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Equilibrium avalanches in spin glasses
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We study the distribution of equilibrium avalanches (shocks) in Ising spin glasses which occur at zero
temperature upon small changes in the magnetic field. For the infinite-range Sherrington-Kirkpatrick (SK)
model, we present a detailed derivation of the density ρ(�M) of the magnetization jumps �M . It is obtained
by introducing a multicomponent generalization of the Parisi-Duplantier equation, which allows us to compute
all cumulants of the magnetization. We find that ρ(�M) ∼ �M−τ with an avalanche exponent τ = 1 for
the SK model, originating from the marginal stability (criticality) of the model. It holds for jumps of size
1 � �M < N 1/2, being provoked by changes of the external field by δH = O(N−1/2) where N is the total
number of spins. Our general formula also suggests that the density of overlap q between initial and final states in
an avalanche is ρ(q) ∼ 1/(1 − q). These results show interesting similarities with numerical simulations for the
out-of-equilibrium dynamics of the SK model. For finite-range models, using droplet arguments, we obtain the
prediction τ = (df + θ )/dm where df, dm, and θ are the fractal dimension, magnetization exponent, and energy
exponent of a droplet, respectively. This formula is expected to apply to other glassy disordered systems, such as
the random-field model and pinned interfaces. We make suggestions for further numerical investigations, as well
as experimental studies of the Barkhausen noise in spin glasses.
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I. INTRODUCTION

The low-temperature response of disordered systems often
proceeds in jumps and avalanches.1–9 These processes are
beyond standard thermodynamic calculations and are therefore
relatively difficult to access and describe analytically.10–15 In
a recent article,16 we succeeded in calculating the statistics
of equilibrium avalanches (also called shocks) in a variety
of disordered systems described by mean-field theory based
on Parisi replica symmetry breaking. This encompasses in
particular the canonical Sherrington-Kirkpatrick (SK) model
for the Ising spin glass17,18 and elastic manifolds in the limit
of a large number of transverse dimensions. Although it has
been known for a while that the equilibrium magnetization
curve M(H ) of the SK model undergoes a sequence of
small jumps as H is increased,19 their statistics had not been
obtained previously. The aim of this article is to provide
a detailed derivation of the distribution of avalanche sizes
for the SK model. We introduce replica techniques that
significantly extend the formalism developed in Ref. 20
to study velocity correlations in high-dimensional Burger’s
turbulence. It also generalizes previous studies of the variance
of equilibrium jumps to their full distributions.21–23 We expect
this technique to be useful in several other contexts as well.
In particular, it should be helpful to describe the response of
complex systems to a small change of parameters, a problem
that arises in a variety of fields ranging from condensed-
matter physics of complex systems, optimization problems, to
econophysics.24–27

The main result of our calculation is that the distribution
of jumps takes a scale-free form, described by a power law of
the jump size. This is intimately tied to the criticality of the
spin-glass phase of the models analyzed,28 and we conjecture
that such a criticality is a feature of a large variety of frustrated
glassy systems. The exact result obtained in the SK model
finds a natural interpretation which allows for an extension to
finite dimensions via droplet scaling arguments. Those relate

the equilibrium-avalanche exponent to critical properties of
droplet excitations.

Our results complement previous numerical simulations by
Pazmandi et al.29 on out-of-equilibrium hysteresis at T = 0
in the SK model, which exhibit surprising similarities, as we
will discuss. Understanding the relations between these results
requires further numerical investigations of dynamic and
static avalanches, both in mean-field and finite-dimensional
spin glasses. Our results suggest to look for power-law
distributed Barkhausen-type noise in spin- and electron-glass
experiments, as will be discussed.

This paper is organized as follows: In Sec. II, we revisit
the Parisi saddle-point equations in the presence of a small
varying external magnetic field. In Sec. III, we generalize the
Paris-Duplantier equations to compute the moments of the
magnetizations in different fields. From that calculation we ex-
tract the distribution of equilibrium jumps in Sec. IV. In Sec. V,
we consider the case of finite-dimensional spin glasses, and
using droplet arguments we obtain a power-law distribution of
equilibrium avalanches. In Sec. VI, we discuss the connection
with previous numerical studies on spin and electron glasses,
and propose experimental and numerical investigations.

II. MODEL AND METHOD

A. Model and aim of the calculation

We study the SK spin-glass model of energy

H = −
N∑

i,j=1

Jijσ
iσ j − Hext

N∑
i=1

σ i, (1)

where the Jij are independent and identically distributed (i.i.d.)
centered Gaussian random variables of variance J 2/N , which
couple all N Ising spins, and Hext is the external field.

Our aim is to follow the equilibrium state as a function of the
applied field Hext at low temperature β−1 = kBT = T � J .
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We consider small variations of the applied field around a
reference value H , Hext = H + h√

N
.

We are interested in the total magnetization in a given
sample,

M(Hext) =
∑

i

〈σ i〉Hext = −∂HextF, (2)

where F = −kBT ln Tr exp(−βH) is the free energy. Since
upon variation of h of order one we expect jumps of the total
magnetization of order

√
N , we define

mh = 1√
N

M

(
H + h√

N

)
= −∂hF (h), (3)

where from now on we denote F (h) the free energy in the
external field H + h√

N
. With respect to sample-to-sample

fluctuations, mh is the sum of a constant part of order
√

N ,

m0 := M(H )
J

√
N

, plus a fluctuating part mh − m0 of order unity.

Hereby we denote by . . .J the average over disorder.
To characterize the statistics of these order-one jumps in

mh, we need to compute the following cumulants in different
physical fields hi , i = 1, . . . ,p:

mh1 . . . mhp

c = ∂h1 . . . ∂hp
S(p)(h1,h2, . . . ,hp) . (4)

It is obtained from the cumulants of the sample-to-sample
fluctuations of the free energy

S(p)(h1,h2, . . . ,hp) = (−1)p F (h1) . . . F (hp)
J,c

, (5)

where . . .J,c denotes the connected average over disorder.
These can be obtained from the generating function

W [{ha}] ≡ W [h] of a = 1, . . . ,n replica submitted to different
fields ha ,

exp
(
W [h]

)
:= exp

[
−β

n∑
a=1

F (ha)

]J

. (6)

Note that fields ha with replica index a are denoted with upper
index to distinguish it from the physical field hi with lower
index. Hence,

W [h] =
∞∑

q=0

βq

q!

∑
a1,...,aq

S(q)(ha1 , . . . ,haq ). (7)

We now derive a formula for W [h] from the saddle-point
equations in the large-N limit.

B. Saddle-point equations

One has

eW [h] =
∑
{σ i

a}
exp

[
β

∑
ij

σ i
aJijσ

j
a + β

∑
i

(
H + ha

√
N

)
σ i

a

]J

=
∑
{σ i

a}

∫ ∏
a 	=b

dQab

∏
i

exp

(
nN

β2J 2

2

)

× exp

[ ∑
a

β

(
H + ha

√
N

)
σ i

a

]

× exp

[
β2J 2

∑
a 	=b

(
− N

2
Q2

ab + Qabσ
i
aσ

i
b

)]
. (8)

Note that on spins σ i
a , we put the replica index a at the bottom,

and the site index i at the top. Now we define the local partition
sum

eA(Q,h) :=
∑
{σa}

exp

[
β2J 2

∑
a 	=b

Qabσaσb

+β
∑

a

(
H + ha

√
N

)
σa

]
(9)

in terms of which we can write

eW [h] =
∫ ∏

a 	=b

dQab exp

[
nN

β2J 2

2
− N

2
β2J 2

×
∑
a 	=b

Q2
ab + NA(Q,h)

]
. (10)

In the limit of N → ∞ we can perform a saddle-point
evaluation. For ha = 0 this is the usual SK saddle-point
equation in presence of a field H . In the low-temperature
phase considered here, it has a set of solutions, denoted
qπ

ab = qπ−1(a)π−1(b). They are obtained from the standard Parisi
solution qab by applying a permutation π ∈ S(n) of the indices.
Each saddle point qab of the path integral over Qab satisfies
the self-consistent equation for a 	= b:

〈σaσb〉A(q,0) = qab, (11)

where 〈. . .〉A refers to an average with action A from Eq. (9).
Since changes in the external fields are of size ha/

√
N , they

alter the solution of the saddle-point equation from q = q0 to
qh = q0 + O( 1√

N
). Hence, we can compute the contribution to

W [h] of each saddle point in perturbation theory. For a given
saddle point, each contribution to eW [h] is of the form eV [qh,h],
with

V [q,h] := nN
β2J 2

2
− N

2
β2J 2

∑
a 	=b

q2
ab + NA[q,h]. (12)

The saddle-point condition satisfied for any h reads as

∂qab
V [qh,h] = 0. (13)

Using this equation, we obtain the following expansion in
replica fields ha:

V [qh,h] = V [q,0] +
∑

a

ha(∂haV )[q,0]

+ 1

2

∑
ab

hahb
(
∂2
hahbV

)
[q,0] + O

(
1√
N

)

= V [q,0] + β
∑

a

ham0 + 1

2

∑
ab

hahbβ2

× [δab + (1 − δab)qab] + O

(
1√
N

)
.

