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Infinite Randomness Fixed Point of the Superconductor-Metal Quantum Phase Transition
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We examine the influence of quenched disorder on the superconductor-metal transition, as described by
a theory of overdamped Cooper pairs which repel each other. The self-consistent pairing eigenmodes of a
quasi-one-dimensional wire are determined numerically. Our results support the recent proposal by Hoyos
et al. [Phys. Rev. Lett. 99, 230601 (2007)] that the transition is characterized by the same strong-disorder
fixed point describing the onset of ferromagnetism in the random quantum Ising chain in a transverse field.
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Numerous recent experiments [1-6] have measured the
electrical transport properties of quasi-one-dimensional
nanowires. While thicker wires have vanishing resistance
in the low temperature (7) limit, thinner wires do not
display superconductivity even at the lowest 7. The super-
conducting wires display clear signatures of thermal phase
fluctuations of the Cooper pair order parameter, ¥, at low
T. Quantum fluctuations of the phase and amplitude of ¥
increase with decreasing wire thickness, leading to a tran-
sition to a nonsuperconducting state.

Recent work [7,8] has proposed that these experiments
should be described by a quantum superconductor-metal
transition (SMT) in the pair-breaking universality class.
Arguments based upon microscopic BCS theory suggest a
model of ¥ fluctuations damped by decay into unpaired
electrons [9—13]. In this Letter, we study the influence of
quenched disorder on this model. Its role near the quantum
SMT is of considerable interest, as disorder correlations are
of infinite range in the imaginary time direction and can
lead to unusual critical phenomena [14].

In a renormalization group (RG) analysis of this over-
damped Cooper pair model, Hoyos et al. [15] have recently
argued that the SMT is described by an infinite randomness
fixed point (IRFP). The latter exhibits activated dynamic
scaling where the logarithm of characteristic frequencies of
¥ fluctuations grows as a power of their characteristic
length scale. The IRFP was further argued to be in the
same universality class as the one describing the onset of
ferromagnetism in the random transverse field Ising model
(RTFIM) in 1D. Many exact results obtained by Fisher [16]
for this fixed point appeared to carry through to the case of
the SMT [15].

Using a powerful numerical technique, we find convinc-
ing evidence that the strong disorder RG [15] indeed
applies to the SMT. In addition, we confirm activated
dynamical scaling in the frequency domain and an IRFP
characterized by exponents fully consistent with Fisher’s
RTFIM values. This is a nontrivial result, as the RTFIM
contains no dissipation and possesses a discrete symmetry.
However, due to the dissipative dynamics at the SMT,
order parameter fluctuations are so strongly suppressed
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that the physics of a discrete Ising symmetry is recovered.
Technically, in both cases, this behavior is due to the
marginal dynamics of finite size clusters [14].

Our analysis was carried out on a lattice discretization of
the disordered overdamped Cooper pair model of Ref. [15]
at T = 0. The degrees of freedom, W;(7), are complex
functions of imaginary time, 7, on the sites, j, of a one-
dimensional chain with action

u:
J

d
+ f%;y,»lwlw,(wnz, (1)

where W;(w) is the Fourier transform of W;(7), and the
couplings in S are all random functions of j. The quartic
coefficients u; > 0 ensure stability and repulsion between
Cooper pairs, and the dissipation into the metallic bath is
represented by y; > 0, due to causality. Finally, we can
choose a gauge such that D; > 0. A more careful analysis
and suitable rescalings [17] allow us to reduce the random-
ness to the spatial dependence of D; (uniformly distributed
on (0, 1]) and ; (taken to be Gaussian), while setting u; =
u and y; = 1. At zero temperature, the SMT is tuned by
reducing the mean of the «; distribution, &, while keeping
its variance constant at 0.25 in units of y2. The presence of
pair-breaking, possibly due to magnetic moments on the
wire’s surface [6], ensures that any Josephson coupling is
short ranged.

