
IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 164216 (7pp) doi:10.1088/0953-8984/21/16/164216

Quantum criticality and black holes
Subir Sachdev and Markus Müller

Department of Physics, Harvard University, Cambridge, MA 02138, USA

Received 22 January 2009
Published 31 March 2009
Online at stacks.iop.org/JPhysCM/21/164216

Abstract
Many condensed matter experiments explore the finite temperature dynamics of systems near
quantum critical points. Often, there are no well-defined quasiparticle excitations, and so
quantum kinetic equations do not describe the transport properties completely. The theory
shows that the transport coefficients are not proportional to a mean free scattering time (as is the
case in the Boltzmann theory of quasiparticles), but are completely determined by the absolute
temperature and by equilibrium thermodynamic observables. Recently, explicit solutions of this
quantum critical dynamics have become possible via the anti-de Sitter/conformal field theory
duality discovered in string theory. This shows that the quantum critical theory provides a
holographic description of the quantum theory of black holes in a negatively curved anti-de
Sitter space, and relates its transport coefficients to properties of the Hawking radiation from the
black hole. We review how insights from this connection have led to new results for
experimental systems: (i) the vicinity of the superfluid–insulator transition in the presence of an
applied magnetic field, and its possible application to measurements of the Nernst effect in the
cuprates, (ii) the magnetohydrodynamics of the plasma of Dirac electrons in graphene and the
prediction of a hydrodynamic cyclotron resonance.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A major focus of research in condensed matter physics is on
systems which are not described by the familiar paradigms
of order parameters and quasiparticles. In states with
broken symmetry, we focus on the order parameter which
characterizes the broken symmetry, and work with effective
classical equations of motion for the order parameter. In
states with long-lived quasiparticle excitations, we write down
quantum transport equations (e.g. via the Keldysh formulation)
for the quasiparticles and deduce a variety of transport
properties. However, it has become clear in recent years that
a number of interesting correlated electron materials do not
fit easily into either of these paradigms. One promising and
popular approach for describing these systems is to exploit
their frequent proximity to quantum phase transitions [1], and
so use a description in terms of ‘quantum criticality’. This term
refers to dynamics and transport in the non-zero temperature
(T ) quantum critical region which spreads out from the T = 0
quantum critical point or phase (see figure 2 below). Because
there are no well-defined quasiparticles, and the excitations are
strongly interacting, the description of quantum criticality is a
challenging problem.

It is useful to begin our discussion of quantum criticality
by recalling a well-understood example of non-quasiparticle

and non-order parameter dynamics: the Tomonaga–Luttinger
(TL) liquid [2]. This is a compressible quantum state of
many fermion or many bosons systems confined to move in
one spatial dimension. Electronic quasiparticles are not well
defined in this state, but there is a well-developed theory of
the transport properties of the TL liquid. Historically, this
theory evolved over several decades of research on quantum
many body systems in one dimension. Key in the historical
development were exact solutions of model Hamiltonians via
the Bethe Ansatz. Insights gained from the structure of
excitations in the Bethe Ansatz solutions led to a more general
understanding of the low energy excitations of a generic
Hamiltonian, and a universal low energy theory of the TL
liquid. Thus while the exact solutions were restricted to
artificial models, they played a key role in the development
of the general theory. Of course, after the fact, with the general
theory of the TL liquid before us, we can justify it in its own
terms, and largely dispense with reference to the Bethe Ansatz
solutions.

While the TL liquid does describe quantum critical states
in one dimension, many of its characteristics do not generalize
to quantum criticality in higher spatial dimensions. In
particular, it is not difficult to show [2–4] that the correlators
of all conserved currents in TL liquids show a characteristic
‘free particle’ ballistic behavior at all frequencies (ω) and T .
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Figure 1. The connections between quantum criticality and black
holes described in this paper.

This is because a free-field description of the conserved
charges can usually be found; there are no collisions between
the excitations and consequently no relaxation to collision-
dominated hydrodynamic behavior. Hydrodynamics emerges
only after including ‘irrelevant’ perturbations to the theory of
the TL liquid. As we will review below, generic strongly-
coupled quantum critical points in higher dimensions behave
very differently: there are no known free-field formulations,
even with variables which are highly non-local in terms of the
microscopic degrees of freedom. Furthermore, relaxation to
local thermal equilibrium and hydrodynamic behavior emerges
already within the universal theory of the quantum critical
point.

