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We investigate the temperature dependence of conductivity in ballistic graphene using Landauer

transport theory. We obtain results which are qualitatively in agreement with many features recently

observed in transport measurements on high mobility suspended graphene. The conductivity � at high

temperature T and low density n grows linearly with T, while at high n we find �� ffiffiffiffiffiffijnjp
with negative

corrections at small T due to the T dependence of the chemical potential. At moderate densities the

conductivity is a nonmonotonic function of T and n, exhibiting a minimum at T ¼ 0:693@v
ffiffiffiffiffiffijnjp

where v

is the Fermi velocity. We discuss two kinds of Fabry-Perot oscillations in short nanoribbons and their

stability at finite temperatures.
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Ballistic transport theory was theoretically analyzed [1–
3] shortly after the pioneering measurements of the quan-
tum Hall effect in the first single-layer graphene samples
[4,5]. So far theoretical approaches have concentrated on
low temperatures and density, predicting a finite and uni-
versal minimum conductivity � ¼ ð4=�Þe2=h as well as a
universal Fano factor F ¼ 1=3. This is a surprising result
in the ballistic transport regime where one might naively
expect no current noise at all. The reason for finite noise
lies in the dynamics of charge carriers in graphene which at
low energies is governed by the massless Dirac equation
and not by the massive Schrödinger equation. As a result,
the ballistic transport resembles diffusive transport in a
normal metal, which has been coined pseudodiffusive
transport in the literature. Both the predictions for the
conductivity as well as the Fano factor have been experi-
mentally observed [6–8]. Recently, mobilities approaching
200 000 cm2=Vs have been reported for ultraclean sus-
pended graphene [9,10] which are an order of magnitude
larger than typical mobilities of graphene deposited on a
substrate. The transport characteristics of these experi-
ments suggest that the samples reach the ballistic regime
with respect to disorder scattering. Indeed, the conductance
scales with the number of channels, which is inconsistent
with dominant scattering from charged impurities, or rip-
ples [11], the latter being the most likely elastic scatterers
in suspended graphene. Further, � is proportional to the
sample length L for small sizes and low temperature T.

While these two features suggest ballistic transport, they
do not actually rule out the presence of inelastic scattering
due to electron-electron interactions, which preserve both
the density dependence �� ffiffiffi

n
p

and the proportionality to
L [12]—except for n ¼ 0 and finite T where interactions
lead to a L-independent finite conductivity, in contrast to
the ballistic case [see Eq. (7) below]. The data of Ref. [9]
are indeed likely to bear fingerprints of Coulomb interac-
tions in a certain parameter regime close to the neutrality

point and at higher temperature where interactions are
strongest [13]. On the other hand, however, the significant
linear increase of �ðTÞ at charge neutrality reported in
Ref. [10] is inconsistent with dominant electron-electron
interactions. (In the experiment [10] the latter are presum-
ably screened by nearby metallic electrodes.) This insulat-
ing trend in the temperature dependence, and the opposite
metallic trend at moderate density, which is reported in
both Refs. [9,10], has remained a puzzle. The authors of
Ref. [9] attempted to explain the latter by scattering from
phonons. However, they point out that the decrease of the
effect with density is not consistent with such a scenario.
Ascribing the observed effects to electron-electron inter-
actions is not consistent either, since those would exhibit a
rather weak temperature dependence [13,14], with a me-
tallic instead of an insulating trend at low density. Hwang
and Das Sarma [15] have proposed scattering from charged
impurities and their temperature dependent screening as a
possible explanation for the different behavior at low and
high density. However, this model cannot account for the
density dependence of the data and the length indepen-
dence of the conductance at low temperature.
In this Letter, we analyze impurity-free transport at finite

T. As motivated above, we assume interactions to be weak,
either due to dielectric attenuation from a substrate, or
screening by nearby metals or the finite density of electrons
themselves. We show that the extension of the ballistic
transport model of Ref. [2] to T > 0 qualitatively explains
most of the features observed in Ref. [10] and, apart from
the low n and high T regime, also those in Ref. [9]. In
particular, in the absence of interactions, the minimum
conductivity is shown to grow linearly with T. At finite
carrier density n, the initial T dependence is negative, but

changes sign at a temperature of order T � @v
ffiffiffiffiffiffijnjp

where
v � 106 m=s is the Fermi velocity.
In the model for ballistic graphene proposed in Ref. [2],

a nanoribbon of width W is suspended between left and
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right reservoirs (wide graphene regions), which are a dis-
tance L apart. The leads and the sample region are subject
to a steplike electrostatic potential