We could also work in a lattice model of fluctuating
phases with W;(7) = ¢'%(") of unit magnitude [7,12]; this
should have the same properties as S, but our analysis is
facilitated by also allowing for amplitude fluctuations.

While S is suitable to describe the influence of disorder
on the fluctuating Cooper pairs, we also have to consider its
effects on the single electron states. We have estimated the
latter within weak-coupling BCS theory: at criticality, on a
scale parametrically smaller than the single electron local-
ization length, the gain in condensation energy can offset
the cost in elastic energy when order parameter fluctua-
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tions take advantage of randomness in «;. This justifies our
focus on the influence of disorder in a purely bosonic
overdamped Cooper pair theory [11].

The RG analysis [15] was carried out in a model with an
N-component order parameter, and it was found that flows
had only an irrelevant dependence on the value of N [18].
Thus the exact critical properties can be obtained by study-
ing the model in the large N limit. This is equivalent to
approximating S by the Gaussian action

dw
So= Z.fﬁ[Djo = Wil + (g + loDIW,17]
J

2

where the r; are determined self-consistently by solving
ri=a; + u(|V;(1)]>s,- 3)

We set u = 1 to reach a strong coupling regime and use
fixed but random boundary conditions [7]. Solving the
innocuous looking Eq. (3) for a large number of disorder
realizations and large system sizes was the primary time-
consuming step in obtaining the results of this study.
Similar numerical large-N methods have been used pre-
viously for disordered systems with conventional (power
law) dynamic scaling [19,20] but the presence of activated
scaling leads to sluggish dynamics and the necessity to
properly include spurious disorder configurations that,
although exponentially rare, can make large contributions
to thermodynamic properties. The numerical solution is
facilitated via the implementation of a method which we
have dubbed the solve-join-patch (SJP) procedure. We
begin by generating a realization of disorder for L > 1
sites. Near the critical point (where the correlation length
& ~ L), the direct iterative solution of Eq. (3) is computa-
tionally costly. This is because the eigenmodes of S, begin
to delocalize, acquiring a characteristic energy scale that is
exponentially small in the distance from criticality and thus
the masses, r; must be computed with exponentially in-
creasing precision.

To cope, the L-site system is broken up into a group of
smaller subsystems with adjusted boundary conditions.
The subsystems are solved, then joined together in groups
of two. The grouped subsystems are now close to satisfying
Eq. (3) and they can be quickly brought into accordance by
patching, which involves resolving a mini-system around
the joint consisting of a small number of sites. The joined
and patched subsystem is easily solved and the SJP proce-
dure is iterated until a full solution to Eq. (3) is obtained for
the complete chain of L sites. We have considered up to
3000 realizations of disorder for system sizes L = 16, 32,
64, and 128.

Fisher’s remarkable solution of the RTFIM [16] includes
asymptotically exact results for the exponents and correla-
tion functions at the IRFP, and many directly translate to
the RG calculations by Hoyos et al. [15] for the dissipative

model considered here. In particular, one expects activated
dynamic scaling with In(1/Q) ~ LY where () is a charac-
teristic energy scale and ¢ = 1/2 is a tunneling exponent.
This reflects the fact that at an IRFP, the dynamical critical
exponent z is formally infinite. The RG approach defines a
real space decimation procedure that either creates or
destroys clusters or bonds as the energy scale is reduced.
The typical moment of a surviving cluster scales like u ~
In?(1/Q) at criticality, where ¢ = (1 ++/5)/2 =~ 1.62 is
the golden mean. Average correlations are described by a
correlation length which diverges as £ ~ |8]~* with v = 2
and 6 a measure of the distance from criticality. From
Ref. [15], 8 is expected to be proportional to In(r;/r.)
where r. is some critical value. Our numerical study re-
veals that close to criticality, this quantity is linearly related
to the detuning of the average & from its quantum critical
value, &, (to be determined below) and it further demon-
strates that correlations among the r; due to their self-
consistency do not affect the strong randomness RG flow.