We will focus in this paper on strongly interacting
quantum critical points in 2 + 1 dimensions [1]. Prominent
examples include the transition between antiferromagnetic
and spin gap states in Mott insulators, and the superfluid–
insulator transition in the lattice boson models. A theory
for the quantum critical transport of such models has been
developed [3, 5, 6], using insights from various weak-coupling
perturbative renormalization group analyses. However, this
approach was limited to a narrow range of physical parameters:
for the case of the superfluid–insulator transition, the density of
the particles was exactly equal to the commensurate density of
the Mott insulator and there were no impurities. In this paper
we will review how this field has received an impetus from an
unexpected direction: the AdS/CFT duality of string theory [7].
This duality has provided a set of exact solutions [4, 8] of
quantum critical transport in 2 + 1 dimensions. Admittedly,
the exact solutions are for rather artificial models, with a
high degree of supersymmetry. However, just as was the
case for the TL liquid, these exact solutions have provided an
impetus to the general theory, and led to significant progress
in formulating a more general theory of quantum critical
transport, without the restrictions on the physical parameters
noted above.

We have summarized the conceptual relationship between
the developments in condensed matter and string theory
in figure 1. The remainder of the paper will expand on

Figure 2. Phase diagram of the Bose Hubbard model at integer
filling. Dashed lines are crossovers, while the full line is the
Kosterlitz–Thouless transition at TKT.

connections shown in this figure. In section 2, we will review
the theory of quantum critical transport from a traditional
condensed matter perspective. The modern developments
in black holes and string theory will be summarized in
section 3. Our new results for quantum critical transport in
2 + 1 dimensions will be presented in section 4. Finally, in
section 5 we briefly note emerging new directions of research
in the application of the AdS/CFT duality to condensed matter
physics.

2. Quantum critical transport

Here we review the ideas presented in [3] on transport near
the superfluid–insulator transition in two spatial dimensions.
For definiteness, we will consider the simplest model [9]
which exhibits such a transition: the Bose Hubbard model at
integer filling. As shown in figure 2, the transition is induced
by varying the ratio U/t , where U is the on-site repulsion
between the bosons, and t is the boson hopping matrix element.
At low T , and generic low U/t , figure 2 shows that the
system is in one of two possible regimes, both of which have
effective classical theories of their dynamics and transport. At
small U/t , in the superfluid region and across the Kosterlitz–
Thouless transition, we can use the Gross–Pitaevskii equation
to describe the spin-wave and vortex fluctuations. At large
U/t , we have to consider the particle and hole excitations on
the insulator, and these are dilute enough at low T to allow a
classical gas description. However, our primary interest here
is in the intermediate quantum critical regime, where neither
classical description is possible. The theory of this region
involves the dynamics of the quantum critical point, which
is known to be described by a 2 + 1 dimensional conformal
field theory (CFT3) associated with the Wilson–Fisher fixed
point [9].

The theory of the quantum critical region shows that
the transport coefficients, and the relaxation time to local
equilibrium, are not proportional to a mean free scattering time
between the excitations, as is the case in the Boltzmann theory
of quasiparticles. Such a time would typically depend upon the
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interaction strength, ∼U , between the particles. Rather, the
system behaves like a ‘perfect fluid’ in which the relaxation
time is as short as possible, and is determined universally by
the absolute temperature. Indeed, it was conjectured in [1] that
the relaxation time generically obeys

τ � h̄

kBT
�τ (1)

where �τ is a dimensionless constant of order unity
determined by the precise definition of τ . The inequality
in equation (1) is saturated in the quantum critical region,
while the other regimes of figure 2 have significantly larger τ .
Anticipating our discussion of black holes in section 3, closely
related bounds on τ have appeared recently in considerations
of the semiclassical theory of gravity-wave oscillations near
black holes [10, 11].

