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We present a theory for the memory effect in electron glasses. In fast gate voltage sweeps it is manifested as
a dip in the conductivity around the equilibration gate voltage. We show that this feature, also known as
anomalous field effect, arises from the long-time persistence of correlations in the electronic configuration. We
argue that the gate voltage at which the memory dip saturates is related to an instability caused by the injection
of a critical number of excess carriers. This saturation threshold naturally increases with temperature. On the
other hand, we argue that the gate voltage beyond which memory is erased, is temperature independent. Using
standard percolation arguments, we calculate the anomalous field effect as a function of gate voltage, tempera-
ture, carrier density, and disorder. Our results are consistent with experiments, and in particular, they reproduce
the observed scaling of the width of the memory dip with various parameters.
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I. INTRODUCTION

In the insulating low temperature phase of dirty semicon-
ductors or granular metallic films the unscreened Coulomb
interactions between localized electrons lead to glassy be-
havior such as slow relaxation, history dependence of ob-
servables, nonergodicity, and memory effects. Even though
such “Coulomb glasses” were theoretically predicted more
than 20 years ago,1–4 it was a major task to provide convinc-
ing experimental evidence for their existence. To our knowl-
edge, very slow electronic relaxation was first reported in the
context of capacitance measurements in doped GaAs by
Monroe et al.5 At temperatures well below 1 K, they ob-
served relaxation times that reached the scale of seconds.
Even more striking nonequilibrium behavior was found by
Ovadyahu’s group in the conductivity of strongly disordered
indium-oxide films,6 where the logarithmic relaxation can
extend up to several hours �a typical experimental set-up is
shown in Fig. 1�. Over the last decade, careful studies of
these systems have demonstrated that the electronic out-of-
equilibrium behavior is indeed due to the strong frustration
induced by the Coulomb interactions between localized
electrons, and does not primarily reflect the glassy dynamics
of extrinsic degrees of freedom.7 All the key features usually
associated with a glassy system have been observed in these
systems: aging,8,9 the dependence of sample properties on its
history,10,11 and memory effects.12 The latter appear as a dip
in the film conductivity as the gate voltage is swept through
the point at which the system was equilibrated for a long
time. The memory of these equilibration conditions usually
persists for several hours after the gate voltage has been
changed to a new value.

A very similar anomalous field effect, accompanied by
slow relaxation, was observed in various granular metals
such as Au,13 Al,14,15 as well as Bi and Pb.16,17 Furthermore,
the aging behavior and the temperature dependence of the
memory dip reported in granular Al �Ref. 18� are very simi-
lar to those found in indium oxide films.19 This suggests that
these glassy effects are rather universal, even though the de-
tails of the hopping mechanism and the temperature depen-

dence of the resistivity are clearly different in the two sys-
tems.

The anomalous resistance fluctuations observed in ultra-
thin granular aluminium films14 and silicon MOSFETs close
to the metal insulator transition20,21 were also interpreted as
indications for glassy behavior. Unfortunately, in these sys-
tems, it is difficult to disentangle effects due to intrinsically
glassy behavior of interacting electrons from the strong re-
sponse of the percolating network of hopping electrons to
extrinsic slow degrees of freedom.

It has been conjectured that the glassy memory dip re-
flects a Coulomb gap22,23 in the density of states that arises
from the unscreened Coulomb interactions. This conjecture
is rather natural in the light of recent theoretical work which
suggests that the emergence and the universality of the Cou-
lomb gap are related to a glass transition at a finite Tg in
these systems.25–27 This opens the appealing perspective of
obtaining more detailed information on Coulomb correla-
tions from a quantitative analysis of the memory experi-
ments.

So far, the precise connection between the memory effect
and Coulomb correlations in the electron configuration has
remained unclear. The aim of this paper is to provide a quan-
titative analysis of this effect, assuming a number of glassy
properties of the electron system. We start with a review of

FIG. 1. Typical experimental setup: The sample is a film �semi-
conductor or granular metal� of thickness d, which is coupled ca-
pacitively to a gate electrode. Variation of the gate voltage Vg

slightly changes the number of carriers in the film. The conductivity
of the sample is probed through contact electrodes that are directly
attached to the sample.
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the glassy features observed in experiments �Sec. II�, concen-
trating on the memory effect. In Sec. III, we briefly summa-
rize the theoretical background on the Coulomb gap, hopping
transport, percolation theory, and glassy behavior, which is
needed for the quantitative theory of the memory effect in
Sec. IV. The approximations underlying our theory and some
open issues are discussed in Sec. V. We conclude with a brief
summary of the main results. Several detailed discussions
have been deferred to appendices in order not to interrupt the
main line of the reasoning.

II. GLASSY BEHAVIOR IN EXPERIMENTS

A. Slow relaxation and aging

In this section, we discuss some of the experiments exhib-
iting glassy behavior. Monroe et al.5 were the first to observe
slow electronic relaxation in the capacitance of p-type
doped, partially compensated GaAs. More recently, very
slow logarithmic relaxation was observed in the conductivity
of various granular metals,15–17 as well as in indium-oxide
films.7 Furthermore, after equilibration under fixed experi-
mental conditions and subsequent moderate excitation during
a time tw �e.g., by gate voltage7 or electric field9�, the typical
relaxation time of such films is found to scale with tw. This
phenomenon, known as simple aging, is observed in many
glassy systems such as polymers and supercooled liquids,28

as well as spin glasses.29

B. The memory effect

One of the most striking manifestations of the electron
glass is the anomalous field effect: After the equilibration of
the sample at some gate voltage Vg

0, subsequent traces of
conductivity as a function of gate voltage keep a long-lasting
memory of these equilibrium conditions in the form of a
symmetric dip around Vg

0. This dip is superposed on the lin-
ear normal field effect due to the increase of carriers, which
is usually subtracted and will not be considered further here.
In Fig. 2, we illustrate the memory effect—and for the reader
more familiar with spin glasses, it is juxtaposed with an
analogous experiment that could be done in spin systems.

