
June 2013

EPL, 102 (2013) 67008 www.epljournal.org

doi: 10.1209/0295-5075/102/67008
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Abstract – We study the strong localization of hard-core bosons. Using a locator expansion we
find that in the insulator, unlike for typical fermion problems, nearly all low-energy scattering
paths come with positive amplitudes and hence interfere constructively. As a consequence, the
localization length of bosonic excitations shrinks when the constructive interference is suppressed
by a magnetic field, entailing an exponentially large positive magnetoresistance, opposite to
and significantly stronger than the analogous effect in fermions. Within the forward-scattering
approximation, we find that the lowest-energy excitations are the most delocalized. A similar
analysis applied to random field Ising models suggests that the ordering transition is due to a
delocalization initiated at zero energy rather than due to the closure of a mobility gap in the
paramagnet.

Copyright c© EPLA, 2013

Most disordered insulators display some form of variable
range hopping transport [1], reflecting the localization of
carriers at low energies [2]. Naively, one might expect
that in such insulators the quantum statistics of carriers
is irrelevant, as particles essentially never exchange their
places. However, when the hopping length becomes much
larger than the distance between impurities, transport is in
fact very sensitive to statistics, as probed, e.g., by orbital
magnetic fields. For fermions the latter suppresses the
destructive interference among alternative virtual paths,
leading to a strong negative magnetoresistance [3–8]. This
is a very non-trivial manifestation of quantum interference
in impurity bands. In this letter we address the bosonic
counterpart of this effect, which, remarkably, has always
the opposite sign. The quantum statistics also manifests
itself in a non-trivial energy dependence of localization
and in the way delocalization is approached.
The present study of disordered bosons is motivated

by a variety of experimental situations involving bosonic
insulators, such as in Josephson junction arrays, certain
superconducting films, turned insulating by strong disor-
der, repulsive cold bosonic atoms in speckle potentials and
artificial gauge fields [9,10], helium in porous media or
random quantum magnets. [11]. In the presence of strong
disorder, the respective insulators are expected to be Bose
glasses [12], whose low-energy excitations are localized by
disorder, but do not exhibit a spectral gap. Transport of
such strongly disordered bosons is still scarcely studied,

but poses a variety of interesting conceptual questions,
which are not fully resolved yet [11,13,14].
A particularly interesting aspect of localization is the

magnetoresistance in charged bosonic insulators. Recent
experiments in strongly disordered, superconducting InOx
films [15,16] have shown that a magnetic field not only
destroys rapidly the already weak superconductivity [17],
but also induces a giant positive magnetoresistance in
the ensuing insulating state. Similar effects in magne-
toresistance have been reported in amorphous films of
TiN [18], Bi [19], and in patterned films [20], cf. the
review [21]. The giant positive magnetoresistance in the
vicinity of the superconducting transition is intriguing.
Mechanisms such as shrinking impurity wave functions or
spin blocking of weakly interacting electrons, which may
play a role in semiconductors [1], hardly apply to these
systems [13]. Instead, experimental observations in trans-
port [15–18,20,22–24] and tunneling microscopy [25,26],
as well as theoretical model studies [27–29] suggest the
importance of remnant electron pairing in the insulator,
despite the absence of global phase coherence [30].
While it is natural to expect a magnetic field to increase

the resistance of a bosonic insulator, in continuation of its
destructive effect on superconductivity, there is no satis-
factory microscopic explanation of the giant effects seen
in experiments yet, despite attempts at phenomenologi-
cal explanations [31] or model calculations for granular
systems [32,33]. The latter do not account for the fact
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that in the experimental films [15] no well-defined granular
structure exists, and the spectral gap for pairs is expected
to be washed out by strong disorder [27]. This suggests
that, most likely, it is Cooper pair (boson) localization
due to disorder, which induces the insulating behavior,
rather than the opening of a homogeneous gap in the
insulator [13].
Here we study a microscopic model of an insulator of