In the first line we used the condition (13), its total derivative
w.r.t. ha , and that ∂hqh = O( 1√

N
) to eliminate the terms
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∂q∂hV ∂hq and ∂2
qV ∂hq∂hq; in the second line we used

Eq. (11).
The final expression for W [h] is obtained by performing

the sum over all saddle points qπ
ab = qπ−1(a)π−1(b),

eW [h]−W [0]−β
∑

a ham0

=
′∑
π

e
β2

2

∑
a (ha )2(1−qaa )+ β2

2

∑
ab qπ

abh
ahb

. (14)

The prime on the permutation sum indicates that the sum
is normalized by

∑′
π 1 = 1. For convenience, we have

introduced qaa to be defined later.
Let us define the “nontrivial” part W̃ [h] of W [h] as

W̃ [h] := W [h] − W [0] − β
∑

a

ham0

− β2

2

∑
a

(ha)2(1 − qaa)

= ln

( ′∑
π

e
β2

2

∑
ab qabh

π(a)hπ(b)

)
. (15)

To obtain the pth cumulant, we need to consider W [{ha}] for
p groups of n1 = α1n,n2 = α2n, . . . ,np = αpn replica with∑p

i=1 αi = 1. Each group is subject to a different physical
field hi , i = 1, . . . ,p. This field is constant within a replica
group. We remind that we use superscript indices ha to denote
replicas and subscript indices hi to label the replica groups. The
resulting Wp[h] := W (h1, . . . ,hp) := W [{ha}] (and likewise
for W̃p[h]) has the cumulant expansion

Wp[h] =
∑

q

βq

q!
nq

p∑
i1=1

. . .

p∑
iq=1

αi1 . . . αiq S
(q)(hi1, . . . ,hiq ).

(16)

The magnetization cumulants for p > 1 can then be extracted
as

mh1 . . . mhp

J,c = ∂h1 . . . ∂hp
S(p)(h1, . . . ,hp)

= lim
n→0

1

npβp
∏p

i=1 αi

∂h1 . . . ∂hp
W̃p[h]. (17)

This works since the terms in (16) with q < p vanish after
the differentiation and the ones with q > p vanish in the limit
n → 0, leaving the desired term q = p.

III. CALCULATION OF MOMENTS

A. Generalized flow equation

To proceed, we decouple the ha’s by a Hubbard-
Stratonovich transformation

eW̃ [h] =
〈 ′∑

π

e
∑

a hπ(a)μa

〉
μ

, (18)

where μa are Gaussian random variables with covariance
〈μaμb〉μ = β2qab, and 〈. . .〉μ denotes the average over them.

The sum over permutations in (18) is equivalent to a
normalized sum (indicated by a prime) over assignments
{ia} ∈ {1, . . . ,p}, describing the permutation π :

hπ(a) = hia . (19)

Since the permutation preserves the number of equivalent
replica, we have the constraint

∑
a δj,ia = nαj . With this

notation we obtain

eW̃p[h] =
〈 ′∑

ia∈{1,...,p}| ∑a δj,ia =nαj

exp

(∑
a

hiaμa

) 〉
μ

. (20)

As we prove in Appendix C, this can be rewritten as

eW̃p[h] =
〈∫ ∞

−∞
∏p

i=1 dyi δ
( ∑p

i=1 αiyi

) ∏n
a=1

[ ∑p

i=1 exp(hiμa + yi)
]

∫ ∞
−∞

∏p

i=1 dyi δ
( ∑p

i=1 αiyi

)[∑p

i=1 exp(yi)
]n

〉
μ

, (21)

valid for any n < 0, and for any set of αi > 0, with
∑p

i=1 αi =
1. This identity generalizes the formula (D6) in Ref. 20, which
holds for two groups of replica.

In the case where qab is a hierarchical ultrametric matrix
of Parisi type, parametrized by the Parisi function q(x) with
n < x < 1, the average over μa of expression (21) can be
performed extending the methods of Ref. 30. We recall that
we use everywhere

∑
i αi = 1 and rewrite

eW̃p[h] =
∫ ∞
−∞

∏p

i=1 dyi δ
( ∑

i αiyi

)
g(x = n,{yi})∫ ∞

−∞
∏p

i=1 dyi δ
( ∑

i αiyi

)[ ∑
i exp(yi)

]n . (22)

We have defined

g(x; {yi}) ≡ exφ(x;{yi }) ≡
〈

x∏
a=1

(
p∑

i=1

eyi+hiμ
(x)
a

)〉
μ(x)

. (23)

The auxiliary fields μ(x)
a have Gaussian correlations

〈μ(x)
a μ

(x)
b 〉μ(x) = β2[qab − q(x)]. For convenience, we define

qaa = q(1).
Generalizing the method of Ref. 30 to several groups, we

find the flow equation for the function φ(x,{yi}) defined above:

∂φ

∂x
= −β2

2

p∑
i,j=1

hihj

dq(x)

dx

(
∂2φ

∂yi∂yj

+ x
∂φ

∂yi

∂φ

∂yj

)
. (24)

It must be solved with the boundary condition

φ(x = 1; {yi}) = ln

(
p∑

i=1

eyi

)
≡ H ({yi}). (25)

Here and below, we denote y ≡ {yi}.
To simplify (22), we first evaluate the denominator. In the

limit of n → 0 one can show the general formula for any αi
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with constraint
∑

i αi = 1 and n < 0:

∫
dpy δ

( ∑
i

αiyi

)
enH (y)

=
∫

dpy δ

( ∑
i

αiyi

)
e−(−n)max(yi )[1 + O(n)]

= 1∏
i αi

(−n)1−p[1 + O(n)]. (26)

Expanding also the numerator and the exponential in (22) to
lowest nontrivial order in n, we find

∂h1 . . . ∂hp
W̃p[h]

= n
∫

dpy δ
( ∑

i αiyi

)
∂h1 . . . ∂hp

φ(0,y)

(−n)1−p
/∏

i αi

[1 + O(n)]

= −(−n)p
p∏

i=1

αi

∫ ∞

−∞
dpy δ

( ∑
i

αiyi

)
∂h1 . . . ∂hp

φ(0,y)

× [1 + O(n)]. (27)

Inserting this into Eq. (17) we obtain the final formula for the
pth cumulant of the reduced magnetization:

mh1 . . . mhp

J,c

= −(−T )p
∫

dpy δ

( ∑
i

αiyi

)
∂h1 . . . ∂hp

φ(0,y). (28)

This expression is independent of the choice of αi , as it must be.
In case the order parameter function q(x) has a plateau for x <

xm (as happens for the SK model in a magnetic field H 	= 0),

φ(x = 0,y) = φ(xm,y + zβ h√
q0)

z

, (29)

where . . .z denotes an average over z, a unit-centered Gaussian
variable:

f (z)
z

:=
∫ ∞

−∞

dz√
2π

e−z2/2f (z) (30)

[see Eq. (96) in Ref. 21].

B. Shock expansion

We now solve the flow equation (24) perturbatively in the
nonlinear term. This generates a low-temperature expansion
which is well suited to study shocks.21 We write

φ(x,y) = φ0(x,y) + φ1(x,y) + · · · . (31)

The successive terms satisfy

∂φ0

∂x
= −β2

2

∑
ij

hihj

dq(x)

dx

∂2φ0

∂yi∂yj

(32)

with initial condition φ0(x = 1,y) = H (y), and

∂φ1

∂x
= −β2

2

∑
ij

hihj

dq(x)

dx

(
∂2φ1

∂yi∂yj

+ x
∂φ0

∂yi

∂φ0

∂yj

)
(33)

with initial condition φ1(x = 1,y) = 0.

