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Abstract. We discuss the history dependence and memory effects which are observed in the out-of-
equilibrium conductivity of electron glasses. The experiments can be understood by assuming that the
local density of states retains a memory of the sample history. We provide analytical arguments for the
consistency of this assumption, and discuss the saturation of the memory effect with increasing gate voltage
change. This picture is bolstered by numerical simulations at zero temperature, which moreover demonstrate
the incompressibility of the Coulomb glass on short timescales.

1. INTRODUCTION

Glassiness of localized electron systems was predicted long ago [1, 2]. Experimentally, such behaviour
was first found in the slow capacitance relaxation of uncompensated semiconductors [3], and more
recently in a series of experiments on strongly disordered indium-oxide films [4], as well as in granular
metallic films [5] where slow logarithmic relaxation, aging and memory were observed in the gate-
controlled conductivity.

The memory of equilibration conditions is manifested as an anomalous (symmetric) field effect.
The conductivity of the sample always increases no matter whether the carrier density is increased
or decreased. This out-of-equilibrium dip in the conductivity is remarkably universal, its shape being
independent of disorder and magnetic field, while its width (in the applied gate voltage) shrinks with
decreasing temperature and increases with carrier density [4]. The latter fact demonstrates the importance
of electron-electron interactions, suggesting that these systems constitute genuine electron glasses.

2. PHENOMENOLOGICAL THEORY OF THE MEMORY EFFECT

In Ref. [6], we proposed a phenomenological theory to account for these features. The theory is based
on the standard model of Anderson insulators (in 2D) with strongly localized, classical electrons [7]

H =
∑
i�=j

(ni − ν)
e2

�rij

(nj − ν) +
∑

i

ni�i, (2.1)

the impurity sites being located on a square lattice with nearest neighbour distance a. Disorder and
frustration are introduced by random site energies �i, independently and uniformly distributed over the
range −W < �i < W , and ν is a homogeneously distributed background charge, adjustable by the gate.

Three key ingredients are essential in order to understand the memory effect:

i) Below a critical temperature (T < Tg) the electron glass falls out of equilibrium on experimental
time scales due to the appearance of a large number of metastable states which are separated by
high barriers. After a sudden change of external parameters the system is unable to relax rapidly to
its new ground state, and may retain a memory of its former state. This scenario is suggested by
numerical simulations [8], as well as by mean field theory [9] which predicts a glass transition at
Tg ∼ (e2/�a)2/W for large disorder W � e2/�a [10].
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ii) The repulsive interactions induce a Coulomb gap in the local density of states, which tends to the
linear Efros-Shklovskii pseudogap at low temperatures [7]. The shape of the gap varies slightly from
state to state and can serve as a fingerprint of the sample history.

iii) The system conducts via variable range hopping which is exponentially sensitive to perturbations of
the local density of states.

The theory of Ref. [6] makes the key assumption that the precise form of the Coulomb gap varies
between different metastable states, and may thus reflect the pathway which a given state was obtained.
This situation can occur when a small gate voltage is applied after a long equilibration. In the first place,
the gate introduces additional background charges (changing ν → ν + �ν in (2.1)), forcing the same
amount of charge to enter the system in order to compensate on average for the gate field. The new
carriers occupy the empty states just above the Fermi level, EF , shifting the Fermi level up with respect
to the bulk of the occupied states. The resulting density of states is asymmetric around the new Fermi
level. We argue below that this feature survives the fast relaxations triggered by the presence of the new
particles. Due to the asymmetry, thermal excitations of electrons into empty states will be enhanced, and
the hopping conductivity will thus increase. A quantitative analysis shows that this effect dominates over
the decrease due to the suppression of hole excitations [6].

3. METASTABILITY OF OUT-OF-EQUILIBRIUM STATES

The introduction of new carriers renders other particles unstable and induces spontaneous hops that
decrease the total energy. The question arises whether, or to what extent, such fast relaxation processes
can wipe out the initial asymmetry of the density of states. In Ref. [6], we argued that as long as the
density of new carriers, nV , is smaller than that of thermally excited electrons, nT , the gate voltage effect is
perturbative. This condition is equivalent to the requirement that the shift of the Fermi level (with respect
to the bulk of the states) be smaller than temperature. Below, we will provide more detailed arguments
to justify the neglect of fast relaxations in this regime. On the other hand, at higher gate voltages new
carriers are introduced on sites that were essentially always empty in the original state. Since in general
their local environment is not favorable to the addition of a particle, the new electrons likely trigger
relaxation processes and destabilize the original state. Such reconfigurations will lead to the saturation
of the anomalous field effect at voltages where nV ≥ nT .