�ðxÞ ¼
�
�1 jxj>L=2 ðleadsÞ;
0 �L=2< x < L=2 ðsampleÞ; (1)

the zero of energy being chosen as the Dirac point in the
sample region. Modeling the leads by highly doped gra-
phene, the parameter �1 drops out in the end. Ballistic
transport requires the sample length to be shorter than the
mean free path ‘. In nearly impurity-free samples the latter
is limited by inelastic scattering, dominated at low T by
Coulomb scattering, ‘ � ð@v=�2ÞT2=maxðj�j; TÞ [13,14].
The latter is strongest in the nondegenerate regime T >
j�j, but is relatively weak outside because of screening
effects, and the down-renormalization of the Coulomb
coupling constant �. The latter is of order Oð1Þ in the
unscreened situation pertaining to free-hanging graphene
in the nondegenerate regime. However, on a clean substrate
with large dielectric constant, or in the presence of nearby
metallic contacts, as in Ref. [10], the effective value of � is
substantially reduced. This opens a reasonably large win-
dow of applicability for our noninteracting theory.

The zero temperature conductivity at a fixed Fermi level
E in the sample is given by the Landauer formula

�0ðEÞ ¼ L

W
GðEÞ ¼ L

W

ge2

h

X1
n¼0

TnðEÞ; (2)

where GðEÞ is the conductance, g ¼ 4 is the degeneracy
due to spin and valley degrees of freedom, and n labels the
transverse modes of the graphene ribbon. Their transmis-
sion probability follows from solving the propagation
through the potential (1),

TnðEÞ ¼ E2 � ð@vqnÞ2
E2 � ð@vqnÞ2cos2ðknLÞ

; (3)

where kn � ð@vÞ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ð@vqnÞ2

p
. The transverse mo-

mentum qn is defined for various boundary conditions as
qn ¼ ðnþ �Þ�=W. Below we use � ¼ 1=2 corresponding
to infinite mass confinement, see Ref. [2].

The energies EW;L � @v=fW;Lg set typical scales below
which finite size effects are important. At higher energies
confinement effects are negligible. This is easily seen in the
asymptotics of the T ¼ 0 conductivity in the limitW � L
(which is independent of � [2])

�

�
y � jEj

EL

�
¼ 4e2

�h
y
Z 1

0

ð1� u2Þdu
1� u2cos2½y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
�

¼ e2

h
�

� 4
� ½1þ 0:10094y2 þOðy4Þ�; y� 1

yþ sinð2y��=4Þ
2
ffiffiffiffiffi
�y

p þOð1=yÞ; y� 1:

(4)

This reproduces the well-known minimal conductivity

�minð� ¼ T ¼ 0Þ ¼ 4e2

h
1
� . For E � EL, we find � to be

essentially proportional to L and E, reflecting the number
of conducting channels. The oscillatory interference term
will be discussed in detail further below.
We now take into account the effects of finite T. In linear

response, the Landauer formalism yields the exact formula

�ð�; TÞ ¼ T�1
Z

�0ðEÞfðEÞ½1� fðEÞ�dE; (5)

fðEÞ ¼ ð1þ exp½ðE��Þ=T�Þ�1 being the Fermi distribu-
tion (kB � 1) and � the chemical potential in the sample.
For T � EL it is justified to neglect the oscillatory term

in (4), and we find the T-dependent conductivity

�ð�; TÞ � e2

h

L

@v
½j�j þ 2T logð1þ e�j�j=TÞ�: (6)

At charge neutrality, and in the nondegenerate case,
T � j�j, the conductivity grows linearly with T, similarly
as observed in Ref. [10],