The leading-order equation (32) is a linear diffusion
equation, and integrated as (for x � xm)

φ0(x,y) = H [y + zβ h
√

q(1) − q(x)]
z

. (34)

Taking into account (30), we find the contribution of φ0 to the
magnetization cumulants

mh1 . . . mhp

J,c,(0) = −(−T )p
∫

dpy δ

( ∑
i

αiyi

)

×∂h1 . . . ∂hp
H (y + zβ h

√
q(1))

z

. (35)

It is shown in Appendix A that at T = 0 this equals

mh1 . . . mhp

J,c,(0)

= q(1)p/2 zp = [2q(1)]p/2 [(−1)p + 1]
(

p+1
2

)
2
√

π
, (36)

which is a constant independent of hi . In addition, q(1) → 1
as T → 0. For p = 2 one finds at any temperature the
contribution

m2
h1

J,c,(0) = q(1). (37)

Even though at T = 0 this is the full result for the sample-to-
sample fluctuations of the magnetization, at finite T there will
be an additional piece from φ1 obtained below. Similarly, to
obtain the full finite-T expression of higher-order moments of
mh1 , contributions from φp>0 are needed. However, here we
focus on T = 0.

We now turn to the calculation of the contributions which
capture the information about jumps, which are of order
O(|hi − hj |) in the limit T → 0. It is contained in the contri-
bution of φ1 and only in that contribution, as was discussed
in Ref. 21. Higher-order functions φp contain contributions
of order O(|hi − hj |p) at T = 0, encoding information of
multishock correlations. To first order in the nonlinear term

1

c

xcxm

qm

0

q

FIG. 1. The Parisi-function q(x), with its two plateaus for x <

xm and x > xc. Note that this gives two δ-function contributions
to the derivative of the inverse function dx(q)

dq
= xmδ(q − qm) + (1 −

xc)δ(q − qc) + smooth part.
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we find, extending the calculation in Ref. 21,

φ1(x,y) =
∫ 1

x

dx ′ β2

2

∑
ij

dq(x ′)
dx ′ x ′hihj

∂φ0

∂yi

(x ′,y + η β hDx ′x)
∂φ0

∂yj

(x ′,y + η β hDx ′x)

η

=
∫ 1

x

dx ′ β2

2

∑
ij

dq(x ′)
dx ′ x ′hihj

∂H

∂yi

(y + β h[ηDx ′x + z1D1x ′ ])
∂H

∂yj

(y + β h[ηDx ′x + z2D1x ′ ])
η,z1,z2

. (38)

As in Eq. (30), η, z1, and z2 are independent unit-centered Gaussian random variables, and Dx ′x := √
q(x ′) − q(x).

We now change integration variables from x → q and define x̂(q) := x(q)/T and ĥ := h/T , the “thermal boundary layer
variable”21 for the external field. Using Eq. (28), the contribution of the first-order term to the magnetization cumulant becomes,
denoting qc := q(xc) and qm := q(0) (see Fig. 1),

mh1 . . . mhp

J,c,(1) = (−1)p+1∂ĥ1
. . . ∂ĥp

T

2

∫ qc

qm

dq x̂(q)
∫ ∞

−∞

p∏
i=1

dyi δ

( ∑
i

αiyi

)
∂A+∂A−H (y + ̂hA+)H (y + ̂hA−)

A+,A−

= (−1)p∂ĥ1
. . . ∂ĥp

T

2

∫ qc

qm

dq x̂(q)
∫ ∞

−∞

p∏
i=1

dyi δ

( ∑
i

αiyi

)
∂A+∂A−

1

2
[H (y + ̂hA+) − H (y + ̂hA−)]2

A+,A−

.

(39)

A± are centered Gaussian random variables with correlations defined from the above independent Gaussian variables as

A+ = η
√

q − qm + z1
√

qc − q, (40)

A− = η
√

q − qm + z2
√

qc − q . (41)

It is convenient to introduce

F := A+ + A− , G := A+ − A− (42)

in terms of which one can integrate by part

mh1 . . . mhp

J,c,(1) = (−1)p∂ĥ1
. . . ∂ĥp

T

2

∫ qc

qm

dq x̂(q)
∫ −∞

−∞
dF

∫ −∞

−∞
dG

(
∂2
F − ∂2

G

) exp
( − F 2

4[qc+q−2qm] − G2

4[qc−q]

)
2π

√
2[qc + q − 2qm]2(qc − q)

×
p∏

i=1

∫ ∞

−∞
dyi δ

(∑
i

αiyi

)
1

2

[
H

(
y + 1

2
̂h(F + G)

)
− H

(
y + 1

2
̂h(F − G)

)]2

. (43)

The differential operator ∂A+∂A− = ∂2
F − ∂2

G acts only on the Gaussian measure. Note that its action is equivalent to ∂2
F − ∂2

G ≡
d/dq. One can thus integrate by part over q to get

mh1 . . . mhp

J,c,(1)

= (−1)p+1T

4
∂ĥ1

. . . ∂ĥp

∫ qc

qm

dq
dx̂(q)

dq

p∏
i=1

∫ ∞

−∞
dyi δ

( ∑
i

αiyi

)[
H

(
y + 1

2
̂h(F + G)

)
− H

(
y + 1

2
̂h(F − G)

)]2
F,G

. (44)

The measure over F and G is defined by

f (F,G)
F,G

:=
∫ −∞

−∞
dF

∫ −∞

−∞
dG

exp
( − F 2

4[qc+q−2qm] − G2

4[qc−q]

)
2π

√
2[qc + q − 2qm]2(qc − q)

f (F,G). (45)

Equivalently, one can write in terms of A+ and A−

mh1 . . . mhp

J,c,(1) = (−1)p+1T

4
∂ĥ1

. . . ∂ĥp

∫ qc

qm

dq
dx̂(q)

dq

p∏
i=1

∫ ∞

−∞
dyi δ

( ∑
i

αiyi

)
[H (y + ̂hA+) − H (y + ̂hA−)]2

A+,A−
(46)

with measure

f (A+,A−)
A+,A− :=

∫ −∞

−∞
dA+

∫ −∞

−∞
dA−

exp
( − (A++A−)2

4[qc+q−2qm] − (A+−A−)2

4[qc−q]

)
π

√
2[qc + q − 2qm]2(qc − q)

f (A+,A−). (47)

The boundary terms in the integration by part vanish, provided that whenever q(x) exhibits a plateau for 0 � x � xm it is included
as a δ function.
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Using the expression (25) for H (y), the formula (44) allows us to compute the thermal boundary-layer form of the pth
cumulant. We give here the result for p = 2:

mh1mh2
J,c,(1) = −1

4

∫ qc

qm

dq
dx̂(q)

dq

∫ ∞

−∞
dG

[exp
( − G2

4[qc−q]

)
√

4π [qc − q]

]
G3(h1 − h2) coth

(
(h1 − h2)G

2T

)
, (48)

recovering the form obtained in Ref. 21. For T > 0 and h2 → h1, one finds

mh1mh1
J,c,(1) =

∫ 1

0
q(x) dx − q(1). (49)

Added to Eq. (37), this gives the correct total sample-to-sample fluctuations of the magnetization. The fact that higher terms φp

do not contribute to this variance can be verified by a direct expansion of Eq. (24) in q(x).
For general p we only study the limit T → 0. For convenience we introduce the notation AM ≡ max(A+,A−) =

(F + |G|)/2, Am ≡ min(A+,A−) = (F − |G|)/2. The calculation is performed in Appendix B and we obtain for
p � 2

mh1 . . . mhp

J,c,(1) = 1

2

∫ qc

qm

dq
dx̂(q)

dq
(AM − Am)

(
−hpA

p
m +

p−1∑
m=1

(hp−m+1 − hp−m)Ap−m
m Am

M + h1A
p

M

)A+,A−

. (50)

Note that we have put back the physical field h = T ĥ, making
evident the result in the limit of T → 0. As an example, for
p = 2 we obtain

mh1mh2
J,c,(1) = −1

4

∫ qc

qm

dq |h1 − h2|dx̂(q)

dq
|G|3G

, (51)

which is the T = 0 limit of (48). Note that this describes
the correction to order |h2 − h1| to the two-point function
of the magnetization (37). This encodes the second moment
of the jump-size distribution, as was discussed in Ref. 21 for the
random-manifold problem. We now turn to the determination
of the full distribution from the above cumulants.