The fact that the conductivity increases no matter whether
carriers are added or depleted, can be understood on a quali-
tative level by the observation that any perturbation taking
the system out of equilibrium must lead to an increase of the
conductivity.6 On a more quantitative level we will have to
explain the following experimental observations extracted
from extensive studies on indium-oxide films10:

�i� The width � of the memory dip �measured as a func-
tion of density of induced carriers� is remarkably universal.
In particular, it is independent of the sweep rate or the appli-
cation of a magnetic field. Even more surprisingly, it remains
unchanged under thermal annealing, a process that reduces
the disorder significantly and thus increases the conductivity
by several orders of magnitude.

�ii� � increases with carrier density.
�iii� � increases roughly linearly with temperature, and

FIG. 2. �Left� In an electron glass, the conductivity exhibits a symmetric dip �on top of the linear normal field effect� around the
equilibration gate voltage Vg

0. Far from Vg
0 the conductivity is higher since a fast change of gate voltage takes the system into a higher-lying

metastable state. Below a characteristic temperature Tg, there is a clear difference between the conductivity in an “equilibrated” state �EQ�
and metastable states �NEQ�, see the inset. The relaxation from a metastable state to an “equilibrated” state requires collective electron hops
�lower left pannel� or crossing of high thermal barriers. Both are so slow that they cannot entirely take place on experimental time scales.
However, partial relaxation results in the decrease of the dip amplitude with the sweep rate. �Right� An analogous experiment in spin glasses
measures the magnetization as a function of magnetic field H after a slow quench in the equilibration field H0. These traces exhibit a peak
around H0, reflecting that the field cooled magnetization is larger than the magnetization that one obtains after a quench in H�H0 and a
subsequent switch to H0. The inset illustrates this point with the well-known difference between field cooled �FC� and zero-field cooled
�ZFC� magnetization as a function of temperature. The relaxation from the ZFC state to the FC state requires the collective rearrangement
of many spins �lower right panel�.
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keeps a certain memory of temperature: After a sudden
quench from the equilibration temperature T to a lower tem-
perature T��T, the width � relaxes only slowly to the value
corresponding to T�, keeping a memory of the larger width
characteristic of T.12

Note that �ii� is a strong indication for the relevance of
electron-electron interactions.7 Similar results, in particular
the decrease of � with temperature and memory of higher
temperatures, were recently found in granular aluminium
films, too.15,18

We will show in Sec. IV that these key features can be
understood semiquantitatively with relatively simple argu-
ments on the glassy free energy landscape and the stability of
its local valleys.

III. THEORETICAL INGREDIENTS

A. Model

In Anderson insulators, the unscreened Coulomb interac-
tions between the localized carriers are the crucial ingredient
which leads to strong electron-electron correlations, the for-
mation of the Coulomb gap, and glassy behavior. An ap-
proximate description of such systems is given by the clas-
sical lattice Hamiltonian23,24

H = �
i

ni�i +
1

2�
i,j

e2

�

ninj

rij
, �1�

where ni=0,1 are the occupation numbers of randomly po-
sitioned lattice sites i, and we fix the average occupation to
1/2. � denotes the host dielectric constant. The disorder en-
ergies �i are considered as independently and identically dis-
tributed random variables with a characteristic width W. This
corresponds to a “bare” density of states �0�1/rc

3W where
rc=nc

−1/3 is the mean interparticle spacing in a system with
carrier density nc.

Two standard models for semiconductors with localized
electrons are usually considered in the literature:30,31 the
“classical impurity band” �CIB� and amorphous semiconduc-
tors �AS�. They predominantly differ in the bare density of
states �0, see Appendix A: In the CIB the disorder W is due
to randomly distributed charged impurities, so that the disor-
der is of the order of the nearest neighbor interactions be-
tween carriers, and ��W / �e2 /�rc��1. In the AS, the disor-
der is due to strong local inhomogeneities, and can be much
larger than the nearest-neighbor interaction, ��1. In indium
oxides, one can tune from the CIB regime �low nc� to the AS
regime �high nc� by controlling the carrier density nc, the
crossover occurring around nX���e2 /�� / ��2 /2m��3.

Most interesting glassy effects have been observed in sys-
tems with a high density of carriers: in various granular met-
als and, most importantly, in indium oxide. The latter is a
highly disordered semiconductor, that can be prepared to
have exceptionally high carrier densities in a large range nc
�1019–1022 cm−3, while still being insulating. It is not ob-
vious that these high density systems can still be described
by the lattice model �1�, since typically the number of carri-
ers per localization volume is larger than one. However, pro-
vided the parameter z��0	D−1e2 /� is small �	 being the lo-

calization length�, we can consistently restrict ourselves to a
subsystem of well-separated electrons sitting on sites with
small �i, which maps the problem onto the effective model
�1�, as discussed in Appendix B. We expect that the lattice
model remains a reasonable approximation up to z�1. Typi-
cal values for z in indium oxides can be estimated to be of
the order of z�0.2–0.5.

B. Coulomb gap and hopping transport

Since the pioneering works by Pollak,22 Efros, and
Shklovskii23 in the early 1970s, it has been known that the
unscreened Coulomb interaction in Anderson insulators leads
to important correlations in the configuration of electrons,
and in particular to the Coulomb gap in the density of states.
An upper bound for the single particle density of states in D
dimensions is obtained from a self-consistent stability
argument23,24


�E� �
1

V
�

i

��E − Ei� � ��D� �

e2	D

ED−1, E � EC

�0, E 
 EC



�2�

where

EC = ��e2/��D�0/�D�1/�D−1� �3�

is the typical scale below which Coulomb correlations domi-
nate over the disorder, and �D is a numerical constant. In �2�,
Ei�dH /dni is the energy cost to change the occupation on
the site i. A very similar distribution of energy costs �but
with a substantially larger �D �Refs. 3 and 26�� holds for the
quasiparticle excitations relevant for variable range hopping,
sometimes referred to as electronic polarons.30,32 At higher
temperature, the Coulomb gap fills in gradually, and is es-
sentially smeared out for T
EC, even though a small depres-
sion due to Coulomb correlations should persist.

