}u;$

$$
v^{\mu} = \sigma_Q (g^{\mu\nu} + u^{\mu} u^{\nu}) \left[(-\partial_{\nu} \mu + F_{\nu\lambda} u^{\lambda}) + \mu \frac{\partial_{\mu} T}{T} \right]
$$

Irrelevant for response at k \to 0

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Landau-Lifschitz, Relat. plasma physics

> Positivity of entropy production(Second law):

Heat current $Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu}$

Heat current and viscous tensor?

 \rightarrow Entropy current $S^{\mu} = Q^{\mu}/T$

$$
\frac{\partial_{\mu} S^{\mu}}{\partial \mu} = A_{\alpha} (\partial T, \partial \mu, F^{\mu \nu}) v^{\alpha} + B_{\alpha \beta} (\partial T, \partial \mu, F^{\mu \nu}) \tau^{\alpha \beta} \ge 0
$$

\n
$$
\Rightarrow v^{\mu} = \text{const.} \times A^{\mu} (\partial T, \partial \mu, \partial u; F^{\mu \nu})
$$

\n
$$
\tau^{\mu \nu} = \text{const.} \times B^{\mu \nu} + \text{const.} \times \delta^{\mu \nu} B_{\alpha}^{\alpha}
$$

$$
v^{\mu} = \underbrace{\sigma_{Q}(\mathbf{y}^{\mu\nu} + u^{\mu}u^{\nu})}_{\mathcal{T}^{\mu\nu} = -(\mathbf{y}^{\mu\lambda} + u^{\mu}u^{\lambda})\mathbf{y}(\partial_{\lambda}u^{\nu} + \partial^{\nu}u_{\lambda}) + \mu \frac{\partial_{\mu}T}{T}}
$$
\nIrrelevant for response at k \to 0\nOne single transport coefficient (instead of two)!

Meaning of σ $\bf Q$?
.

- Dimension of electrical conductivity
- At zero doping (particle-hole symmetry):

$$
\sigma_{Q} = \sigma_{xx}(\rho_{\rm imp} = 0)
$$

= Universal d.c. conductivity of the pure system

Why is
$$
\sigma_{xx}(\rho_{\text{imp}} = 0)
$$
 finite ??

Particle-hole symmetry $(\rho = 0)$

• Key: Charge current without momentum (energy current)!

(particle)(hole) $\vec{J} \neq 0$, $\vec{J} \neq 0$, $\vec{P}=0$

Pair creation/annihilation leads to current decay

• Finite "quantum critical" conductivity!

Quantum critical situation: Particle-hole symmetry $(\rho = 0)$

• Key: Charge current without momentum (energy current)

(particle)(hole) $\vec{J} \neq 0$, $\vec{J} \neq 0$, $\vec{P}=0$

Pair creation/annihilation leads to current decay

- Finite "quantum critical" conductivity!
- As in quantum criticality: Relaxation time set by temperature alone

Quantum critical situation: Particle-hole symmetry $(\rho = 0)$

• Key: Charge current without momentum (energy current)

(particle)(hole) $\vec{J} \neq 0$, $\vec{J} \neq 0$, $\vec{P}=0$

Pair creation/annihilation leads to current decay

- Finite "quantum critical" conductivity!
- As in quantum criticality: Relaxation time set by temperature alone

→ Universal conductivity

$$
\sigma_{Drude} = \frac{e}{m} \rho \tau \rightarrow \sigma_Q \sim \frac{e}{k_B T / v^2} \left(e \frac{(k_B T)^2}{(\hbar v)^2} \right) \frac{\hbar}{\alpha^2 k_B T} \sim \frac{1}{\alpha^2} \frac{e^2}{h}
$$

Quantum critical situation: Particle-hole symmetry $(\rho = 0)$

• Key: Charge current without momentum (energy current)

(particle)(hole) $\vec{J} \neq 0$, $\vec{J} \neq 0$, $\vec{P}=0$

Pair creation/annihilation leads to current decay

- Finite "quantum critical" conductivity!
- As in quantum criticality: Relaxation time set by temperature alone