C. Distribution of jumps

We now derive the distribution of jumps by showing that
the above result is identical to a p-point correlator of the
magnetization of a two-level system, whose characteristics
(jump size and jump location) are distributed in a simple
manner. We notice that the above expression (50) for the
cumulants can be reexpressed as

mh1 . . . mhp

J,c,(1)

= 1

2

∫ qc

qm

dq
dx̂(q)

dq

× |G|
∫ hL

h0

dhc[μ(h1) . . . μ(hp) − μ(0) . . . μ(0)]

F,G

(52)

in terms of the “random magnetization” variable

μ(h) = θ (h − hc)AM + θ (hc − h)Am

= F

2
+ sign(h − hc)

|G|
2

, (53)

which exhibits a jump of size |G| at location h = hc. F/2
is interpreted as the mean magnetization. We integrate over
hc uniformly in a small interval [h0,hL] containing 0 and
h0 < 0 < h1 < · · · < hp < hL. To prove Eq. (52), we have to
show that

−hpAp
m +

p−1∑
m=1

(hp−m+1 − hp−m)Ap−m
m Am

M + h1A
p

M

=
∫ hL

h0

dhc[μ(h1) . . . μ(hp) − μ(0) . . . μ(0)]. (54)

To see this, we note that the contribution from hc ∈
[hp−m,hp−m+1] yields the term proportional to (hp−m+1 −
hp−m) in the above sum. At the edge, when hc < h1, it
gives (h1 − h0)Ap

M . When hc > hp it gives (hL − hp)Ap
m.

Subtracting μ(0) . . . μ(0) = hLA
p
m − h0A

p

M yields (54). Both
the mean magnetization F/2 and the jump size |G| are obtained
from Gaussian variables with a q-dependent variance. The full
result in (52) is obtained by weighting with the probability
distribution of the various values of q.

Note that the physical fields must be chosen close together,
such that the interval [0,hp] contains at most one shock (or
none) with near certainty, but no multiple shocks. In other
words, the identity Eq. (52) is strictly valid to linear order in
the hi+1 − hi .31

A given shock at field h = hs is characterized by its mag-
netization jump of size �m = mh+ − mh− (always > 0), and
its mean magnetization 1

2 [M(H + h√
N

) + M(H )] =:
√

Nms

at the shock. For very small intervals [0,h], the probability of
encountering a shock is proportional to h. From the above
discussion it should be clear that all the prefactors of the
integral in Eq. (52) should be interpreted as the probability
density of such shocks per unit of h. More precisely, we define
the joint density (per unit field) of shocks of size �m, and shift
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δm = ms − m0 as

ρ(�m,δm) = lim
h↓0

1

h
δ

(
�m −

M
(
H + h√

N

) − M(H )
√

N

)
δ

(
δm −

M
(
H + h√

N

) + M(H ) − 2M(H )

2
√

N

)
, (55)

where the limit h → 0 must be taken to eliminate contributions from multiple shocks. This density can be extracted from Eqs. (52)
and (45), identifying δm with F/2, and �m with |G| as discussed above. This leads to

ρ(�m,δm) = θ (�m)�m

∫ qc

qm

dq
dx̂(q)

dq

exp
( − (δm)2

[qc+q−2qm]

)
√

π [qc + q − 2qm]

exp
( − (�m)2

4[qc−q]

)
√

4π [qc − q]
. (56)

Numerically, this quantity can be measured by the number
of equilibrium jumps of given size and mean magnetization
within a small finite interval, divided by the width of the
interval. However, strictly speaking there may be correlations
between successive jumps, which are not captured within
our analytic approach. A precise numerical verification of
our prediction would thus require a sample average of the
probability density for jumps within infinitesimal (�N−1/2)
windows of fields.

Note that after integration over q, the jump size and the
magnetization shift become correlated. Integrating out the
magnetization shift, we obtain our main result, the density
of shock sizes per unit interval of h (at T = 0):

ρ(�m) = θ (�m)�m

∫ qc

qm

dq
dx̂(q)

dq

exp
(− (�m)2

4[qc−q]

)
√

4π [qc − q]
. (57)

This formula is valid for a large class of models described
by replica-symmetry-breaking saddle points, as emphasized in
Ref. 16. Here, we will focus on its application to the SK model.
Apart from the prefactor �m, the above formula is essentially a
superposition of Gaussians (at fixed overlap distance q). Their
contribution is weighted by the density

ν(q) = dx̂(q)

dq
= 1

T
P (q), (58)

where P (q) is the sample averaged probability distribution
of overlaps between metastable states sampled from the
Gibbs distribution.18 The weight ν(q) can be interpreted
as the probability density of finding a metastable state at
overlap within [q,q + dq] and energy within [E,E + dE],
with E close to the ground state. We will come back to this
interpretation below.

A useful check of Eq. (57) is provided by the average
magnetization jump. It is∫ ∞

0
ρ(�m)�m d�m =

∫ q(xc)

qm

dq
dx̂(q)

dq
[qc − q(x)]

= lim
T →0

1

T

∫ 1

0
dx [qc − q(x)], (59)

where we remind that our definition of x̂(q) contains a
δ-function contribution at each plateau, so that the final integral
over x runs again from 0 to 1. This formula is generally
valid.18 For the SK model, it can be rewritten in terms of

the thermodynamic (field-cooled) susceptibility∫ ∞

0
ρ(�m)�m d�m = lim

T →0
[χFC − χZFC] = χ

(T =0)
FC ,

since in the SK model the intrastate (zero-field-cooled)
susceptibility χZFC = [1 − qc]/T vanishes linearly as T → 0.
Thus, the response is entirely due to interstate transitions in
the form of avalanches (shocks). This is in contrast to other
mean-field models, where even at T = 0 part of the response
is due to smooth intrastate polarizability.16

IV. APPLICATION TO THE SK MODEL

A. Study of the distribution of jumps: H = 0

In order to evaluate the distribution of jumps, we need
the full replica-symmetry-breaking solution of the SK model
in the limit of T → 0. The increasing function q(x) is well
characterized,32–35 even though no closed analytical formula
is known. q(x) has a continuous part up to the “break point”
xc ≈ 0.55, and is constant for xc � x � 1. In the limit of T →
0, this constant qc behaves as 1 − 1.592T 2, and q(x) becomes
essentially a function of x̂ = x/T that we call q(x̂). In the
absence of a magnetic field H = 0, qm = 0 and q(x̂) ≈ x̂

ν(0)

with ν(0) = 1.34523 at small x̂.35 At large x̂, the function
crosses over to the asymptotic behavior 1 − q(x̂) ≈ 4C2/x̂2 +
BT 2 with C = 0.32047 and B = O(1). This leads to a power-
law tail for the weight of large overlaps q → 1 (Ref. 33):

ν(q|1 � 1 − q � T 2) = C(1 − q)−3/2. (60)

We can now analyze the jump-size density using formula (57).
We obtain analytical expressions in the limits of small and
large �m. Numerical calculations describing the full range are
shown in Fig. 2. For small �m the integral over q is controlled
by 1 − q � 1, and we can approximate

ρ(�m) ≈
∫ 1

−∞

C dq

(1 − q)3/2
�m

exp
( − (�m)2

4(1−q)

)
√

4π (1 − q)

= 2C√
π

1

(�m)τ
, �m � 1 (61)

with τ = 1. The universal exponent τ = 1 for jump sizes
N−1/2 � �m � 1 results from superposed contributions
from many overlaps, i.e., all scales, as illustrated in Fig. 2.