The presence of a Coulomb gap at low temperatures leads
to a crossover of the variable range hopping conductivity
from Motts’s Law

R�T� = R0 exp
�TM
�D�

T
	1/�D+1�� , �4�

with TM
�D��1/�0	D to the Efros-Shklovskii Law,

R�T� = R0 exp
�TES
�D�

T
	1/2� , �5�

with TES
�D��e2 /�	. The prefactor R0 is a slowly varying func-

tion of temperature.
One can obtain a quantitative description of variable

range hopping from the standard application of percolation
theory to a network of Miller-Abrahams resistors formed by
pairs of sites,33–36 as reviewed in Appendix D. In particular,
considering an equilibrium quasiparticle density of states of
the form �2� one finds a crossover function

log�R�T�/R0� = z−1/�D−1�R�T/TX� , �6�

where
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TX = �TES
D+1/TM

2 �1/�D−1� � z1/�D−1�EC �7�

is the temperature where the conductivity crosses over from
Mott’s regime to the Efros-Shklovskii regime �see Refs. 37
and 38 for similar approaches�. In Sec. IV, we will be con-
cerned with the modification of the conductivity as the den-
sity of states is driven out of equilibrium by the application
of a gate voltage.

For a long time, experimental evidence for the Coulomb
gap in doped semiconductors was only indirect in the form
of the Efros-Shklovskii hopping law, and it is difficult to
extract detailed information on Coulomb correlations from
the temperature dependence of the resistivity R�T� alone.
However, differential measurements represent direct finger-
prints of correlations since they are only sensitive to changes
in the electron configuration as an external parameter is
varied.

In the last 10 years, several tunneling experiments on
weakly insulating samples provided direct evidence for a
pseudogap in the density of states around the Fermi
level.39–46 However, such experiments are restricted to the
regime relatively close to the metal-insulator transition.
From this point of view, the analysis of the anomalous field
effect represents a convenient method to probe Coulomb cor-
relations also deeper in the insulating regime.

C. Glassiness

A key ingredient to the understanding of the memory ef-
fect is the glassiness of the electrons at low temperatures.
Such a behavior can be expected from the theoretical consid-
eration that Coulomb systems are very similar to frustrated
antiferromagnets, for which recent experiments have demon-
strated the existence of a thermodynamic phase transition
and spin-glasslike out of equilibrium behavior in almost pure
samples.47

From numerical simulations, it is well established that at
sufficiently low temperatures there is a multitude of meta-
stable states, which are not ergodically connected within
time scales accessible in a simulation, since they are sepa-
rated by large activation or tunneling barriers.48–53 Extrapo-
lating to experimentally relevant time scales, one expects
that a dynamical glass transition takes place in real systems
as well.

More theoretical insight can be gained from mean-field
theory.26,27 Let us first discuss the case of strong disorder
��
1�, which corresponds to most experiments in indium
oxide �nc�nX�. In 3D systems, a locator approximation to
the high temperature expansion predicts a glass transition at
finite temperature26

Tg
�3D� =

1

6�2/��1/4�3
1/2EC, �8�

valid for large disorder, ��1. Applying the same approach
to 2D systems in the strong disorder limit, one obtains the
prediction

Tg
�2D� =

�8�

log���/2

z
	�2EC

�2D�. �9�

It is possible that in systems in low dimensions the sharp
mean field thermodynamic transition is rounded due to acti-
vation over finite but high barriers. In this event, Tg in Eqs.
�8� and �9� is expected to mark the crossover to strongly
activated dynamics.

Apart from predicting Tg, mean field theory tells us that in
2D the ratio Tg /EC �9� can be numerically large, in particu-
lar, if we remember that the relevant value of �2 is the one
associated with the quasiparticle density of states. One may
therefore expect glassy behavior in strongly disordered films
in a substantial range of temperatures T /EC
1 where the
Coulomb gap is hardly developed yet. It is indeed not un-
usual that the glass transition occurs at a temperature where
the density of states does not yet exhibit any of its prominent
low temperature features. This is for example the case in the
Sherrington-Kirkpatrick model of long range spin glasses
where a linear pseudogap starts to open only well below Tg.
The same is predicted by the mean field solution for strongly
disordered Coulomb glasses.

In the case of moderate disorder, ��1 �the CIB model�
mean field theory predicts a rather low glass transition
temperature27 in 3D,

Tg
�3D� � 0.03

e2nc
1/3

�
, �10�

consistent with the small values found in simulations on ir-
regular lattices without on-site disorder.54,55 We expect a
similar situation in weakly disordered 2D systems.

In indium oxide films, a rapid drop of the relaxation time
is observed as the carrier density is decreased below ncr
�1019 cm−3, while keeping the temperature constant.7 It is
possible that this is a manifestation of the glass transition.
Indeed, such samples are in the classical impurity band re-
gime �ncr�nX�, and Eq. �10� yields a value of Tg close to the
measurement temperature of Tm=4 K. Films with even lower
density, nc�ncr, are still in their ergodic high temperature
phase at T=Tm, and the relaxation times are unmeasurably
fast.

IV. THEORY OF THE MEMORY DIP

A. The density of states as a function of T and Vg

Our theoretical approach is based on the assumption that
the metastable states visited after an excitation by gate volt-
age reflect the way in which this state was reached. In par-
ticular, we argue that at a new gate voltage Vg the �quasipar-
ticle� density of states, and thus the hopping conductivity,
will be distinct from the equilibrated state at the same Vg,
even if all spontaneous single-particle relaxations had time to
take place. The full relaxation to equilibrium will involve
multi-particle relaxations and/or processes with high activa-
tion energies. Analytical and numerical arguments in support
of this scenario have been discussed in Ref. 56.
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Here we are focusing on truly 2D systems, that is, films of
thickness d�dcr���0e2 /��−1/2 �see Appendix C for a discus-
sion of the crossover to 3D systems�. As discussed in Sec.
III B, the density of states in such films exhibits a linear
Coulomb gap at low temperatures. At energies larger than the
Coulomb correlation scale EC= �e2 /��2�0

�2D� /�2, the density
of states approaches the constant bare density of states
�0

�2D�=�0d. We describe this crossover �for T=0� by the in-
terpolating function


0�E� = �0
�2D� tanh�E/EC� , �11�

whose precise form is, however, not essential for the follow-
ing analysis.