The transport coefficients of this quantum critical perfect
fluid also do not depend upon the interaction strength, and
can be connected to the fundamental constants of nature. In
particular, the electrical conductivity, σ , is given by

σQ = e∗2

h
�σ , (2)

where �σ is a universal dimensionless constant of order unity,
and we have added the subscript Q to emphasize that this is
the conductivity for the case at integer filling, no impurity, and
at zero magnetic field. Here e∗ is the charge of the carriers:
for a superfluid–insulator transition of Cooper pairs, we have
e∗ = 2e, while in our application to graphene below we have
e∗ = e.

In addition to charge transport, we can also consider
momentum transport. This was considered in the context of
applications to the quark–gluon plasma [12]; application of the
analysis of [3] shows that the viscosity, η, is given by

η

s
= h̄

kB
�η, (3)

where s is the entropy density, and again �η is a universal
constant of order unity. The entropy density itself obeys [1]

s = k3
BT 2

h̄2v2
�s, (4)

where v is a characteristic velocity of the CFT3, much
smaller than the physical velocity of light in condensed matter
realizations. The universal constant �s is the analog of the
‘central charge’ of CFT2s in 1 + 1 dimension.

The values of the universal constants �s , �τ , and �σ have
been determined [1, 3] to leading order in expansions in 1/N
(where N is the number of order parameter components) and
in 3−d (where d is the spatial dimensionality). However, both
expansions for �τ,σ are neither straightforward nor rigorous,
and require a physically motivated resummation of the bare
perturbative expansion to all orders. It would therefore be
valuable to have exact solutions of quantum critical transport
where the above results can be tested, and we turn to such
solutions in section 3.

3. Black holes and the AdS/CFT correspondence

We now turn to a seemingly distinct subject: the quantum
theory of black holes.

Soon after Einstein’s formulation of the theory of general
relativity, Schwarzschild discovered its black hole solutions:
a dense object of mass M was surrounded by a horizon
of radius R = 2GM/c2 which enclosed a region causally
disconnected from the rest of the universe (here c is the
actual velocity of light). The next result of relevance to
us appeared in 1973, when Bekenstein [13] postulated a
remarkable connection between the properties of black holes
and the laws of thermodynamics. In particular, he argued that
each black hole carried an entropy

S

A
= kB

4�2
P

, (5)

where A = 4π R2 is the area of the horizon and �P =√
Gh̄/c3 is the Planck length (the precise numerical factor of

1/4 appeared in the subsequent work of Hawking); thus each
Planck length square on the horizon has roughly one qubit
degree of freedom. Bekenstein was partly motivated by the
similarity between the law dA � 0, which is a consequence
of the dynamics of the black holes in the theory of general
relativity, and the second law of thermodynamics, dS � 0.
He also presented physical arguments that without such a
relation between S and A, we could violate the second law of
thermodynamics simply by throwing matter into a black hole.

Bekenstein’s proposal was put on a firmer footing by
Hawking [14], who considered the quantum fluctuations of
fields in the vicinity of the horizon of a black hole. He found
the horizon also had a temperature, T = h̄2/(8πkB M�2

P),
and emitted black body radiation at this temperature. Using
this temperature and the expression in equation (5), we can
express S in terms of T (eliminating M and R), and find
S ∼ 1/T 2. Consequently, the specific heat of a black hole
is negative, and it is thermodynamically unstable: its eventual
fate is evaporation into Hawking radiation.

Recent advances in string theory have found a remarkable
and explicit realization of the extension of the Bekenstein–
Hawking results to black holes in an anti-de Sitter (AdS)
universe. This is a homogeneous, negatively curved spacetime
and black holes in such a universe can be thermodynamically
stable (as we will see below). The complete solution of
certain supersymmetric theories of quantum gravity in AdS
spaces are now available. The central feature of the theory
is the equivalence between the quantum theory of gravity
in AdS4 and a CFT3 living in a flat 2 + 1 dimensional
spacetime: this is the famous AdS/CFT correspondence [7].
This correspondence allows computation of the black hole
entropy via its identification with the entropy of the CFT3.
In a number of cases, the result has been verified to be in
precise agreement with the Bekenstein–Hawking result in the
appropriate semiclassical limit, after the T of the CFT is
identified with the Hawking temperature of the black hole.

