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a b s t r a c t

We study localization properties of disordered bosons and spins
in random fields at zero temperature. We focus on two represen-
tatives of different symmetry classes, hard-core bosons (XY mag-
nets) and Ising magnets in random transverse fields, and contrast
their physical properties. We describe localization properties us-
ing a locator expansion on general lattices. For 1d Ising chains, we
find non-analytic behavior of the localization length as a function
of energy at ! = 0, ⇠�1(!) = ⇠�1(0) + A|!|↵ , with ↵ vanishing
at criticality. This contrasts with the much smoother behavior pre-
dicted for XYmagnets. We use these results to approach the order-
ing transition onBethe lattices of large connectivityK , whichmimic
the limit of high dimensionality. In both models, in the paramag-
netic phase with uniform disorder, the localization length is found
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to have a local maximum at! = 0. For the Ising model, we find ac-
tivated scaling at the phase transition, in agreement with infinite
randomness studies. In the Ising model long range order is found
to arise due to a delocalization and condensation initiated at! = 0,
without a closingmobility gap.We find that Ising systems establish
order on much sparser (fractal) subgraphs than XY models. Possi-
ble implications of these results for finite-dimensional systems are
discussed.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The localization properties of excitations in disordered, interacting many body systems attract
interest from many different communities. This issue is not only relevant for the quantum transport
of electrons [1–5], or spins [6–9], but also for the problem of noise protection in solid state quantum
computation, the protection of topological order [10] or the dynamics in ultracold atoms subject
to disorder potentials [11–13]. Disordered magnets and bosons are among the simplest and most
promisingmany body systems, both experimentally and theoretically, to study the arising conceptual
questions regarding the interplay of disorder, interactions and the formation of long range order. In the
present paper we address localization properties of the quantum disordered phase of such systems,
and study how they approach the quantum phase transition to the ordered phase.

As compared to interacting systems, where many questions remain open, the localization of non-
interacting quantum particles in a random potential have been studied rather extensively and are
well understood. In high enough dimensions, single particle wavefunctions undergo the Anderson
localization transition from a metallic to an insulating phase upon increasing the disorder [14]. The
behavior of such systems in the presence of interactions is a much more involved subject. Recently,
the long-standing question as to the stability of Anderson insulators with respect toweak interactions
has attracted renewed interest. Both analytical arguments and numerics suggest that ‘‘many body
localized’’ phases with no intrinsic diffusion and transport exist in the presence of strong enough
disorder, if the interactions are sufficiently short ranged and weak [1,3,4]. It has been predicted,
that as a function of various control parameters, such as increasing interaction strength, decreasing
disorder and or increasing temperature, these systems may undergo a delocalization transition to
an intrinsically conducting phase, which does not rely anymore on an external bath to sustain
transport [2,4–7].

Until recently, the localization properties in disordered bosonic systems have received less
attention than those of fermions, even though Anderson’s original work on localization was actually
motivated by the apparent absence of diffusion in spin systems. However, the recent realizations of
disordered bosons in optical lattices [11–13] and spin ladders [15] have spurred renewed interest
in questions regarding the localization of bosons in disorder [16–27]. Some of these issues have
previously arisen in the context of dirty superconductors [28–30] or in studies of 4He in porous
media [31–33], and have recently gained a much wider range of applicability.

In all the above mentioned systems, interactions between the bosons are essential to prevent
a collapse into the lowest-lying single particle eigenstate. Consequently, the problem of bosonic
localization is inherently an interacting problem, which requires a many body approach from the
outset.

An important feature that distinguishes bosons from (repulsive) fermions, is their ability to
condense into a superfluid state with long range order and perfect, dissipation less transport.
Nevertheless, when subjected to too strong disorder, global phase coherence is suppressed and the
bosons localize into an insulating state, the so-called ‘‘Bose glass’’ [16,34,35]. While it seems intuitive
to consider the disorder-driven quantum phase transition from Bose glass to superfluid as a kind of
‘‘collective boson delocalization’’, the precise relation between this phenomenon and single particle
Anderson transition is not well understood [36]. Certain qualitative features might well carry over
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from the single particle case, but one should also expect significant differences due to the statistics of
the particles and the incipient long range order [37].