At finite temperature some electrons are excited out of
their local equilibrium position, which induces fluctuations
in the �single electron� site energies, Ei=�i+� j�ie

2nj /�rij:

Ei = Ei
�0� + ��i, �12�

where

Ei
�0� = �i + �

j�i

e2nj
�0�/�rij �13�

is the energy cost to change the occupation of site i in the
locally stable configuration characterized by �ni

�0��, and

��i = �
j�i

e2�nj/�rij �14�

are potential fluctuations due to thermally activated changes
in the occupation �nj. In a first approximation we assume the
��i’s to be independent Gaussian distributed variables with
variance ���2�=�TnT�e2 /��2,

PT���� =
�

e2

1
���TnT

exp
−
�2

e4

��2

�TnT
� , �15�

where �T=O�1� is a numerical factor and nT is the density of
thermally excited electrons

nT = �
−�

0

dE
0�E��1 − f�E�� + �
0

�

dE
0�E�f�E� , �16�

f being the Fermi distribution. Note that at high temperatures
nT is linear in T, while at low temperatures it approaches zero
as nT�T2 �see Fig. 4�.

As a consequence of these fluctuations, the density of
states is smeared. In the approximation of independent shifts
��i, it is described by the convolution


�E,T� =� d����PT����
0�E − ��� . �17�

Upon application of a gate voltage Vg, new carriers are
introduced into the system. It is reasonable to assume them
to rapidly occupy the empty sites with the lowest energies Ei
available. Sometimes the occupation of a site may cause a
small number of neighboring particles to hop slightly away,
to reduce the energy of the system. Considering the introduc-
tion of the new particle and such local rearrangements as one
composite process, one may say that the new carriers actu-

ally occupy “quasiparticle” states �very similar to the elec-
tronic polarons relevant for conductivity32�. However, even
though the thus reached state may be stable to single particle
relaxations, it will in general be an excited state under the
new gate voltage. Only if the system is given a long time to
equilibrate, will it relax to the new ground state, which in-
volves multiparticle transitions or the crossing of high acti-
vation energies.

In order to describe the quasiparticle density of states ana-
lytically, we assume that the latter type of relaxation pro-
cesses has not had time to occur. Furthermore, we assume
that apart from the local response of nearby particles, the
introduction of new carriers does not trigger major rearrange-
ments of the electron configuration. This will be justified
further below. A more thorough investigation of these as-
sumptions can be found in Ref. 56.

Under these assumptions, the effects of the gate voltage
are twofold: �i� the new carriers successively fill the empty
�quasiparticle� levels close to the Fermi energy, shifting the
chemical potential to �+��, while the minimum in the den-
sity of states remains at the old value of � �cf. Fig. 3�; �ii� the
extra particles further smear the density of states, similarly to
the thermal effect described above. They induce further en-
ergy shifts ��i, which we take to be randomly distributed
according to

PVg
���� =

�

e2

1
���VCVg/e

exp
−
�2

e4

��� − ���2

�VCVg/e
� ,

�18�

where �V=O�1� and C is the capacitance per unit area. We
have also accounted for the global shift in chemical potential
��, which is related to the gate voltage by

CVg = e�
0

���Vg�

dE
�E� . �19�

Notice that in the presence of a Coulomb gap, the depen-
dence of �� on Vg is nonlinear. The density of states after a
sudden gate voltage change is finally obtained as

FIG. 3. A sketch of the density of states in a 2D electron glass.
The dashed curve corresponds to zero temperature. The dotted
curve shows the result of thermal smearing, cf. Eq. �17�. The solid
curve represents the density of states immediately after applying a
gate voltage, cf. Eq. �20�. �� is the shift of the chemical potential
due to the charging of the sample.
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�E,T,Vg� =� d����PVg
����
�E − ��,T,Vg = 0� . �20�

The density of states at different stages of smearing is shown
in Fig. 3. Below, we will use the density of states �20� to
calculate quantitatively the out of equilibrium conductivity

Note that in assumption �i� it is implied that new carriers
will occupy sites across the whole film. This is only justified
if the film thickness is of the order of the screening length of
the sample. In the absence of a Coulomb gap the latter can be
estimated as lsc���0e2 /��−1/2, which is of the same order as
the thickness dcr that governs the crossover to a 3D system.
�However, in the presence of an Efros-Shklovskii Coulomb
gap, the screening length is probably substantially larger on
intermediate time scales, as suggested by the capacitance ex-
periments of Ref. 5.� We believe that in films thicker than lsc,
the anomalous field effect is mostly due to the filling of
states within a screening length from the surface. The quan-
titative theory below does not strictly apply to this case.
However, the instability argument given in the following
subsection should still hold, provided the film thickness d is
replaced by dcr� lsc.

B. Instability criterion and breakdown of memory

The description �20� of an adiabatic response to the
change of gate voltage Vg, without any relaxation of the elec-
tron configuration, is applicable only for small enough values
of Vg. As the gate voltage is increased, more and more new
particles are introduced into the sample and reshuffle the site
energies, until at a certain scale �Vg=Vins� the local minimum
in which the system resides becomes unstable. For higher
gate voltages the system will relax to a new local minimum
whose density of states is no longer described adequately by
the adiabatic smearing and shifting of Eq. �20� alone. As
long as the Coulomb gap is not strongly developed, it is
reasonable to assume that the new local minimum represents
a rather generic metastable state relatively high up in the
energy spectrum of all possible states. We then expect that
the conductivity will not significantly change upon further
increase of the gate voltage, since the system remains in the
high energy spectrum of states. However, such a new meta-
stable state will still have a large configurational similarity
�or “overlap” in spin glass language� with the original
ground state: Most of the sites that were occupied in the
original local state remain occupied in the new local mini-
mum. The memory of the original configuration is thus pre-
served. In particular, when the gate voltage is swept back to
its original value, the low equilibrium conductivity will be
recovered. As the gate voltage is increased beyond the insta-
bility scale Vins, the overlap of the new local minimum with
the original state continuously decreases and the memory of
the original state is gradually lost. This will be manifested by
the disappearance of the memory dip once the gate voltage is
swept beyond a scale Vmem.