One benefit of these advances is that Bekenstein’s
connection between black holes and thermodynamics can
now be extended to dynamical properties [12]. We can

3



J. Phys.: Condens. Matter 21 (2009) 164216 S Sachdev and M Müller

thus relate the dynamics of gravity and matter near a black
hole to the dynamic correlations of a CFT3. In particular,
transport coefficients of the CFT3, such as σ and η, can be
related to properties of waves propagating in the presence
of a black hole in an asymptotically AdS space (the AdS–
Schwarzschild metric). The dissipation and irreversibility
associated with these transport coefficients emerges naturally
from the irreversibility of matter falling past the horizon of
the black hole. Indeed, even a simple saddlepoint treatment
of the gravity theory already yields a CFT dynamics which
has non-zero and non-singular transport coefficients, has
positive entropy production, and relaxes to local thermal
equilibrium. These are the features which make the AdS/CFT
correspondence so attractive: they are unprecedented in
previous mean-field theories of quantum many body systems.

We now give a brief account of the correspondence
between the gravity theory on AdS4 space and the CFT3,
a topic which is extensively covered in the string theory
literature. We consider physics on AdS4 space with metric

ds2 = u2

L2
(−c2dt2 + dx2 + dy2) + L2 du2

u2
. (6)

Here (t, x, y) define the 2+1 dimensional spacetime on which
the CFT3 will reside, u is the fourth coordinate of AdS4, and
L is the radius of curvature. Note that here we are using
the symbol c (and not v) for the characteristic velocity of
the CFT3 to connect to the theories of black holes. This
metric is a solution of Einstein’s equations with a negative
cosmological constant whose value is related to L. The central
property of the metric in equation (6) is that it has a large five-
dimensional isometry group SO(3, 2). This group coincides
with the group of conformal symmetries in 2 + 1 dimensional
spacetime, i.e. the conformal group of CFT3s, and this is a
primary reason for the AdS/CFT correspondence. In particular,
the scale invariance of the CFT3 is realized by an isometry of
equation (6) under which

(t, x, y, u) → (t/λ, x/λ, y/λ, λu). (7)

Note that while t, x, y have the usual co-ordinate scaling
dimension −1, u has scaling dimension 1, and so scales like
an energy. Indeed, we can think of u as an energy scale co-
ordinate of the CFT3: u → ∞ describes high energies, while
u → 0 describes low energies. Of course, the physics of
the unperturbed CFT3, or the infinite AdS4 space, is scale
invariant, and so the properties of all u are identical.

We are invariably interested in the CFT3 when it has been
perturbed by some low energy scale, such as a temperature
T > 0, a non-zero chemical potential, or an applied magnetic
field. In the dual gravity theory, such perturbations will appear
as deviations in the metric from the perfect AdS4 form at low
energies i.e. at small u. We consider here the simplest case
of a non-zero T : this corresponds to choosing a solution of
Einstein’s equations with a black hole so that the Hawking
temperature of the black hole is T . Such black hole solutions
are given by the AdS–Schwarzschild metric [15]:

ds2 = − f (u)c2dt2 + du2

f (u)
+ u2

L2
(dx2 + dy2), (8)

where

f (u) = u2

L2
− GM

uc2
, (9)

and M is the mass of the black hole. Note that (8) reduces
to (6) as u → ∞ i.e. at high energies. The black hole horizon
is at u = u0 where f (u0) = 0. Hawking’s computation [14]
gives a prescription for the Hawking temperature in terms of
the asymptotic behavior of the metric near u = u0:

kBT = h̄c f ′(u0)

4π
= 3h̄(GMc)1/3

4π L4/3
. (10)

Note that unlike the flat space case considered by Hawking,
the temperature of the AdS black hole T ∼ M1/3, and so
T increases with increasing M ; this will be important below
for the thermodynamic stability of the black hole. Also, the
metric (8) shows that the horizon of the AdS black hole is
actually the entire flat x–y plane at u = u0; because of this the
black hole is more properly called a ‘black brane’. The area
of the horizon is A = Axyu2

0/L2, where Axy is the (infinite)
area of the flat x–y plane. From equation (5), the Bekenstein–
Hawking entropy of the AdS black hole/brane is