In this article we address these questions by developing a perturbative technique which analyzes
localization properties in strongly disordered bosonic systems. A short account of part of these
results has been presented in Ref. [37]. The present study is complementary to the analysis of
bosonic excitations within long-range ordered, but strongly inhomogeneous phases [38–42], where
a substantial amount of literature has discussed the localization properties of Goldstone modes, spin
waves and phonons at low energies. Here, we focus instead on understanding the insulating, quantum
disordered phase of random bosonic systems. To this end we consider two prototypical boson and
spin models in random fields, and study the difference between discrete (Ising) and continuous (XY)
symmetry. At the same time we will revisit and correct the recent approach by Ioffe, Mézard and
Feigel’man [43,44] to these questions.

This paper is organized as follows: In Section 2,we introduce the canonical bosonic and spinmodels
we are going to study, and contrast them with Anderson’s model of non-interacting, disordered
fermions. In Section 3 we briefly review existing approaches to disordered bosonic systems and
summarize their key findings, before giving an overview of our results. In Section 4 we use the locator
expansion introduced in Ref. [37] to calculate the decay rate of local excitations to leading order in
the hopping or exchange. This allows us to characterize a localization length of these many body
excitations. Section 5 benchmarks the results of the leading order expansion in the exchange against
the exactly solvable 1d Ising chain in a random transverse field. We show that to leading order the
localization length of the Jordan–Wigner (JW) fermions agrees with the locator expansion for spin
excitations, and that due to the chiral symmetry this result is actually exact to all orders at ! = 0.
The localization length is found to decrease non-analytically with increasing energy (! > 0) of the
JW fermions. In Section 6 we analyze the boson and spin models on a Cayley tree (Bethe lattice), as
a way to approach localization phenomena in high dimensions. At large connectivity, the low energy
excitations are well described by taking into account the most relevant subleading corrections to
the leading order expansion in the exchange. This allows us to study the approach to the ordering
transition (bosonic delocalization). For uniformly distributed disorder we show that all low energy
excitations remain localized in the quantum disordered phase in both models under study. This
implies that order sets in by a delocalization at ! = 0 and not by a collapsing mobility edge. We also
show that the spin symmetry affects the nature of the transition significantly: Ising systems exhibit
infinite randomness characteristics, while XY models show common power law scalings for low
energy excitations. The possible implications for finite dimensions and open questions are discussed
in Section 8. A confirmation of the locator expansion by simple perturbation theory is relegated to an
Appendix.

2. Models

2.1. Fermions versus hardcore bosons

The phenomenon of Anderson localization is well epitomized by the model of a spinless quantum
particle hopping on a lattice [14], as it arises, e.g., in the impurity band of a semiconductor once
interactions are neglected:

H = �
X

i

✏ini �
X

hi,ji
tij

⇣
cÑi cj + cÑj ci

⌘
. (1)

Here ✏i is a random onsite potential and tij is the hopping strength. For simplicity we take ✏i to be
uniformly distributed in [�W ,W ] with density ⇢(✏) = 1

2W⇥(W � |✏|) and choose energy units such
that W = 1. The operators ci(c

Ñ
i ) create or annihilate a fermion at the lattice site i.

The phenomenology of this canonical model is well established, due to extensive analytical and
numerical studies. In 3d, at weak disorder, most eigenstates are delocalized and form a continuum
that touches the localized states in the tails of the band at the so-called mobility edges. Upon increase
of the disorder the mobility edges move towards the bulk of the spectrum. The states in the middle of
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the band,where the density of states is highest, are usually the last to localize. On a 3d cubic lattice, this
happens when the hopping becomes weaker than tc ⇡ 0.12 [45]. The single particle wavefunctions at
the mobility edge are neither fully space-filling nor fully localized, but exhibit interesting multifractal
properties [46].

Given the canonical model (1) of localization of free fermions, it is interesting to study what
changes if we replace fermionic with bosonic operators ci(c

Ñ
i ) ! bi(b

Ñ
i ). However, as mentioned

above, non-interacting disordered bosons exhibit pathological behavior, since they simply condense
into the lowest lying single particle wavefunction, which is generically a strongly localized state at
the extreme of the Lifshitz tail of the density of states. To remedy this pathology, we must include
interactions, a particularly interesting case being hard-core bosons which locally repel each other
infinitely strongly. This model has local constraints like spinless fermions, which obey the Pauli
exclusion principle. In both cases at most one particle can occupy a given lattice site. The two models
differ, however, due to the exchange statistics. In the case of hard core bosons, the local repulsion
renders the system genuinely interacting, while ‘hard core’ fermions can of course be understood
entirely by solving the single particle problem at all energies.