The asymptotics for large �m is controlled by small q � 1,
i.e., by transitions between very distant states. Injecting the
density of states ν(0) near q = 0 and Taylor expanding in q
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FIG. 2. (Color online) Power-law density of jump sizes for the
SK model. The power law receives contributions from all overlaps
1 − q. The curves in the lower part show the contributions from
(1 − q) = 2−k , k = 1, . . . ,12, each of which takes the form of the
jump density in mean-field glasses with one-step replica symmetry
breaking. The three nearly coinciding lines on the top show ρ(�m)
evaluated from Eq. (57), for external fields H = 0, 0.25, and 0.5,
respectively, using approximations for q(x̂) described in the text. The
increase of H decreases the cutoff at large �m, while the avalanche
distribution for �m � 1 is a universal power law, not affected by H .

inside the exponential yields the estimate

ρ(�m) ≈ ν(0)�m

∫ ∞

0
dq

exp
( − (�m)2(1+q)

4

)
√

4π

= 2ν(0)√
π

e−(�m)2/4

(�m)τ ′ , �m � 1 (62)

with τ ′ = 1. We see that avalanches with �m � 1 (�M �√
N ) are exponentially suppressed.
Plots at intermediate �m = O(1) are shown in Fig. 2 for

three different values of the external field. As no analytical
closed form for q(x̂) is available, we have used approximations
of the type x̂(q) = (aq + bq2)/

√
1 − q with a = 1.28 and b =

−0.64, proposed in the literature.32,36

B. Distribution of jumps: H �= 0

In the presence of a finite field H , Parisi’s solution develops
a plateau at low x̂:

q(x̂ < x̂m) = qm(H ), (63)

where qm(H ) ≈ 1.0H 2/3 and x̂m ≈ ν(0)qm(H ) for small H ,
while q(x̂) is nearly unchanged for x̂ > x̂m.18,32,35 It is
convenient to rewrite formula (57) as

ρ(�m) = θ (�m)�m

∫ qc

qm(H )−
dq ν(q)

exp
( − (�m)2

4(qc−q)

)
√

4π (qc − q)
, (64)

where the density of states ν(q) contains a piece δ(q −
qm)xm/T when q(x) exhibits a plateau at x � xm, hence the
notation q−

m in the integral. Thus, the effect of a magnetic field
is to change the behavior of the jump distribution at large �m,
where it is now dominated by the plateau:

ρ(�m) = θ (�m)�m x̂m

exp
( − (�m)2

4[1−qm(H )]

)
√

4π [1 − qm(H )]
. (65)

Comparing with Eq. (62) we find an effective exponent τ ′ =
−1 (instead of 1) in the tail of the distribution. The formula (65)
holds only if we can neglect the contribution of the continuous
part of q(x). A simple comparison with the previous section
shows that this holds when �m � �mH ∼ 1/x̂

1/2
m ∼ H−1/3.

For 1 � �m � �mH , the behavior crosses over to a formula
similar to (62) with τ ′ = 1. Note that a small random field also
produces a plateau in q(x), and hence, we expect its effect on
ρ(�m) to be rather similar to that of a uniform field.

C. Interpretation for the SK model

To find a natural interpretation of formula (57), we consider
what happens upon increasing h from h1 to h2. If we take
h21 = h2 − h1 � 1, we only need to consider the possibility
that the ground state and the lowest-lying metastable state
cross as we tune h, corrections due to higher excited states
being of order O(h2

12).
We now argue that the disorder-averaged density of states

of this two-level system is given by ν(q)dq dE, where ν(q)
was defined in Eq. (58). Indeed, the definition of the overlap
distribution P (q) is

P (q) =
∑
α,γ

wαwγ δ(q − qαγ ), (66)

where wα = exp(−βFα)/
∑

γ exp(−βFγ ) is the Gibbs weight
of the metastable state α. At low T , we can restrict to the two
lowest states, which yield the leading-order term in

P (q) = (1 − T )δ(q − qc) + Tρ1(q) + O(T 2) (67)

as

Tρ1(q) =
∫ ∞

0
dE ν(q,E)

2e−βE

(1 + e−βE)2
= T ν(q,0) + O(T 2).

(68)

Here, ν(q,E) is the joint probability density of overlap q and
free-energy difference E between the ground and first excited
states. Hence, Eq. (58) holds with ν(q) = ν(q,0).

The two states differ in Nfl = N (1 − q)/2 flipped spins.
In the SK model, the magnetization is uncorrelated with the
energy, and one thus expects the magnetization difference
between the states to be a Gaussian variable of zero mean
and variance (at fixed overlap):

〈�m2〉q = 4Nfl/N = 2(1 − q). (69)

When h increases, the energy difference between the first
excited state and the ground state changes from E (for h = h1)
to E − h21�m, where h21 := h2 − h1 > 0. Thus, if �m > 0, a
jump at equilibrium occurs when h21 = E/�m. For the shock
probability per unit h one thus expects

ρ(�m) = lim
h21↓0

∫ qc

q−
m

dq

∫ ∞

0
dE ν(q,E)

×
exp

( − (�m)2

2〈�m2〉q
)

√
2π〈�m2〉q

δ

(
h21 − E

�m

)
, (70)

reproducing Eq. (57) upon integration over E.
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This argument strongly suggests that the joint density (per
unit of h) of jumps with characteristics q and �m is given by

ρ(�m,q) = θ (�m)�m ν(q)
exp

( − (�m)2

2〈�m2〉q
)

√
2π〈�m2〉q

. (71)

Integrating over �m we find the density of jumps with overlap
q as

ρ(q) =
√

1 − q

π
ν(q), (72)

or for the density of flipped spins Nfl = (1−q)N
2 ,

D(Nfl)dNfl = 1√
π

2

N

√
2Nfl

N
ν

(
q = 1 − 2Nfl

N

)
dNfl. (73)

Note that large jumps (small q) are favored by the driving
field, as one can see in Eq. (72) from the factor

√
1 − q, which

multiplies the equilibrium probability of finding an overlap
q between two low-lying states. Note that jumps in overlap
of order O(1) are indeed expected due to the so-called field
chaos.37 Let us now consider avalanches with Nfl � N . Using
Eq. (60), we find

ρ(q) = C√
π

1

1 − q
, (74)

and the power-law density

D(Nfl) = C√
π

1

N
ρ

fl

, (75)

with ρ = 1.

D. Comparison with numerical work

For the SK model, there is no numerical study of equilib-
rium magnetization jumps to date. However, in a pioneering
work, avalanches at T = 0 were studied numerically along
the hysteresis loop,29 and found to exhibit criticality, i.e., a
power-law distribution of magnetization jumps. The external
field H is increased adiabatically slowly until a single spin
becomes unstable. The latter is flipped and triggers with finite
probability an avalanche of further spin flips, during which
H is kept fixed. Note that despite the adiabaticity, since
the dynamics is restricted to single spin flips, the system is
driven out of equilibrium and explores metastable states. The
typical difference in applied magnetic field between adjacent
jumps scales as N−1/2, which is the same scaling as in our
calculation. During the avalanche a sequential single-spin-flip
update was used to ensure the decrease of the total energy.
Interestingly, they observe the same scaling of the jumps of
total magnetization �M ∼ N1/2, and the number of spin flips
(which we assume to be of the same order as the number of
spins that have flipped an odd number of times) Nfl ∼ N as in
our present calculation for equilibrium. It is interesting to note
that this implies that a typical spin flips on the order of N1/2

times along one branch of the hysteresis loop. A very similar
density of avalanches with the same exponents τ = ρ = 1 and
a crossover at �m ∼ 1, as analytically obtained for the statics
here, was observed in the numerics. This similarity is surpris-
ing since the states reached along the hysteresis curve are quite

far from the ground state, as evidenced by the width of the hys-
teresis loop. Nevertheless, the visited states share an important
feature with the ground state: self-organized criticality. Indeed,
the distribution of the local fields hi = ∑

j 	=i Jij σj + H , i.e.,
the energy cost to flip spin i only, is observed to display a linear
pseudogap29 as in the equilibrium,38 marginally satisfying the
minimal requirement for metastability.

To understand better the relation between static and dy-
namic avalanches in the SK model, it would be useful to per-
form both equilibrium and dynamic simulations. In particular,
it would be interesting to determine the prefactor of the power
law for the density of jumps, which we have computed here
for equilibrium, but which has not been determined in Ref. 29,
because they normalized the jump density. It would also be
interesting to compute the probability density of overlaps
between states before and after an avalanche, and compare
with the expression (71) derived in equilibrium.

One could measure the joint density of overlaps and
avalanche sizes,

ρH (�m,q) :=
〈
δ

(
q − 1 + 2Nfl

N

)
δ

(
�m − �M√

N

) 〉∣∣∣∣
H

,

(76)

where the average is taken for fixed external magnetic field
(i.e., in practice for H ∈ [H − δH,H + δH ], with δH small).
It would be interesting to check whether this joint density takes
a form as in Eq. (71) with 〈�m2〉q = 2(1 − q). In this case,
this might allow us to define a dynamical overlap distribution
ν(q) [to be interpreted as the T = 0 limit of Pdyn(q)/T ].

