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Motivation I 
Memory dip in electron glasses after change of gate voltage 

M. Ben-Chorin et al., PRL 84, 3402 (2000) 



Motivation I 

M. Ben-Chorin et al., PRL 84, 3402 (2000) 

What happens actually, as new 
electrons come into the sample? 

Or - what happens after P. Armitage’s or 
D. Popovic’s excitations?        
                             (cf. yesterday’s talks) 

Memory dip in electron glasses after change of gate voltage 



II. Charging a glassy capacitor 

D. Monroe et al., 
PRL 59, 1148 (1987) 

Introducing charge in a strongly insulating Coulomb glass 



II. Charging a glassy capacitor 

D. Monroe et al., 
PRL 59, 1148 (1987) 

Introducing charge in a strongly insulating Coulomb glass 

Injection from leads (or better from a tunnel tip) and … 



II. Charging a glassy capacitor 

D. Monroe et al., 
PRL 59, 1148 (1987) 

Introducing charge in a strongly insulating Coulomb glass 

… avalanche-like relaxation, or “crackling”. 

A.k.a. “non-linear screening” (Baranovskii, Shklovskii, Efros 1984) 



Outline
•  Crackling, avalanches, “shocks” in 
  disordered, non-linear systems;  
  Self-organized criticality  

•  Avalanches in the magnetizing process 
  (“Barkhausen noise”) 

•  The criticality of spin glasses at equilibrium – 
   why to expect scale free avalanches 

•  Magnetization avalanches in the Sherrington- 
  Kirkpatrick spin glass – an analytical study. 

•  Applications/perspectives: Finite dimensions, 
electron glasses, avalanches in quantum systems 



Crackling
Crackling = Response to a slow driving which occurs  
in a discrete set of avalanches, spanning a wide range of sizes. 

Occurs often but not necessarily out of equilibrium. 

Examples:  

•  Earthquakes 
•  Crumpling paper 
•  Charging an electron glass (presumably) 
•  Disordered magnet in a changing external field magnetizes in a series of jumps 

Review: Sethna, 
Dahmen, Myers, 
Nature 410, 242 (2001). 
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Crackling
Crackling = Response to a slow driving which occurs  
in a discrete set of avalanches, spanning a wide range of sizes. 

Occurs often but not necessarily out of equilibrium. 

Examples:  

•  Earthquakes 
•  Crumpling paper 
•  Charging an electron glass (presumably) 
•  Disordered magnet in a changing external field magnetizes in a series of jumps 

But: Not everything crackles!  
Intermediate between snapping (e.g., twigs, chalk, weakly disordered 
ferromagnets, nucleation in clean systems)  
and popping (e.g., popcorn, strongly disordered ferromagnets) 

Review: Sethna, 
Dahmen, Myers, 
Nature 410, 242 (2001). 

Crackling on all scales – generally signature of a critical state in driven, 
non-linear systems. → Can be an interesting diagnostic tool. 



Examples of crackling I
•  Depinning of contact lines, interfaces and other elastic objects  

  Liquid fronts, domain walls, charge density waves, vortex lattices: 



Examples of crackling I
•  Depinning of contact lines, interfaces and other elastic objects  

  Liquid fronts, domain walls, charge density waves, vortex lattices: 

Statistics of avalanches: non-trivial scale-free power laws 

Theoretical approach: functional RG [D. Fisher, Balents, LeDoussal+Wiese, etc] 



Examples of crackling II
•  Power laws due to self-organized criticality: 
  Dynamics is attracted to a critical state, without fine-tuning of parameters 

Example: sandpile model by Bak, Tang, and Wiesenfeld 



Magnetic systems

•  Crackling noise in the hysteresis loop: “Barkhausen noise” 

•  When does crackling occur in random magnets, and why? 



Magnetic systems

•  Crackling noise in the hysteresis loop: “Barkhausen noise” 

•  When does crackling occur in random magnets, and why? 

This talk:  
Equilibrium avalanches in hysteresis reflect criticality of 
glassy magnetic phases!  

Experimental proposal:  
Barkhausen noise as a diagnostic of glasses! 



Avalanches in ferromagnetic films
Direct Observation of Barkhausen Avalanche in (ferro) Co Thin Films 

Kim, Choe, and Shin (PRL 2003) 

P s( ) = A
sτ

   τ =
4
3

Distribution of 
magnetization jumps 

Cizeau et al.: 
Theoretical model with 
dipolar long range 
interactions 
(crucial to get criticality)  



Model ferromagnets

Random field Ising model (short range): 

•  Generically non-critical 
•  Scale free avalanches require fine tuning of disorder 
  and field 

Δ = hi
2

hext ,crit

Dahmen, Sethna  
Vives, Planes 

H = −J sis j −
<ij>
∑ hisi −

i
∑ hext si

i
∑

Reason: not enough frustration, no glassy phase! 