→ Universal conductivity

$$
\sigma_{Drude} = \frac{e}{m} \rho \tau \rightarrow \sigma_Q \sim \frac{e}{k_B T / v^2} \left(e \frac{(k_B T)^2}{(\hbar v)^2} \right) \frac{\hbar}{\alpha^2 k_B T} \sim \frac{1}{\alpha^2} \frac{e^2}{h}
$$

Exact (Boltzmann)

$$
\sigma_{\mathcal{Q}}(\mu=0) = \frac{0.76 \ e^2}{\alpha^2 h}
$$

Quantum critical situation: Particle-hole symmetry $(\rho = 0)$

• Key: Charge current without momentum (energy current)

(particle)(hole) $\vec{J} \neq 0$, $\vec{J} \neq 0$, $\vec{P}=0$

Pair creation/annihilation leads to current decay

- Finite "quantum critical" conductivity!
- As in quantum criticality: Relaxation time set by temperature alone

Marginal irrelevance of Coulomb:

→ Universal conductivity

$$
\sigma_{Drude} = \frac{e}{m} \rho \tau \rightarrow \sigma_Q \sim \frac{e}{k_B T / v^2} \left(e \frac{(k_B T)^2}{(\hbar v)^2} \right) \frac{\hbar}{\alpha^2 k_B T} \sim \frac{1}{\alpha^2} \frac{e^2}{h}
$$

Exact (Boltzmann)

$$
\sigma_{\varrho}(\mu=0) = \frac{0.76 \ e^2}{\alpha^2 h}
$$

Thermoelectric response

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Charge and heat current:

$$
J^{\mu} = \rho u^{\mu} - v^{\mu}
$$

$$
Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu}
$$

Thermo-electric response

$$
\begin{pmatrix} \vec{J} \\ \vec{Q} \end{pmatrix} = \begin{pmatrix} \hat{\sigma} & \hat{\alpha} \\ T\hat{\alpha} & \hat{\vec{\kappa}} \end{pmatrix} \begin{pmatrix} \vec{E} \\ -\vec{\nabla}T \end{pmatrix} \qquad \hat{\sigma} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ -\sigma_{xy} & \sigma_{xx} \end{pmatrix} \qquad \text{etc.}
$$

Thermoelectric response

S. Hartnoll, P. Kovton, MM, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

Charge and heat current:

$$
J^{\mu} = \rho u^{\mu} - v^{\mu}
$$

$$
Q^{\mu} = (\varepsilon + P)u^{\mu} - \mu J^{\mu}
$$

Thermo-electric response

$$
\begin{pmatrix} \vec{J} \\ \vec{Q} \end{pmatrix} = \begin{pmatrix} \hat{\sigma} & \hat{\alpha} \\ T\hat{\alpha} & \hat{\vec{\kappa}} \end{pmatrix} \begin{pmatrix} \vec{E} \\ -\vec{\nabla}T \end{pmatrix} \qquad \hat{\sigma} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ -\sigma_{xy} & \sigma_{xx} \end{pmatrix} \qquad \text{etc.}
$$

i) Solve linearized hydrodynamic equationsii) Read off the response functions *(Kadanoff & Martin 1960)* Results from Hydrodynamics

Symmetry $z \rightarrow -z$: σ $\sigma_{xy} = \alpha$ $\alpha_{xy} = \kappa_{y}$ $K_{xy} = 0$

Longitudinal conductivity:

$$
\sigma_{xx}(\omega,k;B=0) \ = \ \left(\sigma_Q + \frac{\rho^2}{P+\varepsilon}\frac{\tau}{1-i\omega\tau}\right)
$$

Universal conductivity at the quantum critical point $\rho = 0$

Drude-like conductivity, divergent for Momentum conservation ($\rho \neq 0$)!