The remainder of this Letter presents a numerical con-
firmation of the results of Ref. [15] by providing compel-
ling evidence for dynamically activated scaling at the
quantum SMT, characterized by exponents », ¢, and ¢
taking on their RTFIM values. We begin by studying the
disorder averaged equal-time correlation function C(x) =
(W3(7)W(7))s,» which can be computed from the qua-
dratic effective action S, once the full set of masses {r j}
has been obtained. In the disordered phase, where & =
@ — a, > 0, the asymptotic form of C(x) for the RTFIM
has been predicted to describe both exponential as well as
stretched exponential decay in addition to power law be-
havior [16]

_exp[—(x/é) — (277%/4)' 3 (x/£)'/"]

¢l e/ &6

“)

Using C(x) to define the correlation length &, we can
perform fits for each value of L and various & to extract
&(L, @) as is seen in Fig. 1 for L = 64. We find remarkable
agreement (solid lines) with Eq. (4) over 6 orders of
magnitude for all system sizes considered. The full scaling
form of Eq. (4) involves the cluster size exponent ¢, and
we have confirmed that very good data collapse is obtained
using the numerical value determined below.

As mentioned above, the length scale which describes
average correlations is expected to diverge like & ~ |87
as the critical point is approached. We have employed this
result to perform a log-log fit to the finite size scaled
correlation length (data extrapolated to L — o0) as a func-
tion of J, as is shown in the inset of Fig. 1. The value of @,
was found from the mean of the critical «; distribution
which minimizes the least square error of power law fits
involving 6 = & — &,. This leads to a value of &, =
—0.93(3) for the critical point and » = 1.9(2) for the
correlation length exponent with the number in brackets
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FIG. 1 (color online). The equal-time disorder averaged corre-
lation functions for L = 64 and five values of the mean of «a},
a. The solid lines are fits to Eq. (4) via ¢ and an overall scale
parameter. The inset displays a fit to the power law form of the
finite size scaled correlation length, providing an estimate for the
location of the critical point @&, = —0.93(3) and the correlation
length exponent v = 1.9(2).

indicating the uncertainty in the last digit. The obtained
exponent is in accord with v = 2 predicted for the RTFIM.
We could also have defined the correlation length via the
exponential tail of C(x) at large arguments. This yields
compatible values for &, and v.

For each realization of disorder and each value of &, we
define the gap )(L) to be the smallest excitation energy in
the system, which in general corresponds to the most
delocalized mode of S;. Rare disorder configurations
cause clusters to behave as if they were much more critical
than the global value of 6 would suggest. These clusters
dominate the critical modes and exhibit abnormally small
gaps that make large contributions to disorder averages of
In{}, leading to the highly anisotropic scaling relationship
between space and time that is the hallmark of IRFPs. An
analysis of the probability distribution for the logarithm of
the energy gap in the RTFIM was carried out by Young and
Rieger [21] where they found cogent evidence for z = oo.
We have performed a similar analysis here, with the same
result. Fisher and Young [22] found that the distribution of
InQ) is Gaussian at criticality, while we find that in the
quantum disordered phase, it is Gumbel as was previously
shown [23]. If activated dynamic scaling is indeed present,
the disorder averaged value of the logarithm of the gap
should scale like |InQ| ~ & ~ 6§~ where we have used
the scaling form of the correlation length. Such divergent
behavior for the finite size scaled value of |InQ] is dem-
onstrated in Fig. 2. The possibility of conventional scaling
was considered but ultimately excluded through the ex-
amination of the maximum likelihood estimator for a wide
range of power law fits. Using the previously determined
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FIG. 2 (color online). The finite size scaled value of the dis-
order averaged logarithm of the minimum excitation energy
plotted against the distance from the critical point 6. We observe
divergence consistent with the scaling form |[InQ| ~ 6%, and
using the value of @. and v found above, we determine =
0.53(6) from a log-log linear fit (inset).

values of &, and v, the tunneling exponent can be extracted
from a log-log linear fit of the average logarithmic spec-
trum as shown in the inset of Fig. 2, producing # = 0.53(6)
which is consistent with the RTFIM prediction of 1/2.