Let us analyse the stability criterion nV < nT in more detail in the case of low temperatures where
the equilibrium density of states, �0(� ≡ E − EF ), displays a linear Coulomb gap. More precisely,
we assume the scaling form �0(�) = T/(e2/�)2f (|�|/T ) with f (0) = O(1), and f (x) ∼ x for 1 � x �
(e2/�a)2/WT . If the density of injected particles,nV , is larger thannT ∼ (�T/e2)2, their mutual interaction
exceeds the temperature, so that they spontaneously rearrange, reshuffling the distribution of levels. On the
other hand, fornV < nT , the interactions between new particles can be neglected.The particles will a priori
occupy the first empty states above EF , shifting the Fermi level by �EF ≈ �ν/�0(0) ∼ (e2/�)2�ν/T ,
so that the new density initially takes the form �1(�) = �0(� + �EF ). However, the Coulomb repulsion
from the new electrons shifts the local energies of other sites, inducing spontaneous hops that affect the
distribution of levels.

Let us estimate the density np(E∗) of recombining electron-hole pairs that affect the number of
states in the interval 0 < |�| < E∗. We count the pairs (ij) whose recombination energy, �Eij =
e2/�rij − |�i| − |�j|, is raised above temperature, while the pair was stable (�Eij < T ) before the
introduction of new particles. We approximate np(E∗) by the density of states for pairs with �Eij of
order T , multiplied by the typical shift of �Eij for a pair of sites with distance rij . The latter is of
order rij�νe2/� for the dominant short pairs with rij < �ν−1/2. Assuming the single-site energies to be
independent, we find

np(E∗) ≈
∫
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Figure 1. Left: The density of states before and after particle injection, plotted as a function of � = E − EF . The
data are averaged over 200 samples with 80 × 80 sites, for disorder with width W = 0.6. Right: The shift �EF as a
function of the relative increase of carrier density. �EF is determined from the shift between the bulk of the density
of states. It agrees within error bars with the difference between the average Fermi level in both kinds of states with
the same filling fraction. The full line is the best fit to the form �EF = a

√
((�ν/ν)−1 + c−1)−1.

This should be compared to the change nd(E∗) in the density of particle/hole states in the same
energy interval |�| < E∗, caused by the shift of EF : nd(E∗) ≈ ∫ E∗

0 (�1(�) − �0(�))d� ∼ E∗�EF/(e2/�)2.
Performing the integration over r in (3.1), and dividing by nd(E∗), we obtain
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E∗�EF
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E∗ , (3.2)

which is only a small fraction in the range of energies (E∗ � T ) that are probed in hopping conductivity.
Note, however, that within the range |�| ≤ T the density of states can be appreciably modified by fast
relaxations.

4. NUMERICAL SIMULATIONS AT T = 0

In order to provide evidence that history dependence can be seen in the density of states, we carried out
simulations at T = 0 for the model (2.1) with moderate disorder strength W = 0.6 in systems of linear
size L = 32, 48, 64, 80. Starting from random initial conditions, we allowed all hops that decrease the
energy, until we reached a state that is stable to any single hop. We then filled in a fraction �ν � ν ≈ 0.54
of new particles, putting them onto the available sites with least energy cost. Finally, we simulated the
fast relaxation processes by steepest descent via single hops to the closest metastable state. For both
metastable states we determine the Fermi level EF (the energy separating occupied and empty levels)
and calculate the distribution of local energies, Ei = dH/dni. For the states obtained before particle
injection, EF is found to increase linearly with filling fraction, dEF/dν ≈ 2.45, as one expects for a
system with finite (“field cooled”) compressibility. However, in the states obtained after injection and
relaxation, the average Fermi level is systematically higher than that of unbiased states with the same
filling fraction. This is also manifested by the fact that the bulk of the density of states, �1(�), is shifted
down by �EF , see Fig. 1. The extra shift �EF increases with filling fraction as �ν1/2, as one expects from
the presence of a linear Coulomb gap. This result reflects the incompressibility of the Coulomb glass [1],
� = (d�EF/d�ν)−1 ∼ (�ν)1/2 → 0 (for small �ν). A similar phenomenon occurs in the pinned Wigner
crystal [11]. At larger �ν, the shift saturates to �E∞

F , as the system becomes unstable and reorganizes
significantly.
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At finite, but small temperature the numerical results for T = 0 should remain robust, since the density
of states can only relax further by activated processes. The fact that at T = 0 the shift �EF saturates
only at a finite fraction �ν suggests that the saturation condition nV ≈ nT for the anomalous field effect
only applies for T > �E∞

F . However, at least in the presence of strong disorder, W � e2/�a, one expects
a rather large temperature interval �E∞

F < T < Tg in which the width of the anomalous field effect is
correctly described by nV ≈ nT .

In conclusion, we have provided quantitative arguments and numerical evidence at T = 0 that the
local density of states can exhibit memory of the sample history. These independent approaches provide
further support for the memory scenario proposed in Ref. [6].
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