→ Look at spin glasses 



Mean field spin glass

Canonical spin glass model: Sherrington-Kirkpatrick (SK) model - fully connected  

H =
1
2

Jijsis j − hext si
i
∑

i, j
∑ ,      Jij :  random Gaussian Jij

2 = J 2 N

•  Mean field version of the Edwards-Anderson model in finite dimensions 



Mean field spin glass

Canonical spin glass model: Sherrington-Kirkpatrick (SK) model - fully connected  

•  Mean field version of the Edwards-Anderson model in finite dimensions 
•  Known facts: 
-  Thermodynamic transition at Tc to glass phase:  
-  Mtot = 0, despite of broken Ising symmetry: <si> ≠ 0,  
-  Order parameter 

H =
1
2

Jijsis j − hext si
i
∑

i, j
∑ ,      Jij :  random Gaussian Jij

2 = J 2 N

QEA =
1
N

si
2

i∑



Mean field spin glass

Canonical spin glass model: Sherrington-Kirkpatrick (SK) model - fully connected  

H =
1
2

Jijsis j − hext si
i
∑

i, j
∑ ,      Jij :  random Gaussian Jij

2 = J 2 N

•  Mean field version of the Edwards-Anderson model in finite dimensions 
•  Known facts: 
-  Thermodynamic transition at Tc to glass phase:  
-  Mtot = 0, despite of broken Ising symmetry: <si> ≠ 0,  
-  Order parameter  
-  Many metastable states 

QEA =
1
N

si
2

i∑



Mean field spin glass

Canonical spin glass model: Sherrington-Kirkpatrick (SK) model - fully connected  

Glass phase is always [self-organized] critical!  (SK: Kondor-DeDominicis)  
Power law correlations also in the droplet model! (Fisher-Huse) 

H =
1
2

Jijsis j − hext si
i
∑

i, j
∑ ,      Jij :  random Gaussian Jij

2 = J 2 N

•  Mean field version of the Edwards-Anderson model in finite dimensions 
•  Known facts: 
-  Thermodynamic transition at Tc to glass phase:  
-  Mtot = 0, despite of broken Ising symmetry: <si> ≠ 0,  
-  Order parameter  
-  Many metastable states 

QEA =
1
N

si
2

i∑



SK criticality – local fields
H =

1
2

Jijsis j − hext si
i
∑

i, j
∑

Thouless, Anderson and Palmer (1977) 
Palmer and Pond (1979) 
Parisi (1979) 
Bray, Moore (1980) 
Sommers and Dupont (1984) 
Dobrosavljevic, Pastor (1999) 
Pazmandi, Zarand, Zimanyi (1999) 
MM, Pankov (2007)  

 
λi ≡ −

∂H
∂si

= − Jijs j + hext
j≠ i
∑

Linear “Coulomb” gap in the 
distribution of local fields 

(analogous to Efros-Shklovskii 
Coulomb gap, 1975) 

A first indication of criticality!  

Local field on spin i: 



The linear pseudogap in SK 
Thouless (1977) 

The distribution of local fields must vanish at 
λ=0 at T = 0! 

Stability of ground state with respect to flipping of a pair:  

•  Suppose pseudogap  P λ( )∝ λγ

γ ≥ 1 → At least linear pseudogap! 

→ Smallest local fields  λmin ∝ N −1 1+γ

λ1 λ2

NJ 1~12

•  2-spin flip cost  Ecos t ∝ λ1 + λ2 − N −1 2   ~   N −1 1+γ − N −1 2   >
!

  0



The linear pseudogap in SK 
Stability of ground state with respect to flipping of a pair:  

•  Suppose pseudogap  P λ( )∝ λγ

→ Smallest local fields  λmin ∝ N −1 1+γ

λ1 λ2

NJ 1~12

•  2-spin flip cost  Ecos t ∝ λ1 + λ2 − N −1 2   ~   N −1 1+γ − N −1 2   >
!

  0

•  But: γ = 1! →  marginally stable! 
 Largest possible density of soft spins! 

Distribution is critical: flipping one spin 
by an increase of                     can trigger  
large avalanche!   

Δhext = λmin

Thouless (1977) 

The distribution of local fields must vanish at 
λ=0 at T = 0! 

γ ≥ 1 → At least linear pseudogap! 