 $\tau \to \infty, \omega \to 0, \rho \neq 0$

Symmetry $z \rightarrow -z$: σ $\sigma_{xy} = \alpha$ $\alpha_{xy} = \kappa_{y}$ $K_{xy} = 0$

Longitudinal conductivity:Coulomb correction $g = 2\pi e^2$ ()($+O(k^2)$ *Ok*

Symmetry $z \rightarrow -z$: σ $\sigma_{xy} = \alpha$ $\alpha_{xy} = \kappa_{y}$ $K_{xy} = 0$

Longitudinal conductivity:Coulomb correction $g = 2\pi e^2$ ($+O(k^2)$ *Ok*()

Thermal conductivity:

$$
\kappa_{xx}(\omega, k; B = 0) = \sigma_Q \frac{\mu^2}{T} + \frac{s^2 T}{P + \varepsilon} \frac{\tau}{1 - i\omega \tau} + \mathcal{O}(k^2).
$$

Relativistic Wiedemann-Franz-like relations between σ and κ in the quantum critical window!

Symmetry $z \rightarrow -z$: σ $\sigma_{xy} = \alpha$ $\alpha_{xy} = \kappa_{y}$ $K_{xy} = 0$

Coulomb correctionLongitudinal conductivity:() $g = 2\pi e^2$ $+O(k^2)$ (*Ok*31α*exx* −Thermopower:² k^2 $\pi^2 k_n^2T d\sigma M/d$ $\sigma_{xx}/d\mu$ *Bxx* $\alpha_{xx}(\mu,\omega=0)=-\frac{\pi^2}{3e}k_B^2T\frac{d\sigma(\mu,\omega=0)}{d\mu}$ Relativistic fluid!Only valid in the Fermi liquid regime, but violated in the relativistic window. μ *T*

B > 0 : Cyclotron resonance

E.g.: Longitudinal conductivity

$$
\sigma_{xx}(\omega) = \sigma_Q \frac{\omega (\omega + i\gamma + i\omega_c^2/\gamma)}{(\omega + i\gamma)^2 - \omega_c^2}
$$

Poles in the response

$$
\omega = \pm \omega_c^{\rm QC} - i\gamma - i/\tau
$$

Collective cyclotron frequency of the relativistic plasma

$$
\omega_c^{\rm QC} = \frac{\rho B}{(\varepsilon + P)/v_F^2} \leftrightarrow \omega_c^{\rm FL} = \frac{e B}{m}
$$

B > 0 : Cyclotron resonance

E.g.: Longitudinal conductivity

$$
\sigma_{xx}(\omega) = \sigma_Q \frac{\omega (\omega + i\gamma + i\omega_c^2/\gamma)}{(\omega + i\gamma)^2 - \omega_c^2}
$$

Poles in the response

$$
\omega = \pm \omega_c^{\rm QC} - i\gamma - i/\tau
$$

Collective cyclotron frequency of the relativistic plasma

$$
\omega_c^{\rm QC} = \frac{\rho B}{(\varepsilon + P)/v_F^2} \leftrightarrow \omega_c^{\rm FL} = \frac{e B}{m}
$$

Intrinsic, interaction-induced broadening(↔ Galilean invariant systems:
No broadening due to Kohn's t No broadening due to Kohn's theorem)

$$
\gamma = \sigma_Q \frac{B^2}{(\varepsilon + P)/v_F^2}
$$

B > 0 : Cyclotron resonance

Longitudinal conductivity

$$
\sigma_{xx}(\omega, k) = \sigma_Q \frac{(\omega + i/\tau) (\omega + i/\tau + i\gamma + i\omega_c^2/\gamma)}{(\omega + i/\tau + i\gamma)^2 - \omega_c^2}
$$

Poles in the response

$$
\omega = \pm \omega_c^{\rm QC} - i\gamma - i/\tau
$$

Can the resonance be observed?

