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Outline
•  Crackling, avalanches, and “shocks” in 
  disordered, non-linear systems;  
  Self-organized criticality  

•  Avalanches in the magnetizing process 
  (“Barkhausen noise”) 

•  The criticality of spin glasses at equilibrium – 
   why to expect scale free avalanches 

•  Magnetization avalanches in the Sherrington- 
  Kirkpatrick spin glass – an analytical study. 

•  Outlook: finite dimensions, electron glasses,… 



Crackling
Crackling = Response to a slow driving which occurs  
in a discrete set of avalanches, spanning a wide range of sizes. 

Occurs often but not necessarily only out of equilibrium. 

Examples:  

•  Earthquakes 
•  Crumpling paper 
•  Vortices and vortex lattices in disordered media etc.  
•  Disordered magnet in a changing external field magnetizes in a series of jumps 

But: Not everything crackles!  
It is intermediate between snapping (e.g., twigs, chalk, weakly disordered 
ferromagnets, nucleation in clean systems)  
and popping (e.g., popcorn, strongly disordered ferromagnets) 

Review: Sethna, 
Dahmen, Myers, 
Nature 410, 242 (2001). 

Crackling on all scales is generally a signature of a critical state in driven, 
non-linear systems. It can thus be an interesting diagnostic tool. 



Examples of crackling I
•  Gutenberg-Richter law for strength of earthquakes 
              (jumps of driven tectonic plates) 



Examples of crackling II
•  Depinning of elastic interfaces  

  Liquid fronts, domain walls, charge density waves, vortex lattices: 

Statistics of avalanches:  - mean field theory 
              - recent first steps and successes with FRG 

                                          find non-trivial critical power laws (without scale) 

Depinning as a dynamical critical phenomenon in disordered glassy systems 
Sophisticated theoretical approach: functional RG [D. Fisher, LeDoussal, etc] 



Examples of crackling III
•  Power laws due to self-organized criticality: 
  Dynamics is attracted to a critical state, without fine-tuning of parameters 

Example: sandpile model by Bak, Tang, and Wiesenfeld 



Magnetic systems

•  Crackling noise in the hysteresis loop: “Barkhausen noise” 

•  When does crackling occur in random magnets, and why? 

•  What happens in frustrated spin glasses  
   (as opposed to just dirty ferromagnets)? 

Equilibrium avalanches in the hysteresis reflect criticality of 
the glass phase! Noise as a diagnostic of a critical glass state? 

? 



Avalanches in ferromagnetic films
Direct Observation of Barkhausen Avalanche in (ferro) Co Thin Films 

Kim, Choe, and Shin (PRL 2003) 

P s( ) = A
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Distribution of 
magnetization jumps 

Cizeau et al.: 
Theoretical model with 
dipolar long range 
interactions 
(believed to be crucial to 
get criticality)  



Model ferromagnets
Random field Ising model (short range): 

•  Generically non-critical 
•  Scale free avalanches require fine tuning of disorder 
  and field 
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Experiment (disordered ferro) 
Berger et al. (2000) 

Dahmen, Sethna  
Vives, Planes 

(T tunes effective disorder) 

Experiment: 



Why is the random Ising 
model generally non-critical?

Pazmandi, Zarand, Zimanyi (PRL 1999): 

Elastic manifolds and  
ferromagnets with dipolar interactions: 

They have strong frustration: 
- long range interactions with varying signs  and/or  
- strong configurational constraints 

          Glassy systems with arbitrarily high barriers, metastable states 

In contrast: RFIM is known not to have a spin glass phase  
(Krzakala, Ricci-Tersenghi, Zdeborova) 

Look at spin glasses!  
(Frustration + disorder = glass and criticality!?) 