Let us now analyze in more detail what determines the
instability scale Vins. It is reasonable to expect that as long as
the density of carriers introduced by the gate is smaller than
the density of thermally excited electrons nT, the gate voltage

effect is perturbative, which justifies our adiabatic treatment
of the density of states. This reasoning implies CVins�enT.

On the other hand, at gate voltages CVg
enT the shift in
chemical potential is of the order of the temperature ��
�T, and accordingly, the new carriers are introduced on sites
that were essentially empty in the original state. The local
environment of those sites will generally not be favorable to
the addition of a new particle. Rather, the newly introduced
electron will trigger fast relaxation processes and destabilize
the original state. In other words, the configuration generated
by occupying more and more levels will soon become a ge-
neric high energy state for CVg
enT. In summary, we expect
an instability and thus a saturation of the out-of-equilibrium
conductivity at

Vins �
enT

C
�

e�0d

C
� 
�2T2/6EC, T � EC

2 ln 2T − �/2�0d , T 
 EC
�

�21�

where �=�dE��0d−
�E����0dEC is the total deficit of den-
sity of quasiparticle states due to the presence of a Coulomb
gap. In Fig. 4 we plot Vins as a function of temperature.

As explained above, we expect the memory dip to saturate
around the instability scale, its total width being roughly �
=2Vins. A linear high temperature behavior ��T−T0 was
indeed observed experimentally.57 Equation �21� further pre-
dicts the interesting relation T0=�dE�1−
�E� /�0d� /4 ln 2,
which allows for an experimental determination of the width
of the Coulomb gap.

The memory of the equilibrium state is essentially erased
once the gate voltage has exceeded a certain scale Vmem

Vins. We expect this crossover to occur when the random
energy shifts ��i are comparable to the Coulomb correlation
scale, ���2�1/2�EC. More explicitly, we obtain the estimate

Vmem � �V
e�0d

C
EC, �22�

which is temperature independent contrary to Vins. The nu-
merical factor �V=O�1� is presumably numerically large �at

FIG. 4. �Color online� The density of thermally excited carriers,
nT, as a function of temperature, or, equivalently, the gate voltage
difference CVins /e at which the anomalous field effect saturates. At
high temperature, Vins is linear in T ���T−T0��, and scales as T2 at
low temperatures. nT and CVins /e are plotted in units of zEC�0d.
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least of the order of Tg /EC, which may be appreciable in
strongly disordered 2D systems, cf. Eq. �9��.

In Ref. 11 the authors reported that the ratio Vmem/Vins is
not a universal number �at fixed temperature�, but increases
with carrier density. The above arguments indeed suggest
that at high temperatures, T�EC,

Vmem

Vins
�

EC

T − T0
. �23�

At fixed temperature, this ratio increases with carrier concen-
tration, as EC does.

C. Nonequilibrium conductivity

For gate voltages V�Vins we can calculate the nonequi-
librium conductivity from the modified density of states, Eq.
�20�, and the percolation criterion of Appendix D. Assuming
that the conductivity saturates to G� beyond the scale Vins,
we may estimate G��G�Vg=Vins� from which we obtain the
amplitude of the memory dip as �G�G�−G�0��G�Vins�
−G�0�.

The smearing of the density of states due to new carriers
has a minor effect on the nonequilibrium conductivity since
it mostly affects energy scales on the order of the tempera-
ture whereas the energy range probed by variable range hop-
ping is much larger. However, the shift of the chemical po-
tential, ��, is the crucial out-of-equilibrium feature that
leads to the increase of the conductivity.

The results we obtained from the percolation treat-
ment confirm the general assertion8 that the conductivity
always increases with �Vg�. In Fig. 5 we plot the relative
change of the conductivity �G�Vg� /G� for high temperatures
Tg
T�EC. This is the temperature regime in which most
experiments on indium oxide films are performed. The cusp
width decreases linearly with temperature while its ampli-

tude increases, an asymptotic analysis yielding

�G

G
�

EC

T
, �24�

see Fig. 7.
At low temperature, T�EC, the cusp width increases qua-

dratically with T. In contrast to the high temperature regime,
the adiabatic percolation treatment combined with the insta-
bility criterion predict �G /G� to increase with temperature
as

�G

G
�� T

TES
. �25�

The full functions �G�Vg� /G� are shown in Fig. 6.
The absolute amplitude of the dip, �G, is found to be a

nonmonotonic function of temperature, as shown in Fig. 8.
The nonmonotonicity is more pronounced in less resist-
ive films �see the curves for the localization parameters z
=0.4,0.5� where a clear peak appears in �G at Tmax, while
for more resistive films �z=0.2� this feature is hard to dis-
cern. Very similar nonmonotonic behavior of �G was ob-
served experimentally.19

V. DISCUSSION

A. Low temperature behavior

The nonmonotonic behavior of the relative amplitude pre-
dicted by Eqs. �24� and �25� has not been observed in experi-
ments so far. Even though this might be due to the fact that
most experiments are performed at high temperatures, we
believe the prediction �G /G→0 for T→0 to be an artifact
for the following reasons: �i� One can trace back the origin of
the prediction �G /G�T1/2 to the conservation of the total
deficit of density of states under the application of a gate

FIG. 5. �Color online� Memory dip as a function of gate voltage
for z=0.4 and various temperatures of the order of EC and higher.
We plot the relative change in conductivity with respect to its
asymptotic value at large gate voltages, �G /G= �G�Vg�
−G�Vins�� /G�Vins�. The cusp width is proportional to temperature,
and its amplitude decreases as temperature is increased. CVg is
plotted in units of ezEC�0d.