$$
\omega = \pm \omega_c - i\gamma - i/\tau
$$

$$
v_F = 1.1 \cdot 10^6 m/s
$$

$$
\approx c / 300
$$

Conditions to observe collective cyclotron resonance

 $\hbar \omega_c$ << $\alpha^2 k_B T$ $\left(k_{_B}T\right)$ $(\hbar{\bf v}_F)^2$ 2 ${\rm V}_F^{}$ $\mu_h = \frac{W}{h}$ *kT* $\hbar{\rm v}$ ρ ≤ $\leq \rho_{\text{p}}$ =*kT ceB* $E_{LL} = \hbar v_F \sqrt{\frac{v}{\hbar c}}$ = $F = \hbar v_F \sqrt{\frac{hc}{\hbar c}} << k_B$ \hbar 2 $V_{E, \alpha}$ | - $\gamma,\tau^{-1}<\omega_c$ High T: no Landau quantizationCollison-dominated regime Small broadeningQuantum critical regime**}** $\rho \approx 10^{11} cm^{-2}$
 $\omega_c \approx 10^{13} s^{-1}$ 1010 $B \approx 0.1T$ $T \approx 300K$ ≈≈*scm* $\omega_c^{}$ ρ Parameters:

Does relativistic hydrodynamics apply?

- Do T and μ not break relativistic invariance?
- Validity at large chemical potential?
- Beyond linearization in magnetic field?
- Treatment of disorder?

Boltzmann Approach

MM, L. Fritz, and S. Sachdev, cond-mat 0805.1413.

- \rightarrow Recover and refine the
hydrodynamic descript hydrodynamic description
- → Describe relativistic-to-Fermi-
liquid crossover liquid crossover
- \rightarrow Go beyond hydrodynamics

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

 ⁺, ⁱ ⁺, ⁱ , ⁱ [−], ⁱ ² ⁺, ⁱ ⁺, ^j [−], ⁱ ² [−], ^j +(^N [−] 1) 2+(^N [−] 1) a.) ⁺, ⁱ ⁺, ⁱ [−], ⁱ [−], ⁱ ⁺, ⁱ ⁺, ⁱ [−], ^j [−], ^j b.)12⁺, ⁱ ⁺, ⁱ 2+(^N [−] 1) ² ⁺, ⁱ ⁺, ⁱ ⁺, ^j ⁺, j [] () () , [] , [|]{ } , [] , [|]{ } () , coll coll ² *^e ^f ^t ^I ^t ^f ^t ^I ^t ^f ^t Cb dis ^t* **^k ^k ^k ^k ^k ^k^E ^v ^B** ⁼ ′ ⁺ [∆] ′ ∂∂ [∂] ⁺ ⁺ [×] [⋅] [±] ^α [±] [±]

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

$$
\left(\partial_t + e[\mathbf{E} + \mathbf{v} \times \mathbf{B}]\cdot \frac{\partial}{\partial \mathbf{k}}\right) f_{\pm}(\mathbf{k}, t) = \alpha^2 I_{\text{coll}}^{Cb}[\mathbf{k}, t | \{f_{\pm}(\mathbf{k}', t)\}] + \Delta I_{\text{coll}}^{dis}[\mathbf{k}, t | \{f_{\pm}(\mathbf{k}', t)\}]
$$

Linearization:

$$
f_{\pm}(\mathbf{k},t) = f_{\pm}^{eq}(\mathbf{k},t) + \delta f_{\pm}(\mathbf{k},t)
$$

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

$$
\left(\partial_t + e[\mathbf{E} + \mathbf{v} \times \mathbf{B}] \cdot \frac{\partial}{\partial \mathbf{k}}\right) f_{\pm}(\mathbf{k}, t) = \alpha^2 I_{\text{coll}}^{Cb}[\mathbf{k}, t | \{f_{\pm}(\mathbf{k}', t)\}] + \Delta I_{\text{coll}}^{dis}[\mathbf{k}, t | \{f_{\pm}(\mathbf{k}', t)\}]
$$

Linearization:

$$
f_{\pm}(\mathbf{k},t) = f_{\pm}^{eq}(\mathbf{k},t) + \delta f_{\pm}(\mathbf{k},t)
$$

Great simplification: Divergence of forward scattering amplitude in 2d

$$
Amp \left[\xrightarrow{\text{supp } } \left[\xrightarrow{\text{supp } } \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right] \right] \xrightarrow{\text{supp } } \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]
$$