�ð� ¼ 0; TÞ � e2

h

LT

@v
2 logð2Þ; (7)

where we have dropped a small positive offset. The finite T
correction to �minðT ¼ 0Þ is always positive, the result (7)
reflecting the linearly increasing density of states which is
sampled at higher T. Note, however, that this effect does
not survive in the presence of strong electron-electron
interactions, for which one would obtain a length indepen-
dent conductivity at � ¼ 0, with a very small T depen-
dence exhibiting the opposite trend [14].
So far, we have taken the chemical potential � to be

fixed. However, in experiments it is the charge density n
which is controlled by the gate potential, rather than �
[16]. As in the standard Fermi gas, � is reduced upon
raising the temperature, �ðT; nÞ ¼ �0 � ð�2=6ÞT2=�0 to
lowest order in T � � in an infinite system. The density n
and �0 are related by �ð@vÞ2n ¼ �2

0. In the thermody-

namic limit (W, L � �0=@v) the chemical potential
�ðT; nÞ � T ~� satisfies

Z 1

0
dxx½fðx; ~�Þ � fðx;� ~�Þ� ¼ �

2

ð@vÞ2n
T2

; (8)

with fðx; ~�Þ ¼ ð1þ exp½x� ~��Þ�1. This defines the scal-

ing function ~� ¼ �ðT=@vjnj1=2Þ. The experimental quan-
tity of interest is the conductivity as a function of T and n.
From Eqs. (6) and (8) one then easily finds the result

h

e2
�ðn; TÞ
L

ffiffiffiffiffiffijnjp ¼ c �

�
y � T

@v
ffiffiffiffiffiffijnjp

�
; (9)

c �ðyÞ ¼ y½�ðyÞ þ 2 logð1þ e��ðyÞÞ�: (10)

The scaling function (9) is plotted in Fig. 1. It has the
asymptotics c ð0Þ ¼ ffiffiffiffi

�
p

and c ðy � 1Þ ¼ 2 logð2Þy.
Interestingly, it attains a minimum at ymin ¼ 0:6932 with
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the value c ðyminÞ ¼ 1:5356. At large density ð@vÞ2jnj �
T2, the conductivity tends to the limit

�ðjnj � ½T=@v�2Þ ¼ e2

h
L

ffiffiffiffiffiffiffiffiffiffi
�jnj

p
: (11)

At fixed density, the conductivity first decreases as T
increases from zero (by a total of

ffiffiffiffi
�

p � c ðyminÞ ¼
13:4%) due to the decrease of the chemical potential.

Upon increasing T further,� reaches a minimum at Tmin ¼
ymin@vjnj1=2 and eventually grows linearly with tempera-
ture, approaching the limiting behavior (7). The nonmo-
notonicity in the T dependence should be observable for
relatively low densities, n� 1010 cm�2, for which Tmin

lies within the experimental temperature window, while
being low enough for the ballistic, noninteracting approxi-
mation to be applicable, as discussed above. Such a non-
monotonicity has been reported in Fig. 3c of Ref. [10],
whereas it was probably masked by inelastic scattering in
Ref. [9]. At higher densities we predict a slight decrease of
conductivity with increasing T. We emphasize that the
decrease of conductivity results merely from the decrease
of�without invoking scattering, while the increase of� at
higher temperatures reflects the thermal sampling of the
higher density of states.

In order to facilitate the comparison with experimental
data, we show in Fig. 2 the dependence of � on the carrier
density n for various temperatures T, based on the full
numerical evaluation of Eq. (5) for finite W. Apart from
confirming the above discussed trends, we note a good
qualitative agreement with the observations in Ref. [9], at
least in the regime of larger n where interactions are
expected to be weak: the conductivity decreases with T,
the relative decrease becoming smaller as n increases.

Figure 2 also illustrates the appearance of Fabry-Perot
oscillations (FPO’s) at low temperatures and finite den-
sities, as predicted in Ref. [2]. This effect was not included

so far, since we dropped the oscillatory term in (4) and
approximated the ribbon as infinitely wide.
As shown in Fig. 3, the FPO’s depend on the aspect ratio.