FIG. 6. �Color online� �G /G= �G�Vg�−G�Vins�� /G�Vins� plotted
against gate voltage for low temperatures, T�EC, and z=0.4. In
this regime, the cusp width increases quadratically with tempera-
ture. The adiabatic percolation treatment predicts the amplitude of
the cusp to increase with temperature. This is probably an artifact,
see the discussion in Sec. V. CVg is plotted in units of ezEC�0d.
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voltage. In our approximation, this is a simple consequence
of only shifting and convoluting the density of states. How-
ever, it is likely that for V�Vins the neglected fast relaxation
processes destroy this exact conservation, which would lead
to the saturation of �G /G at low temperatures. �ii� The as-
sumption that the asymptotic conductivity G� is well esti-
mated by the nonequilibrium conductivity at Vins is probably
incorrect at very low temperatures. In order to illustrate this
point, let us consider a large gate voltage VL with Vins�VL
�Vmem, such that the shift of the chemical potential is of the
order of EC. This will take the system into a high energy state
where fast relaxation processes lead to the formation of a
new Coulomb gap. The sites within the new gap will be
mostly different from the sites in the old one, and it is likely
that the total deficit of density of states in this new Coulomb
gap is initially smaller than the one in the equilibrium state.
More precisely, one may expect that the linear slope �ES

2D of
the density of states in the new configuration is slightly
larger than that in the ground state, and the corresponding
Efros-Shklovskii temperature TES is smaller accordingly �see
Appendix D�. This would suggest that �G /G scales like
T−1/2 and thus increases with decreasing temperature. In this
temperature regime, one may expect an additional increase
of conductivity with increasing gate voltage, even beyond
the instability point Vins. The description of the conductivity
in that regime would require taking into account partial re-
laxation processes, which goes beyond the present approach.
However, it remains open whether the �T behavior Eq. �25�
applies in an intermediate range of temperatures.

B. Comparison to experiments

1. The memory dip

As described in Sec. IV C, the adiabatic percolation ap-
proach reproduces well the temperature dependence of sev-
eral key features of the memory dip. In particular, we
showed that one may infer the width of the quasiparticle
Coulomb gap from a careful study of the temperature depen-
dence of the width. Moreover, from Eq. �21� we see that the
width of the memory dip should be proportional to the bare
density of states �0, which increases with carrier concentra-
tion as discussed in Sec. III A: In the impurity band regime,
nc�nX, one expects �0�nc

2/3, while for large carrier concen-
tration the density of states crosses over to a free electronlike
behavior �0�nc

1/3. This scenario agrees rather well with the
observed bending of the dip width as a function of carrier
density in indium oxide films.7

At high temperatures, the percolation approach predicts a
decrease of the cusp amplitude like 1/T, which is weaker
than what is usually observed in experiments.15,19 This dif-
ference may again originate from our neglect of spatial cor-
relations in ��i discussed above. Even more likely is the
scenario that our assumption of homogeneously glassy
samples breaks down at higher temperatures. Indeed, if only
a few rare regions with stronger disorder remain glassy their
effect on the out-of-equilibrium conductivity might be
strongly reduced due to shortcuts by nonglassy regions.

Let us briefly discuss the effect of varying the disorder
strength or applying a magnetic field. Experimentally, both

changes seem not to affect the width of the memory dip.
Furthermore, even strong magnetic fields change the ampli-
tude �G /G only slightly. These experimental observations
are quite surprising since both the variation of disorder and
magnetic field affect the conductivity G itself appreciably.

The first observation can be naturally explained within
our picture if we assume that changing the disorder �by an-
nealing� or applying a magnetic field mostly affects the lo-
calization length without altering the bare density of states
�0. Since the instability criterion originates from a static con-
sideration within the classical model Hamiltonian �1�, it is
insensitive to the localization length. The width of the
memory dip remains thus constant under variations of disor-
der or magnetic field.

The near constancy of �G /G with magnetic field is more
subtle. In terms of the percolation approach the variation of
the localization length simply changes the parameter z, while
leaving EC fixed. From Fig. 7, it can be seen that the effect of
z on �G /G is indeed relatively small, while the correspond-
ing change of �G �cf. Fig. 8� is much more important.

2. Memory of temperature

An interesting effect of temperature memory was reported
both for the indium oxide films,12 and for films of granular
aluminum.18 After equilibration at Vg=0 and temperature T0,
the system is quenched to T1�T0, and the conductivity is
probed as a function of gate voltage before the sample equili-
brates. In this protocol, the anomalous field effect maintains
the characteristic width of the initial temperature T0 for a
rather long time before narrowing down.

This effect can be understood in terms of the instability
criterion proposed above: The energy minima or valleys in
which the electron glass typically settles at temperature T0
will be stable upon injection of additional carriers up to the
critical density nT0

. After a temperature quench the system
will in general remain in this valley, and the stability thresh-
old of the higher temperature will be preserved temporarily.
Finally, slow relaxation processes allow the system to dig

FIG. 7. �Color online� The relative amplitude of the conductivity
dip �G�Vins�−G�0�� /G�Vins� as a function of temperature for vari-
ous values of z. Inset: Low temperature behavior of the relative
amplitude for the same values of z.
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itself deeper down into a subvalley of the energy landscape,
since the thermal fluctuations are now smaller. These lower
lying states will have a reduced stability threshold, as will be
reflected by a smaller dip width �.

C. Observability of glassy effects in doped semiconductors

So far, slow electronic relaxation was observed only in
very few cases of moderately doped semiconductors.5 The
natural question thus arises as to why glassy effects, such as
in indium oxide, are not more frequently encountered. The
reason is most likely that many standard semiconductors
have relatively low carrier concentrations with well localized
electrons. Such systems are described by the classical impu-
rity band model whose glass transition in 3D is suppressed
by a small numerical factor, see Eq. �10�. Estimating the
Efros-Shklovskii conductivity at that temperature scale, one
finds

ln�R/R0� � �CES
�3D� e2

�	Tg
	1/2

� �CES
�3D�

0.03

nc
−1/3

	
	1/2

, �26�

which is very large even when the localization length ap-
proaches the interimpurity distance. This makes the detection
of glassy effects in the hopping conductivity nearly impos-
sible, due to the intrinsically large noise in such systems.
However, glassiness should still be observable in static quan-
tities, such as the capacitance measurements of Ref. 5.

In amorphous semiconductors with relatively high carrier
concentration, glassy effects as described in this paper
should generally be observable. The same is true for doped
semiconductors sufficiently close to the metal insulator tran-
sition.