 $f_{\pm}(\mathbf{k}, t) = f_{\pm}^{eq}(\mathbf{k}, \mu \to \mu_{eq} + \delta \mu(t)); \delta \mu = C(t) \frac{\mathbf{E} \cdot \mathbf{k}}{k}$ → Equilibration along unidimensional spatial directions At p-h symmetry:

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

$$
\left(\partial_t + e[\mathbf{E} + \mathbf{v} \times \mathbf{B}]\cdot \frac{\partial}{\partial \mathbf{k}}\right) f_{\pm}(\mathbf{k}, t) = \alpha^2 I_{\text{coll}}^{Cb}[\mathbf{k}, t | \{f_{\pm}(\mathbf{k}', t)\}] + \Delta I_{\text{coll}}^{dis}[\mathbf{k}, t | \{f_{\pm}(\mathbf{k}', t)\}]
$$

Linearization:

$$
f_{\pm}(\mathbf{k},t) = f_{\pm}^{eq}(\mathbf{k},t) + \delta f_{\pm}(\mathbf{k},t)
$$

Great simplification: Divergence of forward scattering amplitude in 2d

$$
Amp \left[\xrightarrow{\qquad} \qquad \longrightarrow \qquad \longrightarrow \qquad \longrightarrow \qquad \boxed{\rightarrow \infty}
$$

→ Equilibration along unidimensional spatial directions

At p-h symmetry:
$$
f_{\pm}(\mathbf{k},t) = f_{\pm}^{eq}(\mathbf{k},\mu \to \mu_{eq} + \delta \mu(t)); \delta \mu = C(t) \frac{\mathbf{E} \cdot \mathbf{k}}{k}
$$

$$
\longrightarrow \qquad \sigma_{\mathcal{Q}}(\mu=0) \approx \frac{0.76 \; e^2}{\alpha^2 \; h}
$$

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

$$
\left(\partial_t + e[\mathbf{E} + \mathbf{v} \times \mathbf{B}]\cdot \frac{\partial}{\partial \mathbf{k}}\right) f_{\pm}(\mathbf{k}, t) = \alpha^2 I_{\text{coll}}^{Cb}[\mathbf{k}, t | \{f_{\pm}(\mathbf{k}', t)\}] + \Delta I_{\text{coll}}^{dis}[\mathbf{k}, t | \{f_{\pm}(\mathbf{k}', t)\}]
$$

General analysis in linear response:

$$
f_{\lambda}(\mathbf{r}, \mathbf{k}, \omega) = 2\pi \delta(\omega) f_{\lambda}^{0}(k, T(\mathbf{r}))
$$

+ $f_{\lambda k}^{0}[1 - f_{\lambda k}^{0}] \frac{v_{F}}{T^{2}} \mathbf{e}_{\mathbf{k}} \cdot \left[e \mathbf{E}(\omega) g_{\parallel, \lambda}^{(E)} \left(\frac{v_{F} k}{T}, \omega \right) + \nabla T(\omega) g_{\parallel, \lambda}^{(T)} \left(\frac{v_{F} k}{T}, \omega \right) \right]$
+ $f_{\lambda k}^{0}[1 - f_{\lambda k}^{0}] \frac{v_{F}}{T^{2}} (\mathbf{e}_{\mathbf{k}} \times \mathbf{e}_{z}) \cdot \left[\mathbf{E}(\omega) g_{\perp, \lambda}^{(E)} \left(\frac{v_{F} k}{T}, \omega \right) + \nabla T(\omega) g_{\perp, \lambda}^{(T)} \left(\frac{v_{F} k}{T}, \omega \right) \right]$
$\sigma_{\textnormal{Q}}$ $\log \textrm{from Boltzmann} \ \mathbf{L}_{E. Fritz, \ J. \ Schmalian, \ MM, \ and \ S. \ Sachde}$

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

$$
\left(\partial_t + e[\mathbf{E} + \mathbf{v} \times \mathbf{B}]\cdot \frac{\partial}{\partial \mathbf{k}}\right) f_{\pm}(\mathbf{k}, t) = \alpha^2 I_{\text{coll}}^{Cb}[\mathbf{k}, t | \{f_{\pm}(\mathbf{k}', t)\}] + \Delta I_{\text{coll}}^{dis}[\mathbf{k}, t | \{f_{\pm}(\mathbf{k}', t)\}]
$$