“Living on the edge”

Size distribution of avalanches: 

•  Avalanches are large: 
  Only cutoff : system size N 

   S = ΔM  ~  N1/2    
   and    
   Nflip ~ N    [!] 

•  Power laws: 
  Indication of self-organized criticality 

Pazmandi, Zarand, Zimanyi (1999) 
Numerical analysis of hysteresis in the SK model 



“Living on the edge”

Size distribution of avalanches: 

•  Avalanches are large: 
  Only cutoff : system size N 

   S = ΔM  ~  N1/2    
   and    
   Nflip ~ N    [!] 

•  Power laws: 
  Indication of self-organized criticality 

•  Nearly random up and down flips! 

•  Typical spins flip ~ N1/2 times back and    
  forth during a hysteresis loop! 

Pazmandi, Zarand, Zimanyi (1999) 

Theory?? 

Numerical analysis of hysteresis in the SK model 



Criticality of the SK model 
SK-model  

Parisi ansatz for the saddle point: 
Hierarchical replica symmetry breaking  

=abQ

Parisi (1979)  

H = Jijsis j
i< j
∑

Replica trick:  F = ext
Q

F Qab{ }⎡⎣ ⎤⎦        Qab =
1
N

si
asi

b

i
∑



Criticality of the SK model 
SK-model  

Parisi ansatz for the saddle point: 
Hierarchical replica symmetry breaking  

=abQ

Parisi (1979)  

H = Jijsis j
i< j
∑

Replica trick:  F = ext
Q

F Qab{ }⎡⎣ ⎤⎦        Qab =
1
N

si
asi

b

i
∑

Zero modes of stability matrix  Criticality of the glass:  ∂2F
∂Qab∂Qcd

•  Critical spin-spin correlations in the whole glass  
   phase!  
   Numerically also found in finite dimensions  
   (also in the droplet model)!  

•  Criticality is directly related to the linear pseudogap in P(h)! 
(Sommers-Dupont, Pankov) 



Avalanches?

•  Understand shocks in spin glasses

•  Calculate equilibrium avalanche distribution analytically 

•  → Power law - a consequence of thermodynamic criticality



Stepwise response and shocks in 
spin glass models 

m

Fα h( ) = Fα h = 0( ) − hMαFree energy of metastable state α: 
Equilibrium jump/shock when two states cross:  Fα hshock( ) = Fβ hshock( )

Young, Kirkpatrick 1982, Krzakala, Martin (2003) 

Mesoscopic effect: Susceptibility has spikes and does not self-average! 



Stepwise response and shocks in 
spin glass models 

m

Fα h( ) = Fα h = 0( ) − hMαFree energy of metastable state α: 
Equilibrium jump/shock when two states cross:  Fα hshock( ) = Fβ hshock( )

Yoshino, Rizzo (2008) First steps of theory in p-spin models  
[physics similar as in supercooled liquids] 
→ Glassy, but much simpler than SK and non-critical 

Young, Kirkpatrick 1982, Krzakala, Martin (2003) 

Mesoscopic effect: Susceptibility has spikes and does not self-average! 



How to detect avalanches 

2nd cumulant of the magnetization (T = 0) Yoshino, Rizzo (2008) 

Non-analytic cusp! 
Reflects the probability of shocks. 



How to detect avalanches 

2nd cumulant of the magnetization (T = 0) Yoshino, Rizzo (2008) 

Non-analytic cusp! 
Reflects the probability of shocks. 

Elastic analogue: 

For experts: Shocks are direct analogs of the cusp in 
the FRG beyond the collective pinning scale 

Larkin, Fisher 
LeDoussal, Wiese 
Balents, Bouchaud, Mézard 
LeDoussal, MM, Wiese 



How to obtain shocks 
and their distribution 

for the SK model? 



Strategy of calculation 
kth cumulant of magnetization difference 

Shock density 

Avalanche size cumulants 
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Shock density 

Avalanche size cumulants 

Calculate 



Strategy of calculation 
kth cumulant of magnetization difference 

Shock density 

Avalanche size cumulants 

Calculate 

Natural scales: Distance between shocks 

Magnetization jumps 



Strategy of calculation 
Calculate 

Calculate effective potential of n replicas: 



Strategy of calculation 
Calculate 

Calculate effective potential of n replicas: Easy to extract in the 
replica limit  n→ 0

Extract non-analytic part ~|dh| in the limit T → 0 
… … … … 



Strategy of calculation 
Calculate 

Calculate effective potential of n replicas: Easy to extract in the 
replica limit  n→ 0

Extract non-analytic part ~|dh| in the limit T → 0 

Final result: (for any mean field glass)  

Equilibrium saddle point T-1/(dQ/du) 

… … … … 



Calculation 
Result for SK spin glass 

Avalanche exponent 

τ = 1

Zero T solution of the 
SK model, and its 
marginal stability! 