Once the localized wave functions start to overlap signifi-
cantly �z
1� one may expect the nature of the glass phase to
change and finally disappear completely. Many recent ex-
periments probing the Coulomb gap are actually carried out
in this regime.45,46,58 They reveal very interesting quantum
critical behavior associated with the metal insulator transi-

tion, but have not thoroughly investigated the glassy aspects
of the samples so far. First attempts towards a theoretical
description of glassiness in the regime close to the transition
were undertaken in Refs. 59 and 60. At this point it remains
an interesting open question, both theoretically and experi-
mentally, whether the onset of metastability and glassiness
coincides with the transition to the insulator, and, if so, what
role the glassy freezing plays in the physics of the metal-
insulator transition.

VI. CONCLUSION

We have analyzed the memory effect in electron glasses.
The nonequilibrium conductivity was calculated within a
percolation approach, assuming the local metastability of the
glass state. This allowed us to describe the anomalous field
effect quantitatively, reproducing many of the experimental
characteristics observed in indium oxides and granular alu-
minum. We have provided a simple physical picture for the
voltage scales at which the memory dip saturates and erasure
of memory occurs, respectively. We argue that the saturation
scale increases with temperature, its dependence on tempera-
ture reflecting the characteristics of the Coulomb gap. We
have predicted the ratio of the two voltage scales as a func-
tion of temperature and carrier density, which can be tested
in experiments.
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APPENDIX A: THE BARE DENSITY OF STATES OF
SEMICONDUCTORS

In this Appendix we derive approximate expressions for
the bare density of states in semiconductors and granular
metals.

In the literature, two standard models for semiconductors
with localized electrons have been considered, see Refs. 30
and 31 for a review. The “classical impurity band” model
refers to lightly doped, partially compensated semiconduc-
tors where all carriers are localized within a Bohr radius
around majority impurities. Due to the Coulomb interactions
with randomly distributed charged impurities, the on-site en-
ergies �i of these localized states are scattered over a range of
the order of the nearest neighbor interactions, e2 /�rc, where
rc�nc

−1/3 is the average distance between carriers, nc is the
carrier density �uncompensated dopant concentration�, and �
is the host dielectric constant. Accordingly, the bare density
of localized states �which neglects Coulomb interactions be-
tween the localized carriers� is of the order of

FIG. 8. �Color online� Amplitude of the conductivity dip
G�Vins�−G�0�, as a function of temperature for z=0.2, 0.4, and 0.5.
Less resistive films �larger z� exhibit a clear maximum at relatively
high temperatures.
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�0 =
nc

e2/�rc
=

�

e2nc
2/3, �impurity band� . �A1�

The second frequently considered model describes amor-
phous semiconductors in which the disorder of the on-site
energies �i is due to strong local inhomogeneities. In this
case, their scatter is usually much larger than that introduced
by Coulomb interactions with impurities. As a consequence,
the bare density of states is lower than �A1�, as schematically
illustrated in Fig. 9.

The set of localized states does not need to fill the whole
region between the valence and the conduction band. In the
case of indium oxide �both amorphous61 and crystalline62�, it
has been established that the localized states form a tail join-
ing the conduction band at the mobility edge. Furthermore, it
was found that at sufficiently high carrier densities, the den-
sity of states in the range of localized states is in surprisingly
good agreement with free-electron estimates,

�0 �
nc

�2nc
2/3/2m

, �high density,nc 
 nX� . �A2�

This reflects the fact that the kinetic energy Ekin=�2kF
2 /2m

��2nc
2/3 /2m of the localized wave functions dominates over

the effects of inhomogeneities in the electrostatic potential.
Note, however, that a crossover to the regime of dominant
Coulomb interactions �Eq. �A1�� is to be expected around
nc�nX, where Ekin�e2nc

1/3 /�, i.e.,

nX � � e2/�

�2/2m
	3

. �A3�

In granular metals, the role of the localized sites in the
model �1� is taken by the grains. As a consequence of impu-
rities and the disorder in the size and the arrangement of the
grains, the cost to introduce one more particle on a grain is a
random quantity of the order of the typical charging energy
EC or the level spacing � in the grain, whichever is larger.
Usually the charging energy will dominate, unless the grains
are very small or the effective dielectric constant of the

metallic film is very large. The random on-site energies �i
entering the Hamiltonian �1� are therefore scattered with a
typical width W=max�EC ,��, and the effective bare density
of states can be estimated as

�0 �
nc

max�EC,��
, �granular metals� �A4�

which is typically a few times smaller than the �2D� density
of states in a bulk metal.

APPENDIX B: REDUCTION OF HIGH DENSITY
SYSTEMS TO THE STANDARD MODEL

Here we examine under which condition a high density
system can be described by the classical Hamiltonian �1�.
The aim is to consider only a strip of localized states of
width �E around the chemical potential, and to work with an
effective model of occupied and empty levels within this
strip. In this approximation, the carriers localized in states of
lower energy are considered inert in the sense that they do
not hop to other sites. Notice however, that such “core” elec-
trons may still have fairly extended wave functions, and
therefore contribute to the polarizability of the medium,
renormalizing the host dielectric constant.

The mapping of such an energy strip to a model of point-
like localized states �1� is consistent provided that �i� the
states within the strip do not overlap spatially,

�E�0	D � 1, �B1�

and that �ii� the typical variations �� of the electrostatic
energy due to rearrangements of particles within the strip do
not exceed the width �E of the strip,

�� � ��0�E�1/De2

�
� �E . �B2�

The conditions �B1� and �B2� can be satisfied simultaneously
if

z =
e2

�
�0	D−1 � 1, �B3�

or, in other words, if the level spacing within a localization
volume is larger than the Coulomb interaction strength on
the scale of the localization length.