General analysis in linear response:

$$
f_{\lambda}(\mathbf{r}, \mathbf{k}, \omega) = 2\pi \delta(\omega) f_{\lambda}^{0}(k, T(\mathbf{r}))
$$

+ $f_{\lambda k}^{0}[1 - f_{\lambda k}^{0}] \frac{v_{F}}{T^{2}} \mathbf{e}_{\mathbf{k}} \cdot \left[e\mathbf{E}(\omega) g_{\parallel, \lambda}^{(E)} \left(\frac{v_{F}k}{T}, \omega \right) + \nabla T(\omega) g_{\parallel, \lambda}^{(T)} \left(\frac{v_{F}k}{T}, \omega \right) \right]$
+ $f_{\lambda k}^{0}[1 - f_{\lambda k}^{0}] \frac{v_{F}}{T^{2}} (\mathbf{e}_{\mathbf{k}} \times \mathbf{e}_{z}) \cdot \left[\mathbf{E}(\omega) g_{\perp, \lambda}^{(E)} \left(\frac{v_{F}k}{T}, \omega \right) + \nabla T(\omega) g_{\perp, \lambda}^{(T)} \left(\frac{v_{F}k}{T}, \omega \right) \right]$

Central element of analysis: Choose appropriate basis $g_{\lambda=\pm}(k,t) = \sum_{n} a_n \phi_n(\lambda, k)$ $g_{\lambda=\pm}(k,t) = \sum a_n \phi_n(\lambda, k)$

> $\phi_0(\lambda,k)=k,$ $\phi_1(\lambda,k)=\lambda.$

Momentum or energy-current modeCharge current mode

n

$\sigma_{\textnormal{Q}}$ $\log \textrm{from Boltzmann} \ \mathbf{L}_{E. Fritz, \ J. \ Schmalian, \ MM, \ and \ S. \ Sachde}$

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Boltzmann equation in Born approximation

$$
\left(\partial_t + e[\mathbf{E} + \mathbf{v} \times \mathbf{B}] \cdot \frac{\partial}{\partial \mathbf{k}}\right) f_{\pm}(\mathbf{k}, t) = \alpha^2 I_{\text{coll}}^{Cb}[\mathbf{k}, t | \{f_{\pm}(\mathbf{k}', t)\}] + \Delta I_{\text{coll}}^{dis}[\mathbf{k}, t | \{f_{\pm}(\mathbf{k}', t)\}]
$$

General analysis in linear response:

$$
f_{\lambda}(\mathbf{r}, \mathbf{k}, \omega) = 2\pi \delta(\omega) f_{\lambda}^{0}(k, T(\mathbf{r}))
$$

+ $f_{\lambda k}^{0}[1 - f_{\lambda k}^{0}] \frac{v_{F}}{T^{2}} \mathbf{e}_{\mathbf{k}} \cdot \left[e\mathbf{E}(\omega) g_{\parallel, \lambda}^{(E)} \left(\frac{v_{F}k}{T}, \omega \right) + \nabla T(\omega) g_{\parallel, \lambda}^{(T)} \left(\frac{v_{F}k}{T}, \omega \right) \right]$
+ $f_{\lambda k}^{0}[1 - f_{\lambda k}^{0}] \frac{v_{F}}{T^{2}} (\mathbf{e}_{\mathbf{k}} \times \mathbf{e}_{z}) \cdot \left[\mathbf{E}(\omega) g_{\perp, \lambda}^{(E)} \left(\frac{v_{F}k}{T}, \omega \right) + \nabla T(\omega) g_{\perp, \lambda}^{(T)} \left(\frac{v_{F}k}{T}, \omega \right) \right]$