V. DROPLET ARGUMENT IN ANY d

Let us now discuss the Edwards-Anderson model in
dimension d. We first give a scaling argument to predict the
avalanche exponent based on a droplet picture. Subsequently,
we will show how the previous result for the SK model can be
recovered and interpreted in the same spirit.

To determine the first avalanche as the field is increased,
we need information about the lowest-energy excitations of
a given magnetization, which will scale inversely with the
volume. More precisely, we expect the lowest excitation energy
for a dropletlike excitation of linear size L to scale as

Emin(L) ∼ 1

ν0

Lθ

V/Ldf
. (77)

This is argued as follows: Standard droplet arguments39 stipu-
late that the lowest-energy excitation of linear size L, including
a given spin, grows typically as Lθ . These droplets are in
general objects of fractal dimension df � d. We thus assume
that one can cover the system of volume V by V/Ldf droplets,
and that they are uncorrelated.40 This implies the scaling (77)
for the droplet of minimal energy. The density σ of such single-
droplet excitations near the ground state thus behaves as41

σ = ρ0

V
dE

dL

L
≈ 1

V

dE

Emin(L)

dL

L
≈ ν0

Ldf

dE

Lθ

dL

L
. (78)

The magnetization jump associated with the overturn of
a droplet of size L is assumed to scale as Ldm . Of course,
dm � df . The numerical study42 suggests that dm is rather close
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to df . We assume the total magnetization of droplets of size L to
be uncorrelated with the energy, and distributed as PL(�M) =
L−dmψM (�M/Ldm). In a vanishing field, low-energy droplets
are believed to exist at all length scales.

We make the standard assumption that droplets at scale
L are uncorrelated from droplets at scales �2L. By analogy
with the reasoning given for the SK model, one argues that the
density of avalanches per volume, per unit field H , and per
unit magnetization change �M is given by

ρ(�M) ≈ lim
δH↓0

1

V

∫ ∞

1

dL

L

∫ ∞

0

dE

Emin(L)
(79)

× δ

(
δH − E

�M

)
PL(�M).

Using the above expressions, one finds

ρ(�M) ≈ 1

(�M)τ
ν0

dm

∫ ∞

0
dz ψM (z)zτ , (80)

valid for �M � 1, with the avalanche exponent

τ = df + θ

dm
. (81)

This prediction is very general. As discussed in Ref. 16, it also
gives reasonable predictions for elastic interfaces in random
media. The formula was recently rediscovered in the context
of the ferromagnetic phase of the random-field Ising model,43

in which case dm = df , and thus τ = 1 + θ/df .
It is interesting to point out the close analogy between

the exact expression for the SK model (57) and the heuristic
droplet argument (79). In the SK model, the role of spatial scale
is played by the overlap distance 1 − q, and the logarithmic
sum over scales

∫
dL/L goes over into an integral dq/(1 − q).

The equivalent of Emin(L) is given by the typical gap at
distance 1 − q, which is known to be36 �q = (1 − q)1/2.
Finally, the distribution of magnetizations at fixed droplet scale

PL(�M) is given by PL(�M) = exp(− (�m)2

4[1−q] )√
4π(1−q)

. Putting these
elements together and substituting them into Eq. (79) without
the volume normalization factor, one recovers expression (71)
with ν(q) given in (60). Note that changing variables from H

to h = N1/2H and �M to �m = N−1/2�M does not change
the density of avalanche sizes per unit field and unit jump size.

In the presence of a finite field H , droplets are believed to
be suppressed above a scale LH ∼ 1/Hγ (with γ > 0). This
implies that integration over droplet scales in Eq. (79) is cut
off at LH leading to

ρ(�M) = 1

(�M)τ
ν0

dm

∫ ∞

�M/L
dm
H

dz ψM (z)zτ , (82)

which cuts off the power-law decay of the avalanche-size
distribution at �M ∼ L

dm
H .

At small but nonzero temperature, we expect several effects.
First, there is a thermal rounding of all the magnetization
jumps, which is apparent in Eq. (48) and was discussed there.
The equilibrium jumps are smeared out over an interval �h ∼
T/

√
T χFC. In order to be distinguishable from the sample-

averaged increase of magnetization, the avalanches should be
bigger than the latter �m � �hχFC ∼ √

T χFC ∼ T . Above
this scale, the avalanche distribution is unchanged for T � Tc.

VI. CONCLUSION

We have introduced a method based on replica techniques
to compute the cumulants of the equilibrium magnetization
in the SK model at different fields. From their nonanalytic
part, we have extracted the distribution of magnetization
jumps at T = 0. It exhibits an interesting power-law behavior,
characteristic of the criticality of the spin-glass phase. We
have also obtained a prediction of the avalanche-size exponent
for spin glasses in any dimension using droplet arguments.
We have compared with numerical simulations of the out-of-
equilibrium dynamics of the SK model and found striking
similarities with the static calculations presented here.

It would be very interesting to investigate avalanches in
small fields in realistic models, as the finite-range Edwards-
Anderson model in two and three dimensions, to test some
of the predictions that we obtained using droplet argu-
ments. Furthermore, experimental measurements of power-
law Barkhausen noise in spin glasses (e.g., by monitoring
magnetization bursts8,44) could provide complementary insight
to earlier investigations of equilibrium noise.45

We expect similar critical response upon slow changes
of system parameters in many other systems described by
continuous replica symmetry breaking, as, e.g., in various
optimization problems (minimal vertex cover,24 coloring,25

and k satisfiability26 close to the satisfiability threshold, and
in the unsatisfiability (UNSAT) region at large k. Likewise,
in models of complex economic systems, one expects a
power-law distributed market response to changes in prices
and stocks.27 Avalanches have also been predicted to occur in
electron glasses with unscreened 1/r interactions, and have
been studied numerically in detail in Ref. 46. They find an
avalanche exponent τ = 3/2, which is reminiscent of the value
found for disordered interfaces and random-field systems at the
upper critical dimension.

Finally, we comment on possible future avenues to explore.
It would be interesting to study analytically the dynamics
of avalanches in the SK model. In principle, one could use
methods developed for the aging dynamics.47 In the simplest
framework, one studies relaxation from a random initial state,
in which case the overlap between initial and final states
vanishes at large time. Presumably the hysteresis cycle selects
a sequence of states which have nontrivial subsequent overlaps.
This remains a challenge to describe analytically. A more
modest, but still nontrivial goal consists in describing the
dynamics starting from an equilibrium state upon an increase
of magnetic field by a small amount ∼N−1/2.

It would be interesting to study whether the states visited
dynamically along the hysteresis curve, and the avalanches
triggered, have any relation with the marginal TAP states at
high energies and their distinct soft modes.48 In a first study in
this direction, Eastham et al.49 showed that the dynamics does
not explore the most numerous metastable states at the relevant
energies. The latter do not feature the linear pseudogap in the
distribution of local fields, which is common both to the states
visited on the hysteresis curve and to the equilibrium ground
states. It would be interesting to determine whether these
states feature preferred directions for avalanches, similarly to
phenomena observed in jammed granular materials.50 It would
also be interesting to analyze the multishock terms O(|h|k>1)
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in the magnetization cumulants, allowing us to determine
whether there are correlations between successive jumps.
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APPENDIX A: ZEROTH-ORDER CUMULANT FOR THE MAGNETIZATION

Here we evaluate the contribution of φ0 [Eq. (35)]. At T = 0, one can set H [y] → maxi{yi}, to simplify to

mh1 . . . mhp

J,c,(0) = −(−T )p
∫

dpy δ

( ∑
i

αiyig

)
∂h1 . . . ∂hp

max{y + zβ h
√

q(1) − qm}
z

= (−T )p−1
√

q(1) − qm

∫
dpy δ

(∑
i

αiyig

)
∂h2 . . . ∂hp

z

p∏
i=2

�(y1 − yi + βz
√

q(1) − qm[h1 − hi])

z

=
√

q(1) − qm

p
∫

dpy δ

( ∑
i

αiyig

)
zp

p∏
i=2

δ(y1 − yi + βz
√

q(1) − qm[h1 − hi])

z

=
√

q(1) − qm

p
∫

dy1 δ

(
y1 +

p∑
i=2

αiβz
√

q(1) − qm[h1 − hi]

)
zp

z

= [q(1) − qm]p/2 zp = [2(q(1) − qm)]p/2 [(−1)p + 1]
(

p+1
2

)
2
√

π
, (A1)

which is the result given in the text.