Moreover, the peaks are rather easily washed out at finite
temperatures. There are in fact two kinds of FPO’s, as one
can see from the inset of Fig. 3. Upon tuning the chemical
potential or gate voltage, on one hand, there are slow
oscillations of periodicity ��s ¼ �EL, described by the
subleading term in (4). They originate from the modes
which traverse the sample in relatively straight paths, hav-
ing small transverse quantum numbers n. These oscilla-
tions are washed out by thermal smearing when T > ��s.
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FIG. 2 (color online). The conductivity � plotted as a function
of density n for various temperatures � ¼ T=EW . The analytical
approximation, neglecting oscillatory terms (thin full lines) is
excellent except at low T and n. In the latter regime, finite size
effects become visible in the form of Fabry-Perot resonances.
(To be compared to Fig. 3c of Ref. [10].)
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FIG. 3 (color online). Conductivity as a function of chemical
potential � for various temperatures � � T

EW
. The amplitude of

the fast Fabry-Perot resonances decays at rather small tempera-

tures � * 	�ð1Þ
EW

¼ ffiffiffi
2

p ð�EW Þ2
�2 ðWLÞ3. The inset shows the presence of

fast and slow oscillations in the deviation from the linear

background, ~� � �
4e2=�h

� �
4

j�j
EL

, for a wide sample. The fast

oscillations become more pronounced with growing �, while
the slow ones decrease in amplitude.
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FIG. 1 (color online). The conductivity as a scaling function of
T=@vjnj1=2, and its asymptotics at large argument, c ðy � 1Þ ¼
2 logð2Þy. At fixed n, � is nonmonotonic in temperature, going
through a minimum at Tmin ¼ 0:693@vjnj1=2.
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However, their amplitude is never bigger than
ffiffiffiffiffiffiffiffiffiffiffi
2=11

p
=� �

0:14. Indeed, they can hardly be discerned in Fig. 2. A
second type of oscillations is due to modes which enter the
sample nearly at grazing incidence (with largest quantum
numbers n). Those scatter back and forth between the
edges many times when W � L (and are thus very sensi-
tive to edge roughness). Their contribution can be obtained
analyzing the transmission factors Tn as a function of
chemical potential�. Fabry-Perot resonances are expected
when there is a propagating mode at the Fermi level whose
longitudinal wave vector k is commensurate with the
length of the sample, i.e., for k ¼ km ¼ m�

L , m ¼ 1; 2; . . .

(m ¼ 0 does not lead to a resonance). With transverse
wave vectors qn, such resonances occur at

�ðmÞ
n

@v
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2n þ k2m

q
¼ �EW

@v

�
ðnþ �Þ2 þm2W2

L2

�
1=2

:

(12)

One reads off from (12) that the fast oscillations corre-
sponding to fixed m appear with roughly periodic spacings
��f ¼ �EW . In the main panel of Fig. 3, the sharp and

soft peaks correspond to m ¼ 1, 2, respectively.
To estimate the width of those peaks at T ¼ 0 we start

from a resonance, � ¼ �ðmÞ
n and fix q ¼ qn. As � in-

creases by 	�, k changes by 	k � L�	�=ð@vÞ2m�.
The peak due to the resonant transmission coefficient Tn

[Eq. (3)] is reduced to half its maximum when 	k satisfies

2½�2 � ð@vqnÞ2� ¼ �2 � ð@vqnÞ2cos2½Lðkm þ 	kÞ�
� �2 � ð@vqnÞ2 þ ð@vqnÞ2ðL	kÞ2=2:

(13)

This translates into a change in chemical potential of

	�ðmÞ � ffiffiffi
2

p ðm�Þ2 E3
L

�2 . The sharpest peaks correspond to

m ¼ 1. They are well separated from each other if

	�ð1Þ � ��f, or �=EL � 21=4ð�W=LÞ1=2, and reach an

amplitude close to 1 at large �. These most visible peaks

start to broaden and decrease in amplitude when T >

	�ð1Þ, cf. Fig. 3. Since 	�ð1Þ is a rather low energy scale,
and because of the sensitivity of these fast FPO’s to edge
roughness and inelastic scattering, their experimental ob-
servation might prove challenging.

In summary, the temperature-dependence of the conduc-
tivity of ballistic graphene exhibits a rather unexpected

behavior. The minimum conductivity always increases
with temperature saturating quickly to a linear dependence
on T which is a hallmark of weakly interacting systems. At
finite density, we predict the conductivity to slightly de-

crease at low temperatures, but to increase again for T >

Tmin � jnj1=2. Finally, we demonstrate two different types
of Fabry-Perot oscillations, showing that these fingerprints
of ballistic transport are very fragile with respect to finite
temperatures.
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