Central element of analysis: Choose appropriate basis $g_{\lambda=\pm}(k,t) = \sum_{n} a_n \phi_n(\lambda, k)$ $g_{\lambda=\pm}(k,t) = \sum a_n \phi_n(\lambda, k)$

$$
\phi_0(\lambda, k) = k, \n\phi_1(\lambda, k) = \lambda.
$$

Momentum or energy-current modeCharge current mode

$$
\sum_{\lambda} \int d^2k f_{\lambda k}^0 (1 - f_{\lambda k}^0) \phi_{n \ge 2}(\lambda, k) \phi_{0,1}(\lambda, k) = 0.
$$

Relativistic dispersion ensures that φ_0 only couples to φ₁ for clean systems!

n

Conductivity: $\sigma_{\rm O}$

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

General doping: $\sigma_{xx}(\omega;\mu,\Delta=0)=e^2\frac{\rho^2v_F^2}{\varepsilon+P}\frac{1}{(-i\omega)}+\sigma_Q.$ Clean system: $\sigma_Q(\mu,\omega) = \frac{e^2}{\hbar} \frac{1}{\alpha^2} \frac{2 \hat{g}_1}{N} \left[I_+^{(1)} - \frac{\rho^2 (\hbar v)^2}{(\varepsilon + P)T} \right]^2 \frac{1}{1 - i \omega \tau_{ee}}$ Precise expression for σ_0 !

Conductivity: $\sigma_{\rm O}$

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

Will appear in all Boltzmann formulae below!

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

General doping:

Lightly disordered system:

$$
\sigma_{xx}(\omega;\mu,\Delta) = \frac{e^2}{\tau_{\rm imp}^{-1} - i\omega} \frac{\rho^2 v_F^2}{\varepsilon + P} + \sigma_Q + \delta\sigma(\Delta,\omega,\mu)
$$

$$
\delta\sigma(\Delta,\omega,\mu) = \mathcal{O}(\Delta/\alpha^2) \leftarrow \text{Correction to hydrodynamics}
$$

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

General doping:

Lightly disordered system:

$$
\sigma_{xx}(\omega;\mu,\Delta) = \frac{e^2}{\tau_{\rm imp}^{-1} - i\omega} \frac{\rho^2 v_F^2}{\epsilon + P} + \sigma_Q + \delta\sigma(\Delta,\omega,\mu)
$$

$$
\delta\sigma(\Delta,\omega,\mu) = \mathcal{O}(\Delta/\alpha^2) \leftarrow \text{Correction to hydrodynamics}
$$

Fermi liquid regime:

$$
\sigma_{xx}(\omega = 0; \mu \gg T) \approx \frac{e^2 \rho^2 v_F^2 \tau_{\rm imp}}{\varepsilon + P}
$$

$$
= \frac{2}{\pi} \frac{1}{(Z\alpha)^2} \frac{e^2}{h} \frac{\rho}{\rho_{\rm imp}}
$$

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

General doping:

Lightly disordered system:

$$
\sigma_{xx}(\omega;\mu,\Delta) = \frac{e^2}{\tau_{\rm imp}^{-1} - i\omega} \frac{\rho^2 v_F^2}{\varepsilon + P} + \sigma_Q + \delta\sigma(\Delta,\omega,\mu)
$$

$$
\delta\sigma(\Delta,\omega,\mu) = \mathcal{O}(\Delta/\alpha^2) \leftarrow \text{Correction to hydrodynamics}
$$

Fermi liquid regime:

$$
\sigma_{xx}(\omega = 0; \mu \gg T) \approx \frac{e^2 \rho^2 v_F^2 \tau_{\rm imp}}{\varepsilon + P}
$$

$$
= \frac{2}{\pi} \frac{1}{(Z\alpha)^2} \frac{e^2}{h} \frac{\rho}{\rho_{\rm imp}}
$$

L. Fritz, J. Schmalian, MM, and S. Sachdev, condmat 0802.4289

General doping:

Lightly disordered system:

$$
\sigma_{xx}(\omega;\mu,\Delta) = \frac{e^2}{\tau_{\rm imp}^{-1} - i\omega} \frac{\rho^2 v_F^2}{\varepsilon + P} + \sigma_Q + \delta\sigma(\Delta,\omega,\mu)
$$

$$
\delta\sigma(\Delta,\omega,\mu) = \mathcal{O}(\Delta/\alpha^2) \leftarrow \text{Correction to hydrodynamics}
$$