S

Axy
= kBu2

0

4�2
P L2

= kBG2/3 M2/3

4c4/3 L2/3�2
P

. (11)

Eliminating M between equations (10) and (11) we see that
S ∼ T 2; so the specific heat is positive and the black hole
is thermodynamically stable. A key point in the AdS/CFT
correspondence is that the black hole entropy in equation (11)
should be identified with the entropy density of the CFT3
in equation (4) at a temperature given by equation (10).
Comparing these expressions for the entropy we observe that
they both scale as S ∼ T 2 ∼ M2/3 and so are in agreement
with each other. The numerical prefactors also agree if we have
(after noting v = c)

�s =
(

2π L

3�P

)2

. (12)

We note that the Bekenstein–Hawking entropy in equation (5)
only applies in the semiclassical gravity limit, and so the above
value of �s only applies in the limit L � �P. For L ∼ �P, the
entropy would have to be computed directly from the CFT3.

The AdS/CFT correspondence has the remarkable
consequence that the spacetime itself, and its dimensionality
is an ‘emergent’ property. From our discussion above, we may
conclude that a CFT3 is better interpreted as ‘living’ in 2 + 1
dimensions when �s ∼ 1, while some CFT3s with �s � 1
are secretly theories of gravity in 3+1 dimensions with weak
quantum fluctuations.

Other important perturbations to the AdS–Schwarzschild
metric have been described in the literature: a chemical
potential applied to the CFT3 corresponds to an electric charge
on the black hole, while a magnetic field turns into a magnetic
charge on the black hole [16]. We will not present these metrics
here, but computations [8] on such ‘dyonic’ black holes led to
the results presented in section 4.

We conclude this section by noting the recipe [7] by which
dynamic correlators and transport coefficients of the CFT3 can
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be computed. Each operator in the CFT3, O, is ‘dual’ to some
field, φ, in the AdS4 gravity theory. For our computations
below, we note that the electrical current, Jμ, of the CFT3
is dual to a U(1) gauge field, while the stress energy tensor,
Tμν , is dual to fluctuations of the metric on AdS4. The central
relation between the correlations of O and φ is [17, 18]
〈
exp

(∫
dx dy dt O(x, y, t)φ0(x, y, t)

)〉

CFT3

= ZAdS4
[
φ(x, y, t, u → ∞) = u�−3φ0(x, y, t)

]
. (13)

Here φ0(x, y, t) is an arbitrary source field, and � is the
scaling dimension of O. So the left-hand side of equation (13)
is the generating function of correlators of O in the CFT3,
a quantity of great interest to us. On the right-hand side
we have the complete partition function of quantum gravity
on AdS4 subject to a boundary condition on the fluctuating
field φ as u → ∞. Note the consistency of the power of u
in the boundary condition with the identification of u as an
energy scale: operators with smaller � have their dual field
φ larger at smaller values of u i.e. they are more important
in the infrared. For real time correlations at T > 0, there
are some additional analytic continuation subtleties in applying
equation (13): these were resolved in [19, 20].

For complete quantitative computations, the correspon-
dence in equation (13) is only useful when the gravity theory
on AdS4 is weakly coupled. This is known to be the case for a
particular CFT3: the Yang–Mills gauge theory with N = 8 su-
persymmetry and a SU(N) gauge group. In the limit N → ∞,
the dual theory is classical supergravity on AdS4. From com-
putations on the latter theory, we can obtain precise numerical
results for the Yang–Mills CFT3: the numerical constants in
equations (2)–(4) are given by [21, 12, 22, 4]:

�σ =
√

2
9 N3/2; �η = 1

4π
; �s = 8

√
2π2

27
N3/2.

(14)
These are the first exact results for a strongly-coupled CFT in
2 + 1 dimensions.

4. The superfluid–insulator transition and graphene

Here we review recent new results [4, 8] for electrical
and thermal transport in the quantum critical region of a
generic CFT in 2 + 1 dimensions. Thus we can envisage
applications to the superfluid–insulator transition, and have
presented scenarios under which such a framework can be
used to interpret measurements of the Nernst effect in the
cuprates [8, 23]. We have also described a separate set of
applications to graphene [24–26]: while graphene is strictly not
a CFT3, the Dirac spectrum of electrons leads to many similar
results, especially in the inelastic collision-dominated regime
associated with the quantum critical region. These results on
graphene are reviewed in a separate paper [27], where explicit
microscopic computations are also discussed.