APPENDIX B: MAGNETIZATION CUMULANTS TO FIRST ORDER IN THE SHOCK EXPANSION

Consider formula (46). In the limit of T → 0, ĥ = h/T becomes very large, and we can approximate H (y) = maxi(yi). The
idea of the following calculation is that taking a field derivative yields a derivative of H (y), which is a δ function, eliminating
one integration. To evaluate (46), we start with the cross term, and choose without loss of generality ĥ1 � ĥ2 � · · · � ĥp:

(−1)p∂ĥ1
. . . ∂ĥp

T

2

∫ q(uc)

qm

dq
dû(q)

dq

p∏
i=1

∫ ∞

−∞
dyi δ

( ∑
i

αiyi

)
H (y + ̂hAM )H (y + ̂hAm)

A+,A−

, (B1)

where we have denoted AM := max(A+,A−) and Am := min(A+,A−). The derivatives can be written as

∂ĥ1
. . . ∂ĥp

[H (y + ̂hAM )H (y + ̂hAm)] =
p∑

m=0

∑
{ji },{ki }

∂ĥj1
. . . ∂ĥjm

H (y + ̂hAM )∂ĥk1
. . . ∂ĥkp−m

H (y + ̂hAm), (B2)

where the sum is over partitions of the p fields ĥi into two groups of m and p − m fields with j1 < · · · < jm and k1 < · · · < kp−m.
The multiple derivative (with at least one derivative) of the first factor of H can be written as

∂ĥj1
. . . ∂ĥjm

H (y + ̂hAM ) = (−1)m−1Am
M

m∏
�=2

δ
(
yj1 + ĥj1AM − yj�

− ĥj�
AM

) p−m∏
i=1

�
(
yj1 + ĥj1AM − yki

− ĥki
AM

)
. (B3)

This equation is proven by noting that
(i) max(y1, . . . ,yp) = ∑p

i=1 yi

∏
l 	=i θ (yi − yl).

(ii) ∂yi
max(y1, . . . ,yp) = ∏

l 	=i θ (yi − yl), since derivatives of the θ functions cancel in pairs.
(iii) A further derivative of θ (yi − yl) w.r.t. yl gives −δ(yi − yl).

This result is a consequence of the fact that the maximum of m variables depends on p � m variables if and only if these
are mutually equal. We note that this expression is symmetric in the {ĥj1 , . . . ,ĥjm

}, and that a similar expression holds for the
second factor.
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LE DOUSSAL, MÜLLER, AND WIESE PHYSICAL REVIEW B 85, 214402 (2012)

The terms m = 0 and m = p have to be considered separately, which we do now, starting with m = p: Using (B3) and
eliminating all the δ functions from the derivatives of H yields

p∏
i=1

∫ ∞

−∞
dyi δ

(∑
i

αiyi

)
∂ĥ1

. . . ∂ĥp
H(y + ̂hAM )H(y + ̂hAm)

= (−1)p−1A
p

M

∫ ∞

−∞
dy1 δ

( ∑
i

αi[y1 + ĥ1AM − ĥiAM ]

)
maxi{y1 + ĥ1AM − ĥi(AM − Am)}

= (−1)p−1A
p

M

(
AM

∑
i

αi ĥi − ĥ1(AM − Am)

)
, (B4)

where to get to the last line we have used
∑

i αi = 1 and mini{ĥi} = ĥ1.
Likewise, the term m = 0 gives

p∏
i=1

∫ ∞

−∞
dyi δ

( ∑
i

αiyi

)
H (y + ̂hAM )∂ĥ1

. . . ∂ĥp
H (y + ̂hAm) = (−1)p−1Ap

m

(
Am

∑
i

αi ĥi + ĥp(AM − Am)

)
. (B5)

Let us now discuss the terms m = 1, . . . ,p − 1. Consider
p∏

i=1

∫ ∞

−∞
dyi δ

( ∑
i

αiyi

)
∂ĥj1

. . . ∂ĥjm
H (y + ̂hAM )∂ĥk1

. . . ∂ĥkp−m
H (y + ̂hAm)

= (−1)p−2Am
MAp−m

m

∫ ∞

−∞
dyj1

∫ ∞

−∞
dyk1

p−m∏
i=1

�
(
yj1 + ĥj1AM − yk1 − ĥk1Am − (AM − Am)ĥki

) m∏
l=1

�
(−[

yj1 + ĥj1AM

− yk1 − ĥk1Am

] + (AM − Am)ĥj�

)
δ

(∑
�

α�

[
yj1 + AM

(
ĥj1 − ĥj�

)] +
∑

i

αi

[
yk1 + Am

(
ĥk1 − ĥki

)])

= (−1)p−2Am
MAp−m

m

∫ ∞

−∞
dyj1

∫ ∞

−∞
dyk1�

(
yj1 + ĥj1AM − yk1 − ĥk1Am − (AM − Am)maxi=1,...,p−mĥki

)
�

(−[
yj1 + ĥj1AM

− yk1 − ĥk1Am

] + (AM − Am)min�=1,...,mĥj�

)
δ

( ∑
�

α�

[
yj1 + AM

(
ĥj1 − ĥj�

)] +
∑

i

αi

[
yk1 + Am

(
ĥk1 − ĥki

)])
. (B6)

Note that by going from the first to the second line, we have used the δ functions to fix yjl
= yj1 + (ĥj1 − ĥjl

)AM , and
yki

= yk1 + (ĥk1 − ĥki
)Am. From the second to the third line, we have used that AM − Am � 0 to simplify the products of �

functions. The product of the two � functions implies that the contribution is nonzero only if the partitions satisfy ĥj�
> ĥki

for all
i,�. Since we ordered ĥ1 � · · · � ĥp, this identifies the set of ĥki

to be {ĥ1, . . . ,ĥp−m}, and the set of ĥj�
to be {ĥp−m+1, . . . ,ĥp}.

Making in (B6) the shift of variables yj1 → yj1 + yk1 eliminates yk1 from the � functions, and allows us to do the integral
over the latter, resulting into

(B6) = (−1)p−2Am
MAp−m

m

∫ ∞

−∞
dyj1�

(
yj1 + ĥj1AM − ĥk1Am − (AM − Am) maxi=1,...,p−m

{
ĥki

})
×�

(−[
yj1 + ĥj1AM − ĥk1Am

] + (AM − Am) min�=1,...,m

{
ĥj�

})
= (−1)p−2Am

MAp−m
m

∫ ∞

−∞
dyj1�

(
yj1 − (AM − Am)ĥp−m−1

)
�

(−yj1 + (AM − Am)ĥp−m

)
= (−1)pAm

MAp−m
m (AM − Am)(ĥp−m+1 − ĥp−m). (B7)

Putting all terms together, (B1) becomes

(−1)p
p∏

i=1

∫ ∞

−∞
dyi δ

( ∑
i

αiyi

)
∂ĥ1

. . . ∂ĥp
[H (y + ̂hAM )H (y + ̂hAm)]

= −(
A

p+1
M + Ap+1

m

)
h + (AM − Am)

(
−ĥpAp

m +
p−1∑
m=1

(ĥp−m+1 − ĥp−m)Ap−m
m Am

M + ĥ1A
p

M

)
, (B8)

where h := ∑
i αi ĥi . The first term ∼h̄ disappears once we subtract the contributions from the noncrossed terms 1

2 [H (y +
̂hAM )H (y + ̂hAM )] and 1

2 [H (y + ̂hAm)H (y + ̂hAm)]. This leads to the formula (50) given in the text.
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APPENDIX C: PROOF OF EQ. (21)

Here we prove that for all sets of μa with replica indices a = 1, . . . ,n the identity

′∑
ia∈{1,...,p}| ∑a δj,ia =nαj

exp

(
n∑

a=1

hiaμa

)
=

∫ ∞
−∞

∏p

i=1 dyi δ
(∑p

i=1 αiyi

)∏n
a=1

[∑p

i=1 exp(hiμa+yi)
]

∫ ∞
−∞

∏p

i=1 dyi δ
(∑p

i=1 αiyi

) [ ∑p

i=1 exp(yi)
]n (C1)

holds. By definition of the primed sum, the left-hand side reduces to 1 for μa = 0, in which case the identity is trivial. We now
prove the identity by series expansion in μa 	= 0. We define