The difference in the quantum statistics is ultimately responsible for the fact that superfluids of
bosons surviveweak disorder in spatial dimensions d = 2, whereas repulsive fermions are generically
prone to localize and form insulators at low temperature. How precisely a disordered Bose glass
turns into a delocalized superfluid, especially in low dimensions, is not understood in full detail, even
though there has been recent progress on the experimental front, as well as in numerical simulations
[17,23,35]. Questions regarding the localization of excitations in the Bose glass, the existence of
bosonic mobility edges, or a finite temperature ‘‘many-body delocalization’’ in bosons are being
debated, too, and serve as a motivation for the present analysis.

2.2. Realization of hard core bosons

Physical realizations of hard core bosons arise naturally in several contexts: Apart from the obvious
example of strongly repulsive cold bosonic atoms, hard core bosons emerge in correlated materials
with a strong local negativeU attractionwhere all electron sites are either empty or host two electrons
of opposite spin. Naturally, such singlets formhard core bosons. Aminimal description in the presence
of disorder is given by the Hamiltonian

Hhcb = �
X

i

✏ini �
X

hi,ji
tij

⇣
bÑi bj + bÑj bi

⌘
, (2)

where interactions are retained only in the form of a local hard core constraint. Such a Hamiltonian
was also obtained via an approximate description of strongly disordered superconductors by Ma and
Lee [29], who generalized the BCS wavefunction to be built from doubly occupied or empty single
particle wavefunctions. Each such orbital thus forms an Anderson pseudospin, that is, a hard core
boson. The orbitals will be localized in space if the disorder is strong. The Ma–Lee model allows one
to describe approximately the superfluid-to-insulator transition in strongly disordered systems with
predominant attractive interactions. Recently this approach has been extended to take into account
the fractality of paired single particle states close to an Anderson transition [47,48], which translates
into unusual statistics of the pair hopping elements tij occurring in (2).

In the past, the thermodynamics of the Hamiltonian (2) was studied extensively with quantum
Monte Carlo techniques [49–52] as a model for the disorder driven superfluid–insulator transition.
Recently the model was revisited from the perspective of localization of excitations in the insulating
regime [43,44,53], Interestingly, clear signs of the quantum statistics, i.e. differences between
fermions and hard core bosons, appear already deep in the insulating regime [37,54]. In d > 1
one finds that low energy excitations of hard core bosons delocalize more readily than fermions
when subjected to the same disorder potential. A more important difference is the fact that the
wavefunctions of localized excitations react in opposite ways to a magnetic field: While fermionic
excitations tend to become more delocalized due to the suppression of negative interference of
alternative tunneling paths, bosonic wavefunctions tend to contract under amagnetic field. This leads
to strong, oppositemagnetoresistance in the low temperature transport of such insulators [37,55–57].
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2.3. Random field magnets

The Hamiltonian of disordered bosons (Eq. (2)) is equivalent to a XY ferromagnet of s = 1/2 spins
in a random transverse field. This is easily seen using the isomorphism bi = ��

i = 1
2 (�

x
i � i� y

i ), bÑi =
�+
i = 1

2 (�
x
i + i� y

i ), ni = (� z
i + 1)/2:

HXY = �
X

i

✏i�
z
i � J

X

hi,ji

�
� x
i �

x
j + �

y
i �

y
j
�
,

= 2Hhcb + const., (3)

where we took the hopping or exchange couplings to be uniform, tij = J . In Eq. (3) the operators
�

x,y,z
i are Pauli matrices. At zero temperature, this model exhibits a quantum disordered Bose glass

(paramagnetic) phase for t, J ⌧ W . In dimensions d > 1, a superfluid (ferromagnetic) phase
is expected for t, J � W , while strictly one-dimensional chains are known to be fully localized
irrespective of the weakness of disorder.

We will contrast the model (3) with the closely related Ising model

HIsing = �
X

i

✏i�
z
i � J

X

hi,ji
� x
i �

x
j . (4)

Note that while the hardcore boson model conserves particle number and possesses the related
continuous U(1) symmetry, the model (4) only conserves the parity of the total z-component of the
spin

P
i �

z
i and possesses the global discrete Ising symmetry � x ! �� x. For brevity we shall refer to

the above models as the XY and Ising models, respectively.
It is one of the main goals of this paper to analyze the effect of the different symmetries on the

properties of excitations in the localized phases and on the approach to the ordered phase.

3. