Universal Low Temperature Physics and Pseudogaps in Coulomb and Spin Glasses

December 12, 2006, SLE workshop, KITP

Markus Müller

S. Pankov (Tallahassee) L. B. Ioffe (Rutgers)

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

Road map

• Introduction to spin/electron glasses with long range interactions (Coulomb):

- Pseudogaps and glassy behavior
- Theoretical mean field approach to electron glasses
 - Physics of the glass transition and replica symmetry breaking
- Solution and low temperature
 - Temporal 'RG' flow, fixed points, and universality
- Connection with Experiments

Introduction

Glasses with quenched disorder

• Interactions + disorder \rightarrow Frustration and glassy behavior

• No simple order, but randomly patterned "spin glass order" in many different pure states

- Absence of order \rightarrow no hard gaps, but soft pseudogaps
- Multitude of metastable configurations leads to out of equilibrium behavior and history dependence

Coulomb glasses

Anderson insulators with strong electron-electron interactions

Efros-Shklovskii model

M. Pollak (1970) A. Efros, B. Shklovskii (1975) J.H. Davies, P.A. Lee, T.M. Rice (1982,84)

Coulomb glasses

Anderson insulators with strong electron-electron interactions

Efros-Shklovskii model

M. Pollak (1970) A. Efros, B. Shklovskii (1975) J.H. Davies, P.A. Lee, T.M. Rice (1982,84)

Strongly localized electrons \rightarrow Classical problem with strong frustration

$$v = 1/2 \rightarrow s_i \equiv n_i - 1/2 \iff$$

Long range antiferromagnetic spin glass

I. Pseudogaps

Coulomb gap : Tunneling DOS

J. G. Massey and M. Lee, PRL 75, 4266 (1995)

Soft "Coulomb gap" in the density of states in the classical limit

Local fields:
$$E_i = \sum_{j \neq i} \frac{e^2}{\kappa r_{ij}} n_j + (\varepsilon_i - \mu)$$
 $\rho(E) = \frac{1}{N} \sum_{i=1}^N \delta(E - E_i)$
Efros-Shklovskii: $\rho(E) = C(\kappa/e^2)^3 E^2$ $\sigma(T) \propto \exp\left[-(T_{ES}/T)^{1/2}\right]$

Coulomb gap : Tunneling DOS

J. G. Massey and M. Lee, PRL 75, 4266 (1995)

Soft "Coulomb gap" in the density of states in the classical limit

Local fields:
$$E_i = \sum_{j \neq i} \frac{e^2}{\kappa r_{ij}} n_j + (\varepsilon_i - \mu) \qquad \rho(E) = \frac{1}{N} \sum_{i=1}^N \delta(E - E_i)$$

→ Mott insulator (charge ordered state): Hard gap

Long range spin glasses (SK-model)

SK model (N spins) + random fields

$$H = \frac{1}{2} \sum_{i \neq j} s_i J_{ij} s_j + \sum_i s_i h_i$$

Sherrington and Kirkpatrick (1975) G. Parisi (1979)

Random exchange

$$P(\boldsymbol{J}_{ij}) = \exp\left[-\frac{\boldsymbol{J}_{ij}^2}{2NV^2}\right] / \sqrt{2\pi NV^2}$$

Random fields

$$P(h_i) = \exp\left[-\frac{h_i^2}{2W^2}\right] / \sqrt{2\pi W^2}$$

Linear 'Coulomb' gap!

Thouless, Anderson and Palmer, (1977) Palmer and Pond (1979) Bray, Moore (1980) Sommers and Dupont (1984)

Dobrosavljevic, Pastor (1999)

II. Glassy behavior in electronic systems

Electron glasses: Anomalous field effect

M. Ben-Chorin et al., PRL 84, 3402 (2000)

Electron glasses: Anomalous field effect

•T. Grenet, EPJ B 32, 275 (2003)

- Slow relaxation
- Aging
 - Memory

M. Ben-Chorin et al., PRL 84, 3402 (2000)

Questions

- Why is the Coulomb gap so universal?
- How is the pseudogap related to glassiness?
- Low temperature description?
- Experimental consequences of the glass?

?

?

Review: The Coulomb gap

A. Efros, B. Shklovskii (1975)

Stability of ground state with respect to one particle hop:

The density of states at the Fermi level must vanish at T = 0.

Review: The Coulomb gap

A. Efros, B. Shklovskii (1975)

Stability of ground state with respect to one particle hop:

The density of states at the Fermi level must vanish at T = 0.

Self-consistent argument:

$$R_E = \frac{e^2}{E} ; \quad R_E^D \cdot \int_0^E \rho(E) \, dE \le 1$$

Parabolic pseudogap in D = 3.

$$\rho(E) = cst. \left(\kappa/e^2\right)^D E^{D-1}$$

Review: The Coulomb gap

A. Efros, B. Shklovskii (1975)

Stability of ground state with respect to one particle hop:

The density of states at the Fermi level must vanish at T = 0.

Self-consistent argument:

$$R_E = \frac{e^2}{E} ; \quad R_E^D \cdot \int_0^E \rho(E) \, dE \le 1$$

→ Parabolic pseudogap in D = 3.

 $\rho(E) = cst. (\kappa/e^2)^D E^{D-1}$

Why is this upper bound saturated? Why is the gap so universal?

Locator approximation for the Coulomb glass

MM and L.B. Ioffe, PRL 2004 S. Pankov and V. Dobrosavljevic, PRL 2005 MM and S. Pankov, condmat - 0611021

Locator approximation based on a systematic diagrammatic technique.

- Glass transition due to critical fluctuations in the screening
- Marginal stability and its relation to the saturated Efros-Shklovskii Coulomb gap.
- Low temperature universality

High T expansion

S. R. Johnson, D.E. Khmel'nitskii (1996)

Hamiltonian (Coulomb glass)

$$H = \frac{1}{2} \sum_{i \neq j} (n_i - \nu) \frac{e^2}{r_{ij}} (n_j - \nu) + \sum_i n_i \varepsilon_i$$

Particle hole symmetric case

$$v = 1/2 \qquad s_i \equiv n_i - 1/2$$
$$J_{ij} \equiv e^2 / r_{ij}$$

Partition function

$$Z = \sum_{\{s_i\}} \exp\left\{-\frac{1}{2}\sum_{i\neq j} s_i \left(\beta J\right)_{ij} s_j + \sum_i \beta \varepsilon_i s_i\right\}$$
$$= \int \prod_i d\varphi_i \sum_{\{s_i\}} \exp\left\{-\frac{1}{2}\sum_{i\neq j} \varphi_i \left(\beta J\right)_{ij}^{-1} \varphi_j + \sum_i \left(\beta \varepsilon_i + i\varphi_i\right) s_i\right\}$$

High T expansion

S. R. Johnson, D.E. Khmel'nitskii (1996)

Hamiltonian (Coulomb glass)

$$H = \frac{1}{2} \sum_{i \neq j} (n_i - \nu) \frac{e^2}{r_{ij}} (n_j - \nu) + \sum_i n_i \varepsilon_i$$

Particle hole symmetric case

$$v = 1/2 \qquad s_i \equiv n_i - 1/2$$
$$J_{ij} \equiv e^2 / r_{ij}$$

Partition function

$$Z = \sum_{\{s_i\}} \exp\left\{-\frac{1}{2}\sum_{i\neq j} s_i \left(\beta J\right)_{ij} s_j + \sum_i \beta \varepsilon_i s_i\right\}$$
$$= \int \prod_i d\varphi_i \sum_{\{s_i\}} \exp\left\{-\frac{1}{2}\sum_{i\neq j} \varphi_i \left(\beta J\right)_{ij}^{-1} \varphi_j + \sum_i \left(\beta \varepsilon_i + i\varphi_i\right) s_i\right\}$$

Replica trick
$$-\beta \overline{F} \equiv \overline{\ln[Z]} = \lim_{n \to 0} \frac{Z^n - 1}{n}$$

Glass transition I

Glass transition I

Glass transition I

Glass transition II/III

Alternative views of T_c : II) Onsager back reaction

Back reaction of environment ~ T $h_o \approx \int_0^{\xi_1} d^3 r \frac{J^2(r)}{W} \approx T_c$ $\rightarrow \text{Transition to collective, correlated state}$

Glass transition II/III

Alternative views of T_c : II) Onsager back reaction

$$T_{c} = \frac{e^{2}/a}{6(2/\pi)^{1/4}} \sqrt{e^{2}/aW}$$

Width of Efros-Shklovskii gap!

Glass transition II/III

Alternative views of T_c : II) Onsager back reaction

Width of Efros-Shklovskii gap!

III) Local approximation (MF theory): Instability of the high *T* (replica symmetric) phase

Continuous glass transition, same universality as the RF-SK model.

Properties of the glass phase

- Large number of pure states → Difference between field cooled, and zero field cooled compressibility
- Broken ergodicity

Properties of the glass phase

- Large number of pure states → Difference between field cooled, and zero field cooled compressibility
- Broken ergodicity
- Marginal stability
 - → Widely spread charge response (screening)

FC (RSB)

ZFC (RSB)

0.1

κ_C ^{0.01}

0.001

RS

RSB

Detect glass phase by non-local charge response!

- The system is permanently in a critical (almost unstable) state with excitations down to zero energy.
 - Soft collective modes and slow dynamics.
 - Expect effects of these modes on activated transport (hopping).

Below T_c : Locator approximation

M. Feigel'man, A. Tsvelik (1979) A. Bray, M. Moore (1979)

Below T_c : Locator approximation

M. Feigel'man, A. Tsvelik (1979) A. Bray, M. Moore (1979)

Local self-energy with non-trivial replica structure

$$\Sigma_{ab}(k) \approx \Sigma_{ab}$$

Map to an effective single-site model with a selfconsistent self-energy Σ ("local field").

Mapping to a single-site model

$$\beta H(\{s_i\}) = \beta \left(\frac{1}{2} \sum_{i \neq j} s_i J_{ij} s_j + \sum_i s_i \mathcal{E}_i\right)$$
$$\longrightarrow \beta H_0(\{s^a\}) = -\frac{\beta^2}{2} \sum_{a,b} s^a (\Lambda_{ab} + W^2) s^b$$

Resummation of all diagrams with local self-energies.

Self-consistency of the coupling Λ_{ab}

$$Q_{ab} \equiv \frac{1}{N} \sum_{i} \left\langle s_{a}^{i} s_{b}^{i} \right\rangle_{H} = \left\langle s_{a} s_{b} \right\rangle_{H_{0}}$$

---> Exact for SK spin glass, controlled approximation for Cb-glass.

Effective single site problem: How to break replica symmetry?

$$\beta H_0\left(\left\{s^a\right\}\right) = -\frac{\beta^2}{2} \sum_{a,b} s^a \left(\Lambda_{ab} + W^2\right) s^b$$

Effective single site problem: How to break replica symmetry?

$$\beta H_0(\{s^a\}) = -\frac{\beta^2}{2} \sum_{a,b} s^a (\Lambda_{ab} + W^2) s^b$$

Ultrametric hierarchy of replica clusters \leftrightarrow Valley structure in energy landscape. Exponential distribution of energies $P(F_k) \propto \exp[+x_k \beta F_k]$

Effective single site problem: How to break replica symmetry?

$$\beta H_0\left(\left\{s^a\right\}\right) = -\frac{\beta^2}{2} \sum_{a,b} s^a \left(\Lambda_{ab} + W^2\right) s^b$$

Ultrametric hierarchy of replica clusters \leftrightarrow Valley structure in energy landscape. Exponential distribution of energies $P(F_k) \propto \exp[+x_k \beta F_k]$

 $n \to 0$ Continuous RSB: $\Lambda_{ab} \to \Lambda(x)$

Effective single site problem: How to break replica symmetry?

$$\beta H_0\left(\left\{s^a\right\}\right) = -\frac{\beta^2}{2} \sum_{a,b} s^a \left(\Lambda_{ab} + W^2\right) s^b$$

Ultrametric hierarchy of replica clusters \leftrightarrow Valley structure in energy landscape. Exponential distribution of energies $P(F_k) \propto \exp[+x_k \beta F_k]$

 $n \to 0$ Continuous RSB: $\Lambda_{ab} \to \Lambda(x)$

Dynamical interpretation: Hierarchy of time scales

H. Sompolinsky, A. Zippelius (1981)

How to solve the single site problem

$$\beta H_0\left(\left\{s^a\right\}\right) = -\frac{\beta^2}{2} \sum_{a,b} s^a \left(\Lambda_{ab} + W^2\right) s^b$$

Hierarchy of
time scales $t_{loc} \ll t_k \ll t_{k-1} \ll \dots \ll t_2 \ll t_1 \ll t_{max}$ $1 > x_k > x_{k-1} > \dots > x_2 > x_1 > 0$

Average magnetization of a spin on time scale *x* in presence of a frozen field *y*:

Distribution of frozen fields on times scale t_x (= Density of states at x=1!)

$$n(x=x(t), y)$$

Parisi (1979) Duplantier (1981) Sommers, Dupont (1984)

$$P(x = x(t), y)$$

How to solve the single site problem

$$\beta H_0(\{s^a\}) = -\frac{\beta^2}{2} \sum_{a,b} s^a Q_{ab} s^b$$

Hierarchy of $t_{loc} \ll t_k \ll t_{k-1} \ll t_{k-1}$ time scales $1 > x_k > x_{k-1} \approx t_{k-1}$

$$<< t_k << t_{k-1} << \dots << t_2 << t_1 << t_{max} > x_k > x_{k-1} > \dots > x_2 > x_1 > 0$$

Average magnetization of a spin on time scale *x* in presence of a frozen field *y*:

$$m(x=x(t), y)$$

Parisi (1979) Duplantier (1981) Sommers, Dupont (1984)

Distribution of frozen fields on times scale t_x (= Density of states at x=1!)

P(x = x(t), y)

Temporal
flow
equations

$$\dot{P}(x, y) = \frac{\dot{Q}(x)}{2} [P'' - 2x\beta(P'm + Pm')]$$

 \star Continuous $Q(x)$
 $\dot{m}(x, y) = -\frac{\dot{Q}(x)}{2} [m'' + 2x\beta mm']$

How to solve the single site problem

$$\beta H_0\left(\left\{s^a\right\}\right) = -\frac{\beta^2}{2} \sum_{a,b} s^a \left(\Lambda_{ab} + W^2\right) s^b$$

Hierarchy of
time scales $t_{loc} \ll t_k \ll t_{k-1} \ll \dots \ll t_2 \ll t_1 \ll t_{max}$ $1 > x_k > x_{k-1} > \dots > x_2 > x_1 > 0$

Average magnetization of a spin on time scale *x* in presence of a frozen field *y*:

$$m(x = x(t), y)$$

Parisi (1979) Duplantier (1981) Sommers, Dupont (1984)

Distribution of frozen fields on times

$$P(x = x(t), y)$$
Selfconsistency
$$\dot{P}(x, y) = \frac{\dot{\Lambda}(x)}{2} [P'' - 2x\beta(P'm + Pm')]$$

$$Q(x) = \int_{-\infty}^{\infty} dy P(x, y)m^{2}(x, y)$$

$$\Lambda(x) = \Lambda\{Q(x')\}$$
equations
$$\dot{m}(x, y) = -\frac{\dot{\Lambda}(x)}{2} [m'' + 2x\beta mm']$$