Ki(μa) := exp(hiμa)
1
p

∑p

j=1 exp(hjμa)
− 1, (C2)

which has the property that Ki(μa = 0) = 0, as well as
∑p

i=1 Ki(μa) = 0. We can then write

exp(hiμa) = [1 + Ki(μa)]
1

p

p∑
j=1

exp(hjμa). (C3)

Analogously, we define

N (y) := 1

p

p∑
i=1

exp(yi), (C4)

�i(y) := exp(yi)

N (y)
− 1, (C5)

so that
∑p

i=1 �i(y) = 0, and exp(yi) = N (y)[1 + �i(y)]. With this one finds

p∑
i=1

eyi eμahi =
p∑

i=1

N (y)[1 + �i(y)][1 + Ki(μa)]
1

p

p∑
j=1

exp(hjμa) = N (y)
p∑

j=1

exp(hjμa)

[
1 + 1

p

p∑
i=1

�i(y)Ki(μa)

]

= N (y)
p∑

j=1

exp(hjμa)

[
1 +

p−1∑
i=1

�i(y) − �p(y)

p
Ki(μa)

]
. (C6)

With this notation, the identity (C1) to be proven can be restated as

′∑
ia∈{1,...,p}| ∑a δj,ia =nαj

n∏
a=1

[
1 + Kia (μa)

] = 1

N

∫ p∏
i=1

dyi δ

(
p∑

i=1

αiyi

)
[N (y)]n

n∏
a=1

[
1 +

p−1∑
i=1

Ki(μa)
�i(y) − �p(y)

p

]
, (C7)

where we have divided by the common factor
∏n

a=1( 1
p

∑p

j=1 exp(hjμa)) on both sides. The normalization N is defined as

N :=
∫ p∏

i=1

dyi δ

(
p∑

i=1

αiyi

)
[N (y)]n . (C8)

This identity holds if and only if the coefficients of linearly independent products of factors of Ki(μa) are identical on both sides.
Since

∑′ is normalized, the identity holds for Ki(μa) = 0, i.e., μa = 0. We now consider products over factors Ki with i ranging
over 1 � i � p − 1 since Kp = −∑p−1

i=1 Ki . Consider a product with ki factors Ki(μa) (with all μa different). The coefficient
on the left-hand side is obtained from combinatoric considerations: A factor of Ki either comes directly from a term (1 + Ki)
in (C7), or it results from a term (1 + Kp), upon replacing Kp = −∑p−1

i=1 Ki . There are ( cki
ri

) = ki!/ri!(ki − ri)! different ways
to have ri factors of the latter origin [each contributing a factor (−1) to the coefficient] and ki − ri of the former. Then, ki

of the (nαi) μ indices with ia = i are already assigned, while the remaining nαi − ki indices i need still to be assigned to a
subset of the n − ∑p−1

i=1 ki replica with yet unfixed ia . The number of possibilities to make disjoint assignments for all indices
i = 1, . . . ,p is

(
n − ∑p−1

i=1 ki

)
!(

nαp − ∑p−1
i=1 ri

)
!
∏p−1

i=1 (nαi − ki + ri)!
. (C9)
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This is normalized by the number of assignments of nαi indices i to unconstrained replica a,3

n!∏p

i=1(nαi)!
. (C10)

Putting all elements together, the sought coefficient follows as

C{ki } ≡
k1∑

r1=0

. . .

kp−1∑
rp−1=0

(
n − ∑p−1

i=1 ki

)
!(

nαp − ∑p−1
i=1 ri

)
!
∏p−1

i=1 (nαi − ki + ri)!

∏p

i=1(nαi)!

n!

p−1∏
i=1

(−1)ri

(
ki

ri

)
. (C11)

On the other hand, the coefficient on the right-hand side is given by

C ′
{ki } = 1

N

∫ p∏
i=1

dyi δ

(
p∑

i=1

αiyi

)
p−1∏
i=1

[
�i(y) − �p(y)

p

]ki

[N (y)]n

=
∫ ∞
−∞

∏p

i=1 dyi δ
( ∑p

i=1 αiyi

) ∏p−1
i=1 (eyi − eyp )ki

(∑p

i=1 eyi
)n−∑p−1

i=1 ki∫ ∞
−∞

∏p

i=1 dyi δ
( ∑p

i=1 αiyi

) (∑p

i=1 eyi

)n . (C12)

Our task is to show that C{ki } = C ′
{ki }. We note that a priori C{ki } is only defined for integer and positive nαi , while C ′

{ki } is
only defined for n < 0, but not necessarily integer. We will show that C ′

{ki } has an analytic continuation to positive n and nαi

which indeed coincides with C{ki } where the latter is defined. Thus, we interpret C ′
{ki } as the analytical continuation of the replica

expression, which can then be continued to n ↑ 0.
Let us proceed by computing the numerator in Eq. (C12) (recalling that everywhere we assume

∑p

i=1 αi = 1):

B{ki } :=
∫ ∞

−∞

p∏
i=1

dyi δ

(
p∑

i=1

αiyi

)
p−1∏
i=1

(eyi − eyp )ki

(
p∑

i=1

eyi

)n−∑p−1
i=1 ki

=
∫ ∞

−∞

p−1∏
i=1

dy ′
i dyp δ

(
p−1∑
i=1

αiy
′
i + yp

)
enyp

p−1∏
i=1

(ey ′
i − 1)ki

(
1 +

p−1∑
i=1

ey ′
i

)n−∑p−1
i=1 ki

=
∫ ∞

−∞

p−1∏
i=1

dy ′
i

p−1∏
i=1

[e−nαiy
′
i (ey ′

i − 1)ki ]

(
1 +

p−1∑
i=1

ey ′
i

)n−∑p−1
i=1 ki

= 1


(−n + ∑p−1

i=1 ki

) ∫ ∞

0

dλ

λ1+n−∑p−1
i=1 ki

∫ ∞

−∞

p−1∏
i=1

dy ′
i e−λ(1+∑p−1

i=1 e
y′
i )

p−1∏
i=1

[e−nαiy
′
i (ey ′

i − 1)ki ]. (C13)

Now, we change variables to ai = ey ′
i and expand the powers

B{ki } = 1


(−n + ∑p−1

i=1 ki

) ∫ ∞

0

dλ e−λ

λ1+n−∑p−1
i=1 ki

p−1∏
i=1

∫ ∞

0
dai

ki∑
ri=0

(
ki

ri

)
(−1)ri a

ki−ri−nαi−1
i e−λai

= 1


(−n + ∑p−1

i=1 ki

) ∫ ∞

0

dλ e−λ

λ1+n−∑p−1
i=1 ki

p−1∏
i=1

ki∑
ri=0

(
ki

ri

)
(−1)ri

(ki − ri − nαi)

λki−ri−nαi

=
k1∑

r1=0

. . .

kp−1∑
rp−1=0


(−nαp + ∑p−1

i=1 ri

)


(−n + ∑p−1
i=1 ki

) p−1∏
i=1

(
ki

ri

)
(−1)ri (ki − ri − nαi). (C14)

Finally, we use the relation (x) = π
sin(πx)(1−x) to rewrite this (using that ki and ri are integers) as

B{ki } = (−1)p−1 sin(nπ )/π∏p

i=1 sin(nαiπ )/π

∑
{0�ri�ki }


(
1 + n − ∑p−1

i=1 ki

)


(
1 + nαp − ∑p−1

i=1 ri

)∏p−1
i=1 (1 + nαi − ki + ri)

p−1∏
i=1

(
ki

ri

)
(−1)ri . (C15)

The ratio of  functions in Eq. (C15) can be continued to positive n. When n and all nαi become integers, the latter can be
written as (

n − ∑p−1
i=1 ki

)
!(

nαp − ∑p−1
i=1 ri

)
!
∏p−1

i=1 (nαi − ki + ri)!
. (C16)

Dividing by the normalization factor yields indeed C{ki }, which completes the proof.
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Note that the normalization factor in the denominator of Eq. (C12), for n → 0, is given by

N (n → 0) = (−1)p−1 sin(nπ )/π∏p

i=1 sin(nαiπ )/π
[1 + O(n)] , (C17)

which tends to N → 1/[(−n)p−1 ∏
i αi] when n ↑ 0, as calculated previously in Eq. (26).
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