Calculation 
Result for SK spin glass 

Avalanche exponent 

τ = 1

q12 =
1
N

si
1si
2

i
∑Overlap: 

Superposition from all 
“distances” (0 < 1-q <1) 
produces a power law! 

Zero T solution of the 
SK model, and its 
marginal stability! 



Calculation 
Result for SK spin glass 

•  Mesoscopic avalanches ~ N1/2 fully confirmed 
•  Critical probability distribution of avalanche sizes 

Avalanche exponent 

τ = 1

q12 =
1
N

si
1si
2
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∑Overlap: 

Superposition from all 
“distances” (0 < 1-q <1) 
produces a power law! 

Zero T solution of the 
SK model, and its 
marginal stability! 



Calculation 
Result for SK spin glass 

Superposition from all 
“distances” (0 < 1-q <1) 
produces a power law! 

Avalanches in the hysteresis loop  
(slowly driven, out-of-equilibrium) 

Pazmandi, Zarand, Zimanyi (1999) 
Log(δm) 

Zero T solution of the 
SK model, and its 
marginal stability! 



A posteriori: a simple derivation ! 

A heuristic derivation/interpretation – a posteriori 
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Nflip = N 1− q( ) 2
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ρ E = 0,q( ) = 1
T
P(q) = 1

T
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dq

≡
dû
dq

Density of states at distance 1-q 

Relation between jump in q and M 

Shock location: 
 
Δ h = NΔh = E ΔM

A heuristic derivation/interpretation – a posteriori 
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A posteriori: a simple derivation ! 

Nflip = N 1− q( ) 2
Δm2 = ΔM 2 N = 4Nflip N = 2 1− q( )

ρ E = 0,q( ) = 1
T
P(q) = 1

T
du
dq

≡
dû
dq

Density of states at distance 1-q 

Relation between jump in q and M 

Shock location: 

A heuristic derivation/interpretation – a posteriori 

Distribution of jump in m AND number of flipping spins: 

 
Δ h = NΔh = E ΔM

Static calculation yields same power laws as out-of-eq. dynamics! 



Nature of avalanches 
T=0 dynamics (numerical) 

S:=Δm N1/2 

T=0 statics (analytical) 

Possible reason for similarity:  
Statics and dynamics are closely related in marginal glasses, such as SK  



Applications and extensions 



Finite dimensions 

Analogous argument as above for droplets in finite dimensions: 

Assuming droplet picture (with critical power law correlations) 

Avalanche exponent 

Droplet magnetization 
Droplet energy 

Droplet fractal dimension  df 

Power law! With: 

New exponent relation!  



Avalanches in the classical 
Coulomb glass 
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Avalanches in the classical 
Coulomb glass 

Add one particle on a given site: ni: 0 → 1 
→ Trigger avalanche of “non-linear screening events” 
At T=0: no screening → easy to show: at least O(L) induced jumps  
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Avalanches in the classical 
Coulomb glass 

Add one particle on a given site: ni: 0 → 1 
→ Trigger avalanche of “non-linear screening events” 
At T=0: no screening → easy to show: at least O(L) induced jumps  

Locator approximation predicts critical glass state  

→ Expect power law distribution with cutoff ~ min(1/T, L) 

  
H =

1
2

ni

e2

rij

nj
i≠ j
∑ + niε i

i
∑

Müller, Ioffe 04 
Pankov, Dobrosavljevic 04 
Müller, Pankov 07 



Physical realization of the 
(quantum) SK model  

in quantum critical electron 
glasses?! 

(Müller, Ioffe 07) 



Quantum electron glasses: close to 
metal-insulator-criticality 

Electrons in localization volume behave like a quantum SK model 

Adding a charge → avalanches (polarons): affect transport and relaxations.  
Static shocks: Rounding of shocks by tunneling!  
→ Extract transition rates, avoided level crossing, etc etc… 

First step: full solution of quantum SK (Andreanov, Müller in preparation) 

(Müller, Ioffe 07) 

 

δ ≡ δξ

J ≡
e2

κξ
J  δ



Conclusion 

Spin glass criticality (in the SK model) → scale free 
response to a slow magnetic field change. 

Connection between manifestations of criticality: 
Soft “Coulomb” gap – avalanches –  

algebraic spin-spin correlations 

Similar effects expected for electron glasses 

Avalanches in Barkhausen noise, fast charge relaxation:  
An interesting experimental diagnostic for spin glass criticality?! 