hard-core bosons, subject to strong disorder potentials.
This captures, e.g., electronic systems with a strong
local electron pairing. By contrasting this model with
similar fermionic models, we reveal the specific role of
quantum statistics. As the simplest model containing all
relevant ingredients we consider a lattice, whose sites can
accommodate only one quantum particle due to strong
onsite repulsion. For spinless fermions this is simply
the non-interacting Anderson model for single-particle
localization [2,3]. For hard-core bosons the model was
introduced by Ma and Lee [34] who considered disordered
superconductors in terms of preformed pairs (Anderson
pseudospins). This is a faithful low-energy representation
of single-band Hubbard models with a strong negative
U attraction [35]. Similar models were recently studied
in refs. [11,36], using approaches based on large lattice
connectivity. Our calculation scheme below can easily be
generalized to grains or islands hosting many particles, as
long as the charge gap on typical grains is much bigger
than the hopping amplitude between grains.
We consider a lattice of sites i with random energies εi,

uniformly distributed in [−W,W ], and weakly coupled by
a tunneling amplitude tij = t between nearest neighbors,

H =
∑

i

εini−
∑

〈i,j〉

tij(b
†
jbi+ b

†
i bj), ni = b

†
i bi. (1)

b†i , bi are creation and annihilation operators of fermions
or hard-core bosons, respectively. They satisfy b2i = 0,

and the commutation relations [bi, bj ]B = 0, [b
†
i , bj ]B =

δij(−1)
B(1−ni), where [., .]B denotes the commutator for

bosons (B = 1) and the anticommutator for fermions (B =
0), respectively1. In the presence of a magnetic field,
the hopping acquires a phase tij = te

−iφij , the sum of
φij around a plaquette being proportional to the flux
threading it.
The important role of quantum statistics on magnetore-

sistance was noted early on by Zhao et al. [4], where low-
energy excitations were discussed. Here, we introduce an
efficient new formalism, which allows us to give a rigorous
derivation of their prediction, generalize it to finite-energy
excitations and gain insight on bosonic delocalization. The
formalism is easily extendible to treat subleading correc-
tions [37], and can be applied to many other disordered

1For hard-core bosons, after the standard mapping to spin s=

1/2 particles, ni− 1/2→ s
z
i , bi→ s

−
i , b

†
i → s

+

i , the commutation

relations for b, b† translate to the usual spin algebra: [sαi , s
β
j ] =

δijǫαβγs
γ
i .

systems as well, as we will exemplify on the Ising model
in random transverse fields.
We focus on the strongly insulating regime t≪W . In

the limit t= 0 elementary excitations correspond to the
addition or removal of a particle on given sites. For small
hopping t/W ≪ 1, these adiabatically deform into dressed
excitations, which are still well localized in space. The
spatial properties of such many-body excitations are well
captured by the retarded Green’s function

GRi,0(t− t
′) =−iΘ(t− t′)〈[bi(t), b

†
0(t
′)]B〉, (2)

where A(t) = eiHtA(0)e−iHt. It describes the amplitude
of finding an extra particle at site i, after a time t of
adding a particle on site 0. To characterize the spatial
decay of an excitation of given energy, one preferably
works in frequency space,GRi,0(ω) =

∫∞
−∞
GRi,0(t)e

iωtdt, and
extracting the relevant pole. Having hopping conductivity
in mind, we are interested in low-energy excitations,
ω≪W .
We now analyze GRi,0 perturbatively in tij , which is

justified deep in the insulator. Similarly as in early works
of the Hubbard model [38], we study the equation of
motion

i
d

dt
GRi,0(t− t

′) = δ(t− t′)δi,0〈[b0(0), b
†
0(0)]B〉

−iΘ(t− t′)〈[iḃi(t), b
†
0(t
′)]B〉, (3)

as a convenient starting point for a locator expansion in
powers of the hopping t/W [2]. This technique can easily
be generalized to analyze other random field systems, too.
It is easy to show that

iḃi(t) = [bi(t),H] = εibi(t)− (−1)
Bni(t)

∑

j∈∂i

tijbj(t), (4)

where the sum runs over all neighboring sites of i.
To leading order in t/W , we can restrict ourselves

to forward-scattering paths, in analogy to the fermionic
(single-particle) study by Nguyen et al. [3]. Hence, in
eq. (4) we retain only the neighbors j, which are closest to
0, cf. fig. 1. To leading order in t/W we can decouple the
sign factor in (4) and use 〈(−1)ni(t) . . .〉= sign(εi)〈. . .〉+
O((t/W )2) in eq. (3) to obtain the recursion relation