Fermi liquid regime:

$$
\sigma_{xx}(\omega = 0; \mu \gg T) \approx \frac{e^2 \rho^2 v_F^2 \tau_{\rm imp}}{\varepsilon + P}
$$

$$
= \frac{2}{\pi} \frac{1}{(Z\alpha)^2} \frac{e^2}{h} \frac{\rho}{\rho_{\rm imp}}
$$

J.-H. Chen et al. Nat. Phys. 4, 377 (2008).

• Strategy: describe the slow dynamics of the momentum mode φ_0 in very weak disorder and moderate magnetic field

• Strategy: describe the slow dynamics of the momentum mode φ_0 in very weak disorder and moderate magnetic field

Result: Full thermoelectric response (for general B) obtained in terms of thermodynamic quantities + only 2 independent transport coefficients (collision matrix elements)!

• Strategy: describe the slow dynamics of the momentum mode φ_0 in very weak disorder and moderate magnetic field

Result: Full thermoelectric response (for general B) obtained in terms of thermodynamic quantities + only 2 independent transport coefficients (collision matrix elements)!

• At small *B*, one transport coefficient is subdominant \rightarrow Relativistic hydrodynamics with only one transport coefficient σ_Q is recovered! recovered! $\tau_{\rm ee}^{-1} >> \tau_{\rm B}^{-1}$ 1 τ $\tau_{\rm ee} >> \tau$

ee

$$
\sigma_{xx}(\omega, B) = \sigma_{xx}^{\rm MHD}(\omega, B) + \mathcal{O}(b/\alpha^2, \omega/\alpha^2)
$$

Corrections to hydrodynamics

• Strategy: describe the slow dynamics of the momentum mode φ_0 in very weak disorder and moderate magnetic field

Result: Full thermoelectric response (for general B) obtained in terms of thermodynamic quantities + only 2 independent transport coefficients (collision matrix elements)!

• At small *B*, one transport coefficient is subdominant

 \rightarrow Relativistic hydrodynamics with only one transport coefficient σ_Q is recovered! recovered!

Cyclotron resonance revisited

Crossover to Fermi liquid regime:

• Semiclassical ω_c recovered at $\mu >> T$

$$
\omega_c^{(0)} = \frac{\rho B}{\varepsilon + P} \rightarrow \frac{eB}{\mu/v_F^2} = \frac{eB}{\hbar k_F/v_F}
$$

• Broadening goes to zero - Kohn's theorem recovered: Non-broadening of the resonance for a single parabolic band.

$$
\gamma \equiv \frac{\sigma_Q B^2 v_F^2}{(\varepsilon + P)}
$$

$$
\gamma \propto \sigma_{\mathcal{Q}}(\mu) \stackrel{\mu \gg T}{\rightarrow} 0
$$

Cyclotron resonance revisited

Beyond hydrodynamics: Towards ballistic magnetotransport

Strongly coupled liquids

Same trends as in exact (AdS-CFT) results for strongly coupled relativistic fluids!

S. Hartnoll, C. Herzog (2007)

Summary

- Relativistic physics in graphene and quantum critical systems
- •Hydrodynamic description:

 \rightarrow collective cyclotron resonance in the relativistic regime \rightarrow covariance: 6 frequency dependent response functions \rightarrow covariance: 6 frequency dependent response functions
given by thermodynamics and *only one* parameter σ given by thermodynamics and *only one* parameter σQ.

- • Boltzmann approach
	- → Confirmed and refined hydrodynamic description
→ Understood relativistic-to-Fermi liquid crossover:
	- → Understood relativistic-to-Fermi liquid crossover:
• From universal Coulomb-limited to disorder-
		- From universal Coulomb-limited to disorder-limited linear conductivity in graphene
		- From collective-broadened to semiclasscial sharp cyclotron resonance
	- → Beyond hydrodynamics: describe large fields and disorder