SK criticality

Canonical spin glass model: Sherrington-Kirkpatrick (SK) model - fully connected  

•  Extremely intricate mean field version of the Edwards-Anderson model 
in finite dimensions (but duc = 6) 
•  Known facts: 
-  There is a thermodynamic transition at Tc to a glass phase:  
-  no global magnetization, but broken Ising symmetry: <si> ≠ 0,  
-  measured by Edwards Anderson order parameter 
-  Multitude of metastable states, separated by barriers  
-  Correct equilibrium solution by G. Parisi : Replica symmetry breaking 
-  Glass phase is always critical! (Kondor, DeDominicis) 
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SK criticality – local fields
H =

1
2

Jijsis j − hext si
i
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i, j
∑

Thouless, Anderson and Palmer, 
(1977); Palmer and Pond (1979) 
Parisi (1979), Bray, Moore (1980) 
Sommers and Dupont (1984) 
Dobrosavljevic, Pastor (1999) 
Pazmandi, Zarand, Zimanyi (1999) 
MM, Pankov (2007)  

 
λi ≡ −

∂H
∂si

= − Jijs j + hext
j≠ i
∑

Linear “Coulomb” gap in the 
distribution of local fields 

A first indication of criticality!  

Local field on spin i: 



The linear pseudogap in SK 
Thouless (1977) 

The distribution of local fields must vanish at 
λ=0 at T = 0! 

Stability of ground state with respect to flipping of a pair:  

•  Suppose pseudogap  P λ( )∝ λγ

γ ≥ 1 → At least linear pseudogap! 

→ Smallest local fields  λmin ∝ N −1 1+γ

λ1 λ2

NJ 1~12

•  2-spin flip cost  Ecos t ∝ λ1 + λ2 − N −1 2   ~   N −1 1+γ − N −1 2   >
!

  0

•  But: γ = 1!  
 Largest possible density of soft spins! 

Distribution is critical so that flipping the 
first spin by an increase of                     can 
trigger a large avalanche!   

Δhext = λmin



“Living on the edge”

Size distribution of avalanches: 

•  Avalanches are large 

•  Only cutoff: system size (N1/2) 

•  Power law: 
  Sign of Self-Organized Criticality 

Pazmandi, Zarand, Zimanyi (1999) 



Review: Criticality and RSB 

SK-model  

Replica trick  

Parisi ansatz for the saddle point: 
Hierarchical replica symmetry breaking  
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Parisi (1979)  
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Free energy functional 

H = Jijsis j
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SK criticality 
Important features of the solution in the glass phase:  

•  The free energy functional is only marginally stable! 
  → Full family of zero modes of the Hessian 

•  ↔ Critical spin-spin correlations in the whole glass  
   phase! Found numerically also in finite dimensions!  

•  Hierarchical structure of phase space and time scales 

•  Replica symmetry is broken continuously (at all scales) 
  A continuous function Q(x), n<x<1, parametrizes Qab 

•  Marginality is directly related to the linear pseudogap  
  The pseudogap can be calculated analytically at low T        
  (Pankov) 

Free energy landscape 
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After so much critical 
preparation:�

•  Understand shocks in spin glasses

•  Calculate avalanche distribution analytically!

•  Confirm the direct connection of scale free
  avalanches and thermodynamic criticality!



Stepwise response and shocks in 
spin glass models 

m

Fα h( ) = Fα h = 0( ) − hMαFree energy of metastable state α: 
Equilibrium jump/shock when two states cross:  Fα hshock( ) = Fβ hshock( )

Mesoscopic effect: Susceptibility has spikes and does not self-average! 

p-spin models [physics similar as in supercooled liquids] 
 - no continuous, but only 1-step Replica Symmetry Breaking  
 → Glassy, but much simpler and non-critical 

Yoshino, Rizzo (2008) 



Detecting shocks 

2nd cumulant of the magnetization (T = 0) 

Closely related effects: 

•  Functional renormalization group for collectively 
pinned elastic manifolds (e.g. vortex lattices): 
Cusp in force correlator    
as a function of center of mass displacement 

•  Analogy in Turbulence: 
Shocks in the velocity field v(x) 

Non-analytic cusp! 
•  Reflects the probability of shocks. 
•  The non-analyticity is rounded at finite T. 