GRi,0(ω)≈
∑

j∈∂i,dist(j,0)<dist(i,0)

tij [sign(εi)]
B

εi−ω
GRj,0(ω). (5)

This is easy to evaluate by a transfer matrix computation.
Upon iteration of this forward-scattering approximation,
we obtain GRi,0 as a sum over all shortest paths P (of
length ℓ) between sites 0 and i, which is exact to leading
order in t/W ,

GRi,0(ω)

GR0,0(ω)
=

∑

P={j0=0,...,jℓ=i}

ℓ∏

p=1

tjp−1,jp [sgn(εjp)]
B

εjp −ω
. (6)
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Fig. 1: (Colour on-line) In a coherent hopping process many
particles move by one slot to the next negative-energy site (the
process shown in the left panel corresponds to the highlighted
paths on the right panel). The many-body nature of this
process is responsible for the statistical sign difference between
bosons and fermions. To leading order in the hopping, many
alternative paths interfere in the Green’s function GRi0 between
sites 0, i (6 paths in the right panel). The sign of fermion
amplitudes depends on the number of occupied sites (indicated
by filled circles) on each path whereas bosonic paths all have
positive amplitudes at low energy. A magnetic field suppresses
the maximally constructive interference of bosons.

By setting ω→ ε0 and extracting the residue of the
corresponding pole in GRi,0, we find the “wave function”
of the quasiparticle excitation, which is adiabatically
connected to a boson insertion or removal at site 0
in the limit t= 0. This is easily seen from a Lehman
decomposition of the Green’s function. Note that it would
be highly non-trivial to derive the result (6) from a naive
perturbation theory for GRi,0. This may be appreciated
from fig. 1 which illustrates the forward scattering and
its many-particle nature on a selected path. Remarkably,
the exponentially many virtual trajectories between initial
and final state sum up to the single product in eq. (6).
At low temperatures, transport of bosons is expected to

proceed via variable range hopping, which is very sensi-
tive to the localization length ξ of excitations. For non-
interacting fermions it is defined as the (log-averaged)
inverse spatial decay rate of single-particle wave function
amplitudes. For hard-core bosons, ξ is naturally gener-
alized to be the typical inverse decay rate of GRi,0 with
distance

1/ξ(ε0) =− lim
�ri→∞

ln |GRi,0(ω)/G
R
0,0(ω)|ω→ε0

|�ri−�r0|
, (7)

the overbar denoting disorder average. Setting ω→ ε0
selects the decay rate of the excitation centered at site 0.
Note that setting B = 0, eq. (6) reproduces the well-

known result for non-interacting fermions [2,3], which
can also be extended to repulsive interactions [6]. In
contrast, hard-core bosons differ crucially in the sign of
the amplitude contributed by the paths. The difference
is easy to understand, cf. fig. 1. In order to observe a
particle at site i after inserting a particle at 0, all the nP ≡∑ℓ
k=1 nk ≈

∑ℓ
k=1[1− sgn(εk)]/2 particles on the path P

have to move to the next negative-energy site closer to
site i. Upon retrieving a particle at site i, a ring exchange
of nP particles has been carried out in the ground state,

which causes the sign difference (−1)nP between bosonic
and fermionic amplitudes.
In the impurity band model of eq. (1), this feature

distinguishes clearly between bosons and fermions.
However, we should mention that sums over positive
paths can also occur in fermionic problems [39]. Such
situations arise, when all sites between 0 and i have
energies above the considered ω. This occurs, e.g., in
lightly doped semiconductor solutions, where impurity
states tunnel through the bottom of the disordered
conduction band; or in impurity bands with chemical
potential very close to the band edges.