Analysis of the single site problem

Free energy per replica on time scale *x* in presence of a frozen field *y*:

$$\exp[x\varphi(x,y)] \equiv \sum_{\sigma_a=\pm 1} \{a=1,\dots,x\} \exp\left[\frac{\beta^2}{2} \sum_{ab=1}^x \sigma_a (\Lambda_{ab} - \Lambda(x))\sigma_b + \beta \sum_{a=1}^x y\sigma_a\right]$$

Iteration from $x \rightarrow x \cdot \Delta x \rightarrow$ "temporal" flow equation

$$\dot{\varphi}(x, y) = -\frac{\dot{\Lambda}(x)}{2} \left[\varphi'' + x \varphi'^2 \right]$$

Mean occupation/magnetization

$$m(x, y) \equiv \beta^{-1} \varphi'(x, y) = \left\langle s^a \right\rangle_{H_x}$$

Results: Temperature Evolution of the Coulomb gap

Results: Low T scaling

Continuous replica symmetry breaking

 \leftrightarrow Marginal stability

Excitation spectrum around local minima extends down to zero.

Results: Low T scaling

 $0.05 \ge T \ge 0.01$

Results: Low T scaling

Why is the low T behavior so universal?

Rewrite temporal flow equations in natural variables

 $x \rightarrow a \equiv \beta x \equiv 1/T_{eff}$ (Sompolinsly timeor effective*T*) $y \rightarrow z \equiv \beta xy = y/T_{eff}$ (Localfield)

$$\widetilde{p}(a, z) \equiv (\beta x)^2 P(x, y = z/\beta x)$$

$$\widetilde{m}(a, z) \equiv m(x, y = z/\beta x)$$

$$\rightarrow$$

$$a\partial_{a}\widetilde{m}(a,z) = -z\widetilde{m}' - \frac{a^{3}\dot{\Lambda}(a)}{2} [\widetilde{m}'' + 2\widetilde{m}\widetilde{m}']$$
$$a\partial_{a}\widetilde{p}(a,z) = 2\widetilde{p} - z\widetilde{p}' + \frac{a^{3}\dot{\Lambda}(a)}{2} [\widetilde{p}'' - 2(\widetilde{p}'\widetilde{m} + \widetilde{p}\widetilde{m}')]$$

Rewrite temporal flow equations in natural variables

 $x \rightarrow a \equiv \beta x \equiv 1/T_{eff}$ (Sompolinsly timeor effective*T*) $y \rightarrow z \equiv \beta xy = y/T_{eff}$ (Localfield)

$$\widetilde{p}(a, z) \equiv (\beta x)^2 P(x, y = z/\beta x)$$

$$\widetilde{m}(a, z) \equiv m(x, y = z/\beta x)$$

$$\rightarrow$$

$$a\partial_{a}\widetilde{m}(a,z) = -z\widetilde{m}' - \frac{a^{3}\dot{\Lambda}(a)}{2} [\widetilde{m}'' + 2\widetilde{m}\widetilde{m}']$$
$$a\partial_{a}\widetilde{p}(a,z) = 2\widetilde{p} - z\widetilde{p}' + \frac{a^{3}\dot{\Lambda}(a)}{2} [\widetilde{p}'' - 2(\widetilde{p}'\widetilde{m} + \widetilde{p}\widetilde{m}')]$$

$$a^{3}\dot{\Lambda}(a)/2 \rightarrow c;$$

Like RG in time *a*!

Rewrite temporal flow equations in natural variables

 $x \rightarrow a \equiv \beta x \equiv 1/T_{eff}$ (Sompolinsly timeor effective*T*) $y \rightarrow z \equiv \beta xy = y/T_{eff}$ (Localfield)

$$\widetilde{p}(a, z) \equiv (\beta x)^2 P(x, y = z/\beta x)$$

$$\widetilde{m}(a, z) \equiv m(x, y = z/\beta x)$$

$$a\partial_{a}\tilde{m}(a,z) = -z\tilde{m}' - \frac{a^{3}\dot{\Lambda}(a)}{2} [\tilde{m}'' + 2\tilde{m}\tilde{m}']$$