To confirm full agreement with the universality class of
the RTFIM, we must finally determine the exponent ¢
which controls the average moment, u ~ |Inw|?, of a
cluster fluctuating with frequency w. This is accomplished
by investigating the imaginary part of the disorder aver-
aged dynamical order parameter susceptibilities after ana-
Iytical continuation to real frequencies. We study the
average and local susceptibilities defined by

le—
Im y(w) = Imz;<qf;f(iw)qio(iw)>so|iw—>w+ie &)

Im Yjoc(@) = Im<\;[,j(iw)qu(iw)>so|iw—>w+ie (6)

where (- - -)s, indicates an average over the large-N action
[Eq. (2)] as well as a site average. Note that w is now a real
frequency, and our facile access to such dynamical quan-
tities is one of the perquisites of the numerical approach we
have taken. All frequencies are measured with respect to an
ultraviolet cutoff which is required for convergence when
computing the set of solutions to Eq. (3). At criticality, the
average cluster moment will be given by the ratio of the
average and local susceptibility due to the extra sum over
sites in Eq. (5). We thus define

Im y(w)

Rlw) = Im)(loc(w)

= [lnw|? F(8"| o)),  (7)

and expect that the scaling function F approaches a con-
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FIG. 3 (color online). The real frequency dependence of the
finite size scaled value of the disorder averaged susceptibility
ratio defined in Eq. (7) for three values of the 6 = @ — a.. We
observe the predicted |Inw| behavior. After a suitable rescaling
described in the text, we find that R does not depend on
frequency as w — O (inset), and a log-log linear fit gives the
value of the cluster exponent to be ¢ = 1.6(2).

stant when the dimensionless variable 6"¥|Inw| < 1. In
the quantum disordered phase with §”¥|Inw| > 1, a scal-
ing analysis predicts F(x) ~ x' =% [24], and hence R ~
85""1=¢)| Inw| [16,25]. To determine the value of ¢, it is
useful to consider a rescaled value of the susceptibility
ratio R(8) = R(w)/(8"?|Inw|) which should be frequency
independent according to the predicted scaling form for
R(w) as @ — 0. We plot the finite size scaled susceptibility
ratio in Fig. 3 for the three smallest values of 6, and indeed
find confirmation of its linear | Inw| dependence. The inset
of Fig. 3 confirms the frequency independence of R and by
determining the best linear fit of InR to Iné for v = 1073
with v = 1.0(1), we find a cluster exponent ¢ = 1.6(2)
which is very close to the predicted RTFIM value of
(1 ++5)/2.

The results of the above analysis, as highlighted in
Figs. 1-3, provide compelling evidence for the applicabil-
ity of the real space RG analysis of Ref. [15] and repro-
duces a number of results of Ref. [16] to unexpected
accuracy. This confirms that the considered model for
overdamped repulsive Cooperon fluctuations in the pres-
ence of quenched disorder near a SMT exhibits dynami-
cally activated scaling and is controlled by an IRFP in the
same universality class as the RTFIM. The transition is
characterized by the numerically computed critical expo-
nents (v, i, ¢) = (1.9, 0.53, 1.6) which are entirely consis-
tent with those of the one-dimensional random quantum
Ising model in a transverse field [2, 1/2, (1 + /5)/2].

In closing, we note that while our discussion has been
framed in the context of the SMT, models similar to S

describe the onset of a wide variety of orders in metallic
systems [14]. Furthermore, the flow to the strong-disorder
RTFIM fixed point is expected to also hold in higher
dimensions [15]. We thus propose that our results provide
strong support for the applicability of the RTFIM physics
to many experiments involving the onset of spin- and
charge-density wave orders in metals.
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