Effects of quantum statistics and magnetoresis-

tance. – Equation (6) shows that for low-energy bosonic
excitations, ω→ 0, in the absence of a magnetic field, all
paths interfere constructively, unlike in typical fermionic
situations. This may be seen as a precursor of the estab-
lishment of global phase coherence in a superfluid phase.
A simple consequence of this difference is that in the same
disorder potential hard-core bosons always have larger
localization length than fermions of the same mass.
The difference in path signs has also a crucial effect

on magnetoresistance, as was also noted (for ω= 0) in
refs. [4,36]. It manifests itself prominently in a strong
opposite response to a magnetic field H depending on
the statistics of carriers. It is well known that hopping
fermions experience an (exponentially strong) negative
magnetoresistance due to the suppression of destructive
interference [3,5,7]. In contrast, the magnetoresistance
of bosons is positive, since the phases in the hopping
amplitudes reduce the constructive interference of paths
that connect the low-energy sites relevant for transport.
As long as the relevant hopping distance r=Rhop is

small, magnetoresistance is weak, since only a small frac-
tion of a flux quantum threads the wave function on that
scale. However, while fermions react with a non-analytic
increase ΔlogG∼ |H| (due to destruction of nearly perfect
negative interference of competing paths [3]), bosons
display a smaller, analytic response of opposite sign,
ΔlogG∼−pRΦ

2
R ∼H

2R3hop. Here, ΦR ∼HR
1+ζ is the

flux through a pair of typical tunneling paths of length R,
while pR ∼R

−θ is the probability for two paths to inter-
fere significantly. ζ � 1/2 is the wandering or roughness
exponent of directed paths in a disordered environment,
while the exponent θ= 2ζ − 1 follows from a standard scal-
ing relation [40]. In the earlier literature on fermion scat-
tering problems with positive amplitudes [39], the result
ΔlogG∼H2R3hop was obtained for the special case of
weak disorder where the paths behave like random walks
with ζ = 1/2.
For larger Rhop or stronger H (see footnote

2) the
interference effects actually shrink the boson localization

2The crossover occurs when Hr1+ζ =O(1), contrary to assump-
tions in the earlier literature [8], which predicted it at Hr3/2 =O(1),
viewing paths as random walks with ζ = 1/2. This is, however, not
appropriate in strong disorder [41].
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length, in analogy to the opposite effect in fermions, i.e.,
ξ(H)− ξ(0)∝ (−1)BHα [4,8]. This leads to exponentially
amplified, giant magnetoresistance in the low-temperature
hopping regime [41], where the hopping length is propor-
tional to an inverse power of T . Hence, under a magnetic
field, the typical hopping resistance ∼ exp[Rhop/ξ(B)]
increases by a large factor, while the resistance of fermions
typically decreases by a (significantly smaller) factor.
The opposite interference in bosons and fermions is very

likely to be a key element for understanding the giant
magnetoresistance peak in disordered films with remnant
pairing. As long as the magnetic field does not destroy
the localized pairs, it mainly reduces their localization
length. Upon destruction of the pairs, e.g., by the Zeeman
effect, the predominant carriers are fermions, for which
a negative magnetoresistance due to an increasing local-
ization length is predicted [3,7]. Once the latter becomes
large, the physics of loops (neglected in the forward-
scattering approximation) is likely to play a role in the
negative magnetoresistance, as well. In this regime, effects
of Coulomb interactions [42], and the necessity of elec-
trons to tunnel around or through remnant superconduct-
ing islands may enhance the negative magnetoresistance
even further [31].
Note that the mechanism of positive magnetoresistance

discussed above is based on transport via purely bosonic
carriers (pairs of electrons). This differs from other theo-
retical scenarii [31] where the bottleneck of resistance is
due to the transfer of single electrons between remnant
superconducting islands, and the positive magnetoresis-
tance is ascribed to the shrinking of those islands.
Purely bosonic transport is suggested by recent experi-

ments on periodically patterned films of Bi or InOx [20,24].
Indeed, the observed oscillations of magnetoresistance
start with an upturn, as expected for bosons, in contrast
to the downturn characteristic for fermions. More impor-
tantly yet, the oscillations come with a flux periodicity
corresponding to carriers with charge 2e, suggesting that
transport is carried by “pairs” of electrons.