The results presented below were obtained in two separate
computations, associated with the methods described in

sections 2 and 3:

• We solved the classical Einstein–Maxwell equations for
linearized fluctuations about the metric of a dyonic black
hole in a space which becomes AdS as u → ∞.
The results were used to obtain correlators of a CFT3
using equation (13). We have no detailed knowledge
of the strongly-coupled quantum gravity theory which
is dual to the CFT3 describing the superfluid–insulator
transition in condensed matter systems. Nevertheless,
it is a reasonable postulate that its low energy effective
field theory essentially captured by the Einstein–Maxwell
theory. Armed with this postulate, we can then obtain
a powerful set of results for CFT3s. There is some
loss of quantitative accuracy compared to the solvable
supersymmetric theory noted above: we no longer have
the precise quantitative values of L/�P and a few other
couplings in the effective Einstein–Maxwell theory, and
so cannot compute the values of universal numerical
constants like �σ,η,s of the CFT3.

• With the picture of relaxation to local equilibrium at
frequencies h̄ω 	 kBT developed in [3], we postulate
that the equations of relativistic magnetohydrodynamics
should describe the low frequency transport. The basic
principles involved in such a hydrodynamic computation
go back to the nineteenth century: conservation of energy,
momentum, and charge, and the constraint of the positivity
of entropy production. Nevertheless, the required results
were not obtained until our recent work [8]: the general
case of a CFT3 in the presence of a chemical potential,
magnetic field, and small density of impurities is very
intricate, and the guidance provided by the dual gravity
formulation was very helpful to us. In this approach, we
do not have quantitative knowledge of a few transport
coefficients, and this is complementary to our ignorance
of the effective couplings in the Einstein–Maxwell theory
noted above.

In the end, we obtained complete agreement between these
two independent computations. This agreement demonstrates
that the assumption of a low energy Einstein–Maxwell
effective field theory for a strongly-coupled theory of quantum
gravity is equivalent to the assumption of hydrodynamic
transport for h̄ω 	 kBT in a strongly-coupled CFT3. See
also [28], and references therein.

Finally, we turn to our explicit results for quantum critical
transport with h̄ω 	 kBT .

First, consider adding a chemical potential, μ, to the
CFT3. This will induce a non-zero number density of carriers
ρ. The value of ρ is defined so that the total charge density
associated with ρ is e∗ρ. Note that we can choose e∗ at
our convenience, and there is no implicit assumption that the
elementary excitations of the CFT3 carry charge e∗. Then the
electrical conductivity at a frequency ω is

σ(ω) = e∗2

h
�σ + e∗2ρ2v2

(ε + P)

1

(−iω + 1/τimp)
. (15)

In this section, we are again using the symbol v to denote
the characteristic velocity of the CFT3 because we will need
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c for the physical velocity of light below. Here ε is the energy
density and P is the pressure of the CFT3. We have assumed
a small density of impurities which lead to a momentum
relaxation time τimp. In general, �σ , ρ, ε, P , and 1/τimp

will be functions of μ/kBT which cannot be computed by
hydrodynamic considerations alone. However, apart from �σ ,
these quantities are usually amenable to direct perturbative
computations in the CFT3, or by quantum Monte Carlo studies.
The physical interpretation of equation (15) should be evident:
adding a charge density ρ leads to an additional Drude-like
contribution to the conductivity. This extra current cannot be
relaxed by collisions between the unequal density of particle
and hole excitations, and so requires an impurity relaxation
mechanism to yield a finite conductivity in the d.c. limit.

Now consider thermal transport in a CFT3 with a non-zero
μ. The d.c. thermal conductivity, κ , is given by

κ = �σ

(
k2

BT

h

) (
ε + P

kBTρ

)2

, (16)

in the absence of impurity scattering, 1/τimp → 0. This
is a Wiedemann–Franz-like relation, connecting the thermal
conductivity to the electrical conductivity in the μ = 0 CFT.
Note that κ diverges as ρ → 0, and so the thermal conductivity
of the μ = 0 CFT is infinite.