Yoshino, Rizzo (2008) 

D. Fisher (1986) 
LeDoussal, Wiese 
Balents, Bouchaud, 

Mézard 
LeDoussal, MM, Wiese 

Bouchaud, Mézard, 
Parisi 

f u + δu( ) f u − δu( ) − f u( )2 ∝ δu



How to obtain shocks 
and their distribution 

for the SK model? 



Strategy of calculation 
kth cumulant of magnetization difference 

Shock density 

Avalanche size cumulants 

Calculate 

Natural scales: Distance between shocks 

Magnetization jumps 



Strategy of calculation 
Calculate 

Calculate effective potential of n replicas: Easy to extract in the 
replica limit  n→ 0

             limit:  i) Rescale 

                       ii) Saddle point Qab, sum over replica permutations! 

N →∞

Qab =

 
ha = ha N



Calculation 

•  k’th cumulant: k groups of n → 0 replicas with the same ha 
•  integral representation of the magnetization cumulants 

 Sum over replica permutations π in S(n)  [a real challenge!]

Generalized Parisi 
equations: 



Calculation 
 Sum over replica permutations π in S(n)  [a real challenge!]

•  k’th cumulant: k groups of n → 0 replicas with the same ha 
•  integral representation of the magnetization cumulants 
•  limit T → 0: expand in nonlinear diffusion term  

Generalized Parisi 
equations: 



Calculation 

Final result: 

•  picture of mesoscopic avalanches ~ N1/2 fully confirmed 
•  obtain critical probability distribution of avalanche sizes 

 Sum over replica permutations π in S(n)  [a real challenge!]

Avalanche exponent 

τ = 1

•  k’th cumulant: k groups of n → 0 replicas with the same ha 
•  integral representation of the magnetization cumulants 
•  limit T → 0: expand in nonlinear diffusion term  
•  extract non-analytic contribution from shocks 



Critical traces in the avalanche 
distribution 

Footprint of criticality in the final result: 

: obtained from RG-like fixed point in the SK solution at low T! 
(Pankov 2006) 

(Crisanti, Rizzo 2001; Pankov 2006) 

Parisi’s solution  
Qab → q(x): 



Comparison with numerics 
Analytical result (shocks in equilibrium) 

Avalanches in the hysteresis loop (slowly driven, out-of-equilibrium) 

Pazmandi, Zarand, Zimanyi (1999) 
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 Many qualitative features agree between  

analytics (equilibrium) and 
numerics (out-of equilibrium) 



Remarks 
Analytical result (shocks in equilibrium) 

Important remarks 

•  The power law arises because of the criticality of the glass 

•  It receives contributions from jumps at all scales of the ultrametric 
organization of states 

•  Nearly no dependence on the external field, except in the cutoff scale: 
 → The SK spin glass is critical even in finite field. 



Remarks 



Conclusion 

Spin glass criticality (in the SK model) is prominently 
reflected in scale free response to a slow magnetic 

field change. 

There is a deep connection between various 
manifestations of this criticality: 

Soft gap – avalanches – spin-spin correlations – 
abundant collective low energy excitations 

Avalanches in Barkhausen noise:  
An interesting experimental diagnostic for spin glass criticality? 



Outlook 
•  Finite d spin glasses: 

- Is criticality revealed in avalanches, exp & numerics? 
- Beyond mean field: Is there an FRG for spin glasses? 

•  Coulomb glasses: (Localized electrons with Coulomb 
interactions and disorder) 

Close analogies with SK model: 

-  Critical soft gap  (Efros-Shklovskii) 
-  Infinite gate-induced avalanches (~ L) at T = 0 
-  Mean field: full RSB, critical correlations predicted 

•  Avalanches in other complex systems (computer science, 
optimization, economy, etc)   