Energy dependence of ξ. – An interesting conse-
quence of eq. (6) is the prediction that for bosons ξ(ω) has
a non-trivial energy dependence around ω= 0. Indeed it
reaches a maximum at ω= 0, as we confirmed numerically
in fig. 2. The presence of other bosons thus enhances the
delocalization tendency of an extra particle at low energy,
in contrast to non-interacting fermions which are essen-
tially insensitive to the position of the Fermi level. Note
that at higher-energies bosonic excitations tend to behave
like non-interacting particles, since paths through occu-
pied sites become negligible.
So far the above discussion of ξ(ω) was based on

the forward-scattering approximation, which yields the
recursive relation (5) between Green’s functions at the
same ω, almost like in a non-interacting problem. This
observation can be used to define an effective single-
particle Hamiltonian with complex hopping amplitudes

Fig. 2: (Colour on-line) Disorder averaged spatial decay rates
ξ−1 of bosonic excitations along the diagonal of a square lattice.
ξ is computed from eqs. (6), (7) as a function of energy ω
and measured in units of inverse lattice spacing. Note that the
excitations of lowest energy are the most delocalized.

tij = t[sign(ǫiǫj)]
1/2, which generates the same expression

as in the interacting hard-core boson problem for all, not
only the shortest, non-intersecting paths. The study of
such effective non-Hermitian Hamiltonians is an interest-
ing subject for future studies.

Approach to superfluidity and delocalization.

– The predicted decrease of ξ(ω) with increasing ω may
appear counterintuitive at first sight, since at higher
energies more phase space is available, which generally
favors delocalization. However, one should interpret
the phenomenon of a decreasing ξ(ω) as a precursor of
incipient long-range order, which will eventually establish
at ω= 0, and favors propagation at low frequencies in
local “precondensates”. In the closely related random
transverse field Ising model, cf. eq. (8) below, exact results
for localization properties are available in 1d, due to the
mapping to free fermions. Those exhibit indeed the same
qualitative behavior of ξ(ω) [43]. These results contradict
the predictions of refs. [11,13], which argued that the pres-
ence of a sea of hard-core bosons impedes the propagation
of an extra boson injected at low energy3. However, while
this reasoning would be correct for a distinguishable extra
particle, it neglects exchange effects of identical bosons,
which instead lead to enhanced propagation at low
energies.
The locator expansion is helpful to understand quali-

tatively another aspect of bosonic (de)localization: How
do bosons escape localization in d= 2, while repulsive
fermions are believed to always localize in the absence of
special symmetries? Usually one argues that superfluids
in 2d are stable to weak disorder, which proves their delo-
calization [44]. The approach of this work complements
this view from the insulating side. At low energies all

3Reference [11] arrived at such a result by restricting the pertur-
bation series of GRi0(ω) to virtual one-site excitations, instead of
summing the exponentially many ways in which a minimal number
of sequential moves lead to the many-particle rearrangment in fig. 1.
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scattering paths interfere constructively, which is a precur-
sor of the establishment of a global phase in the superfluid.
This is very different from fermions where the various scat-
tering paths have nearly random signs, such that quan-
tum interferences essentially average out, except for paths
returning back to the origin. For the latter, “time-reversed
paths” (i.e., sequences of scattering states encountered
in perturbation theory, and their reverse) are guaranteed
to have the same scattering amplitude in the absence of
magnetic fields. Their positive interference thus system-
atically enhances the return to the origin and therefore
localization. In contrast, boson propagation at low energy
always involves positive interference of alternative paths,
such that the return to the origin is not particularly
enhanced as compared to other propagation channels.
Let us now attempt to obtain insight on the approach to

superfluidity. We may use the locator expansion technique
to revisit the problem of hard-core bosons on Cayley trees
of large connectivityK≫ 1, as considered in ref. [11]. Such
high-connectivity lattices are indeed interesting since they
enable one to use the forward-scattering approximation
even parametrically close to the superfluid transition.
They thus yield insight into how bosonic excitations
approach delocalization, and how this differs from the
exactly solvable case of free fermions [45].
In finite dimensions, superfluidity sets in when ξ(ω= 0)

diverges. On the Cayley tree, the criterion generalizes

to ξ−1ω=0 = limR→∞R
−1ln[

∑
i,dist(i,0)=RG

R
i0(ω= 0)] = 0.