$$a\partial_{a}\tilde{p}(a,z) = 2\tilde{p} - z\tilde{p}' + \frac{a^{3}\dot{\Lambda}(a)}{2} [\tilde{p}'' - 2(\tilde{p}'\tilde{m} + \tilde{p}\tilde{m}')]$$

$$a^{3}\dot{\Lambda}(a)/2 \rightarrow c;$$

$$\tilde{m}(a,z) \rightarrow m^{*}(z)$$

$$\tilde{p}(a,z) \rightarrow p^{*}(z)$$

$$\beta >> a \equiv \beta_{a} >> \beta_{a}$$

 $>> \beta_c$

MM, S. Pankov (2006)

$$\widetilde{m}(a, z) \to m^*(z) \qquad \beta \gg a \equiv \beta_{eff}$$

$$\widetilde{p}(a, z) \to p^*(z)$$

Consequences

• Disorder independence: Fixed point (short times) independent of W

MM, S. Pankov (2006)

$$\widetilde{m}(a, z) \to m^*(z) \qquad \beta >> \\ \widetilde{p}(a, z) \to p^*(z)$$

$$\beta >> a \equiv \beta_{eff} >> \beta_{off}$$

Consequences

- Disorder independence: Fixed point (short times) independent of W
- Selfsimilarity of time averaged magnetizations

$$\rho(m,x) \equiv \int dy \,\delta(m-m(x,y)) P(x,y) = \frac{1}{x^2} \rho^*(m)$$

MM, S. Pankov (2006)

$$\widetilde{m}(a,z) \to m^*(z) \qquad \beta \gg a \equiv \beta_{eff} \gg \beta_c
\widetilde{p}(a,z) \to p^*(z)$$

Consequences

- Disorder independence: Fixed point (short times) independent of W
- Selfsimilarity of time averaged magnetizations
- Generalization of the fluctuation-dissipation relation: Exact for every x (*Sompolinsky*).
- Local meaning of T_{eff}

$$\rho(m, x) \equiv \int dy \,\delta(m - m(x, y)) P(x, y) = \frac{1}{x^2} \,\rho * (m + n(x, y)) = \beta \frac{\partial C(t, t')}{\partial t'} \Rightarrow R(t, t') = \beta x(C) \frac{\partial C(t, t')}{\partial t'}$$
$$\beta \Rightarrow \beta_{eff} = x\beta$$

Time-averaged magnetization: Function only of y/T_{eff}

$$m(x, y) \approx m^* \left(y / T_{eff}(x) \right)$$

Summary of theoretical results

Connection with Experiments

Aging

Electron glasses: Relaxation and aging

A. Vaknin et al., PRL 84, 3402 (2000)

Electron glasses: Relaxation and aging

10" 10° t/t_

 t_w [sec]

740

130 ----37

10*

10'

10²

10'

10'

Connections with experiment?

• Aging: Properties of slow relaxation and simple aging

Z. Ovadyahu (2006)

Indium-oxide

Connections with experiment?

• Aging: Properties of slow relaxation and simple aging

J.P. Bouchaud, D. Dean

Trap model

$$P(F) = \exp(-x\beta F)$$

$$\tau_i = \exp(\beta F_i)$$

$$\rightarrow \widetilde{P}(\tau) \propto \frac{1}{\tau^{1+x}}$$

J.P. Bouchaud, D. Dean

$$\Delta G \propto \left(t_w / t + t_w \right)^x \quad t > t_w$$

J.P. Bouchaud, D. Dean

J.P. Bouchaud, D. Dean

$$\Delta G \propto \left(t_{w}/t + t_{w} \right)^{x_{\max}} \quad t > t_{w}$$

Conclusions

Low T analysis of the Coulomb glass phase:

- → Marginal stability → prediction of collective soft modes
- → Saturation and universality of the Coulomb gap
- \rightarrow Selfsimilarity in temporal evolution
- \rightarrow Relation with functional RG?
- \rightarrow Prediction for aging.