Next, turn on a small magnetic field B; we assume that B
is small enough that the spacing between the Landau levels is
not as large as kBT . The case of large Landau level spacing
is also experimentally important, but cannot be addressed by
the present analysis. Initially, consider the case μ = 0. In this
case, the result equation (16) for the thermal conductivity is
replaced by

κ = 1

�σ

(
k2

BT

h

) (
ε + P

kBT B/(hc/e∗)

)2

(17)

also in the absence of impurity scattering, 1/τimp → 0. This
result relates κ to the electrical resistance at criticality, and
so can be viewed as Wiedemann–Franz-like relation for the
vortices. A similar 1/B2 dependence of κ appeared in the
Boltzmann equation analysis of [6], but our more general
analysis applies in a wider and distinct regime [26], and relates
the coefficient to other observables.

We have obtained a full set of results for the frequency-
dependent thermoelectric response functions at non-zero B and
μ. The results are lengthy and we refer the reader to [8] for
explicit expressions. Here we only note that the characteristic
feature [8, 29] of these results is a new hydrodynamic
cyclotron resonance. The usual cyclotron resonance occurs
at the classical cyclotron frequency, which is independent of
the particle density and temperature; further, in a Galilean-
invariant system this resonance is not broadened by electron–
electron interactions alone, and requires impurities for non-
zero damping. The situation for our hydrodynamic resonance
is very different. It occurs in a collision-dominated regime,
and its frequency depends on the density and temperature: the
explicit expression for the resonance frequency is

ωc = e∗Bρv2

c(ε + P)
. (18)

Further, the cyclotron resonance involves particle and hole
excitations moving in opposite directions, and collisions
between them can damp the resonance even in the absence of
impurities. Our expression for this intrinsic damping frequency
is [8, 29]

γ = e∗2

h
�σ

B2v2

c2(ε + P)
, (19)

relating it to the quantum critical conductivity as a measure
of collisions between counter-propagating particles and holes.
We refer the reader to a separate discussion [24] of the
experimental conditions under which this hydrodynamic
cyclotron resonance may be observed.

5. Recent developments

In this concluding section we mention a number of new
research directions that have emerged since our work in [4, 8].
These works are generally aimed in two directions: to move
out of the quantum critical regime of figure 2 into the low-
temperature regimes, and to address a wider class of quantum
critical points of interest in condensed matter physics.

We see from figure 2 that one possible fate of the quantum
critical system at low T is to undergo a phase transition to a
superfluid state. Gubser and collaborators [30–33], Hartnoll,
Herzog, and Horowitz [15, 34–36] and others [37–41] have
argued that the AdS4 dual of such a transition would involve
condensation of a charged scalar field in the background an
electrically charged black hole. Their solutions of such models
have yielded fascinating results for the conductivity of the
superfluid state, with intriguing connections to, and differences
from, conventional weak-coupling results in the condensed
matter literature.

Lee [42] has recently studied the fermionic counterpart,
by examining a non-zero density of charged fermions in the
background of an electrically charged black hole. The Green’s
functions of the boundary theory appear to display an unusual
non-Fermi liquid singularity over a ‘Fermi ball’.

Extensions which break parity and time-reversal, or
relevance to the quantum Hall effect, have also been
studied [43, 44].

A separate set of developments involve looking at
quantum critical theories whose symmetry group is not the
relativistic conformal group considered in the present paper.
The most prominent example of such a quantum critical
point is the three-dimensional non-relativistic Fermi gas near
a Feshbach resonance. The phase diagram of this model
is efficiently described by a scale-invariant RG fixed point
at zero density [45]; this fixed point was shown [46] to
have a non-relativistic conformal symmetry (the Schrödinger
group). A number of investigators [47–59] have realized the
Schrödinger group as the group of isometries of a gravity
theory, and obtained interesting information on the low-
temperature properties of the boundary critical theory dual to
this gravity theory.

Finally, we mention studies [60, 59, 61, 62] of gravity
duals of quantum critical theories with a general value of the
dynamic critical exponent, z.
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