This can be evaluated by a mapping to a directed
polymer [11,46], which is exact within the forward-
scattering approximation. Due to the absence of loops,
any two sites are connected by a unique shortest path.
Hence, interference phenomena are subleading in the
hopping. To leading order quantum statistics is there-
fore irrelevant, and one finds localization properties
like for free fermions (as characterized by |GRi0(ω)|

2

at large distances) and a superfluid transition at the
same value at which non-interacting fermions delo-
calize, (t/W )c =O(1/K ln(K)) [45]. However, a study
of subleading corrections shows that bosons actually
delocalize already at a weaker hopping strength than
fermions [37]. Like for the critical wave functions of the
fermionic problem, one finds that the emerging Bose
condensate is extremely sparse, as pointed out in ref. [11].
In the insulator, the leading-order locator expansion

shows that the typical propagator at finite energies,
GRi0(ω > 0), always decays faster than G

R
i0(0), if a uniform

distribution of random energies (ρ(ǫ≈ μ) = const) and
chemical potential μ= 0 (half-filling) is assumed. However,
the range of ω, for which this leading-order result is
controlled, gradually decreases to zero upon approaching
the phase transition. A complete description of critical-
ity at finite energies would require the resummation of
very high orders of perturbation theory. Nevertheless, this
result is suggestive of the possibility that the superfluid
emerges out of the insulator by a delocalization phenom-
enon at ω= 0, while slightly higher (intensive) excitations

are still localized —a scenario which we indeed find below
for Ising models. This contrasts with the scenario of a
mobility gap in the insulator, that closes at the transi-
tion, as proposed in [11,13], and similar early ideas by
Hertz et al. [47]. All of those neglected the above-discussed
exchange effects of identical particles at low energies.
The present calculations do not provide any evidence

for such a mobility edge at higher (intensive) energies in
the presence of uniform disorder. However, an intensive
mobility edge, and even a closing mobility gap, does arise
rather trivially if the density of on-site energies increases
sufficiently strongly across the chemical potential. In such
cases the forward-scattering approximation on the Cayley
tree indeed predicts an intensive mobility edge that closes
at criticality, very much like at a standard Anderson
transition of fermions.

Locator expansion for Ising spins. – Some of the
qualitative features found for hard-core bosons also hold
for the closely related random transverse field Ising model,

HIsing =
∑

i

εis
z
i − 4

∑

〈i,j〉

tijs
x
i s
x
j , (8)

even though its critical behavior turns out to be rather
different [48]. This model differs from the disordered
XY model of eq. (1) only by the replacement 2(sxi s

x
j +

syi s
y
j )→ 4s

x
i s
x
j (after applying to eq. (1) the standard

mapping between hard-core bosons and s= 1/2 spins
(see footnote 1) In this case, analogous steps as in
eqs. (3)–(6), applied to correlators 〈[sxi (t), s

x
0(0)]〉, yield

a sum over shortest paths, with amplitudes given by
products of factors 2|εi|/(ε

2
i −ω

2), that replace the XY
locator sign(εi)/(εi−ω) in eq. (6). This differs from
the factor 2/(|εi| −ω) postulated in refs. [11], which
incorrectly predicted an intensive mobility edge that closes
at the transition point. Taking into account the effects of
higher-order terms in the expansion in exchange coupling
and the special role of rare events in Ising models, which
are well known from 1d chains and strong randomness
approaches [43,48–50], we find instead that the ordering
transition is initiated by a delocalization at ω= 0, while
slightly higher-lying intensive excitations are still localized
in the paramagnet. On the other hand, we cannot reliably
analyze high but finite energies, as this requires full control
over very high orders of perturbation theory.
Reference [51] attempted to address the question of

a mobility edge in the disordered phase. Numerically
studying certain Ising models on small random graphs
with K = 2, the authors claimed to find a mobility edge
at intensive energies [52]. However, it remained unclear
whether this mobility edge was actually found on the
paramagnetic side of transition, and if so, whether the
mobility gap remains finite at the phase transition (as
predicted here). Similar studies in finite-dimensional Ising
and XY models would therefore be very desirable to
determine whether also there delocalization is initiated at
ω= 0 in Ising models, and whether the same holds for XY
models.
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Conclusion. – We have shown that strongly disor-
dered bosons respond oppositely to a magnetic field than
fermions in impurity bands, which makes magnetoresis-
tance a measurement of choice to detect the statistics of
the charge carriers in an insulator. We hope that the non-
trivial dependence of the localization length ξ(ω,H) on
energy, magnetic field and statistics will be studied in
superconducting films or in cold bosonic atoms [9], where
artificial “magnetic” gauge fields can be generated by vari-
ous techniques [10]. The positivity of bosonic tunneling
amplitudes at zero energy furnishes an intuitive under-
standing of why bosons escape localization in 2d. Apply-
ing the locator expansion to Ising systems as well, we
predict that long-range–ordered phases may emerge from
quantum disordered phases by delocalizing and condens-
ing at ω= 0, without the closure of a pre-existing intensive
mobility edge.
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[26] Sacépé B. et al., Nat. Phys., 7 (2011) 239.
[27] Ghosal A. et al., Phys. Rev. Lett., 81 (1998) 3940; Phys.

Rev. B, 65 (2001) 014501; Bouadim K. et al., Nat. Phys,,
7 (2011) 884.

[28] Feigel’man M. V. et al., Phys. Rev. Lett., 98 (2007)
027001; Feigel’man M. V. et al., Ann. Phys. (N.Y.),
325 (2010) 1390.

[29] Pokrovsky V. L. et al., Phys. Rev. Lett., 105 (2010)
267001.

[30] Fisher M. P. A., Phys. Rev. Lett., 65 (1990) 923.
[31] Dubi Y. et al., Phys. Rev. B, 73 (2006) 054509.
[32] Beloborodov I. S. et al., Phys. Rev. B, 74 (2006)

014502.
[33] Fistul M. V. et al., Phys. Rev. Lett., 100 (2008) 086805.
[34] Ma M. and Lee P. A., Phys. Rev. B, 32 (1985) 5658.
[35] Zhang S. et al., Phys. Rev. Lett., 74 (1995) 1500.
[36] Syzranov S. V. et al., Phys. Rev. Lett., 108 (2012)

256601.
[37] Bapst V. and Müller M., in preparation.
[38] Hubbard J., Proc. R. Soc. London, Ser. A, 276 (1963)

238.
[39] Shklovskii B. I., Sov. Phys. JETP Lett., 36 (1982)

53; Fiz. Tekh. Poluprovodn., 17 (1983) 2055; Shklovskii
B. I. and Efros A. L., Zh. Eksp. Teor. Fiz., 84 (1983)
811; Khaetskii A. V. and Shklovskii B. I., Zh. Eksp.
Teor. Fiz., 85 (1983) 721.

[40] Halpin-Healy T. and Zhang Y.-C., Phys. Rep., 254
(1995) 215.

[41] Gangopadhyay A. et al., Phys. Rev. Lett., 111 (2013)
026801.

[42] Mitchell J. et al., Phys. Rev. B, 85 (2012) 195141.
[43] Bouchaud J. P. et al., Ann. Phys. (N.Y.), 201 (1990)

285; Fisher D. S., Phys. Rev. B, 51 (1995) 6411.
[44] Lee D. K. K. and Gunn J. M. F., J. Phys.: Condens.

Matter, 2 (1990) 7753.
[45] Abou-Chacra R. et al., J. Phys. C, 6 (1973) 1734.
[46] Derrida B. and Spohn H., J. Stat. Phys., 51 (1988) 817.
[47] Hertz J. A. et al., Phys. Rev. Lett., 43 (1979) 942.
[48] Yu X. and Müller M., Localization of disordered

bosons and magnets in random fields, to be published in
Ann. Phys. (N.Y.) (2013), http://dx.doi.org/10.1016/
j.aop.2013.06.014.

[49] Vojta T., J. Phys. A, 39 (2006) R143.
[50] Kovács I. A. and Iglói F., Phys. Rev. B, 83 (2011)

174207.
[51] Cuevas E. et al., Nat. Commun., 3 (2012) 1128.
[52] That study based on the assumption that level statistics

correctly identifies the delocalization. This is not obvious
on random graphs, cf. Chalker J. T. and Siak S.,
J. Phys.: Condens. Matter, 2 (1990) 2671.

67008-p6