APPENDIX C: THE CROSSOVER FROM 2D TO 3D

In this appendix we discuss the crossover thickness dcr
below which a sample should be considered two-
dimensional. In particular, we show that the crossover from a
bulk sample to a film occurs around a thickness

dcr � ��0e2/��−1/2, �C1�

both with respect to transport characteristics and the glass
transition. �Using typical values for indium oxide films ��0
�1032 erg−1 cm−3 and ��30 �Ref. 57�� one finds dcr
�100 Å, which is of the order of the typical film thickness
�d=50–200 Å� in most glassy experiments.�

FIG. 9. Schematic view of the bare density of states �neglecting
electron-electron interactions� in different classes of semiconduc-
tors: �a� classical impurity band �lightly doped semiconductors�; �b�
strongly disordered amorphous semiconductor �e.g., amorphous
germanium�; �c� doped, disordered semiconductor with localized
band tails at the bottom of the conduction band �e.g., indium oxide�.
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In a thin film, Mott’s variable range hopping law �4�
crosses over from the 3D form �log�R��T−1/4� to the 2D
form �log�R��T−1/3� when the hopping length becomes of
the order of the film thickness, which yields the crossover
temperature

T2D-3D � TM
�3D��	/d�4 � TX

�3D�/��0d2e2/��4. �C2�

A subsequent crossover to the Efros-Shklovskii Law takes
place at TX

�2D�=TX
�3D���0d2e2 /��, where TX

�3D� denotes the Mott
to Efros-Shklovskii crossover temperature for a bulk sample.
The intermediate regime with a 2D Mott’s Law is observable
only if d�dcr.

The crossover from a 3D to a 2D glass transition occurs
when the typical distance between thermally active sites at
T=Tg

�3D� becomes equal to the film thickness, i.e., when

RTg
� e2/�Tg

�3D� � e2/�Tg
�2D� � d . �C3�

One can easily check that these expressions all become of the
same order when �0d2e2 /�= �d /dcr�2�1. Notice that for
films with d�dcr, the glass transition temperature �9� de-
creases roughly linearly with thickness since Tg

�2D���0
�2D�

�d�0. The phase diagram as a function of temperature and
film thickness is summarized in Fig. 10.

APPENDIX D: PERCOLATION THEORY OF HOPPING
CONDUCTIVITY

In this Appendix we review the percolation theory of hop-
ping conductivity. We consider the network of Miller-
Abrahams resistors formed by pairs of sites i and j. In the
vicinity of a given low temperature metastable state of the
electron glass, the effective resistance of this link is approxi-
mately given by

Rij � R0 exp�− 2rij/	 + �ij/T� , �D1�

where

�ij = 
�Ei − Ej� − e2/�rij , if Ei · Ej � 0

max��Ei�, �Ej�� , if Ei · Ej 
 0
� �D2�

and Ei is the energy �with respect to the chemical potential�
to remove or add a particle at the site i in the particular
metastable state at hand. More precisely, the energies Ei refer
to the excitation of quasiparticles �or polarons32� that carry
the hopping current.

In order to find the least resistive percolating path in the
resistor network we follow the procedure proposed by Efros
et al.36: We consider only resistors with Rij �R0 exp��c� to
be active and associate each of them with a disk or ball with
diameter rij. We finally determine the threshold value of �c
for which the set of disks percolates. The value R0 exp��c� is
a good estimate of the resistivity to exponential accuracy.

To solve this problem analytically, one needs to know the
probability F�� ,r� per unit energy and volume to find a pair
of sites �i , j� with rij =r and �ij =�. Under the assumption
that the site energies Ei are independently distributed accord-
ing to a single-quasiparticle density of states 
�E�, we obtain

F��,r� = 1
2 � 
�E1�
�E2����12 − ��dE1dE2. �D3�

With the help of the pair distribution function the above per-
colation problem reduces to that of a set of balls with differ-
ent radii. Assuming that the critical volume fraction of the
balls, �D, is an approximate invariant of temperature, only
dependent on dimensionality, we finally have to solve the
equation

�D =� d�dDrVD� r

2
	D

F��,r����c −
�

T
−

2r

	
	 , �D4�

where VD is the volume of a D-dimensional unit sphere. The
above invariance principle yields �2�1.26 �Ref. 63� and
�3�0.23.36 Comparison with other percolation criteria, in
particular in the Mott regime,31,64,65 indicate that in 2D a
slightly smaller value �2�1 yields results closer to the nu-
merically found percolation threshold. In the main part of the
paper we therefore used the latter value.

In order to efficiently implement the percolation criterion
for an arbitrary density of states, as obtained, e.g., after the
sudden application of a gate voltage, it is convenient to in-
troduce the functions

Fph�E� = 2�
0

E

d�
���
�� − E� , �D5�

Fpp�E� = 
�E��
0

E

d�
��� , �D6�

Fhh�E� = 
�− E��
−E

0

d�
��� , �D7�

and �� �E�=�0
Ed�F� ��� with � , � �p ,h�, in terms of

which the percolation criterion �D4� can be rewritten as

FIG. 10. �Color online� Phase diagram of electron glasses as a
function of temperature and film thickness. The dashed-dotted lines
labeled TX red �light grey� and T2D-3D purple �dark grey� indicate
the crossover between different hopping regimes. The solid lines
separate the ergodic high temperature phase from the glass phase
where memory effects and aging are observable. The dashed line
indicates the temperature and energy scale below which the density
of states assumes a linear shape characteristic for two dimensions.
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�D = �
0

	�c/2

dDrVD� r

2
	D

���pp�T��c − 2r/	�� + �hh�T��c − 2r/	��

+ �ph�T��c − 2r/	� + e2/�r� − �ph�e2/�r�� . �D8�

For completeness we report the standard expressions
that one obtains in the limiting case of a constant density
of states �
�����0� and high temperatures �T�TX, Mott re-
gime�, and in presence of an Efros-Shklovskii pseudogap,

���=�D�� /e2�D�D−1, �T�TX�. In these cases the above cri-
terion is readily evaluated analytically and yields the thresh-
old values

�c = �TM
D

T
	1/�D+1�

, �Mott� �D9�

�c = �TES
D

T
	1/2

, �Efros-Shklovskii� �D10�

with

TM
�D� =

CM
�D�

�0	D , �D11�

TES
�D� = CES

�D� e2

�	
. �D12�

The numerical constants CM
�D� depend on the value of �D,

while CES
�D� increases with the value of �D /�D

2 . In the main
text we used �2=1.
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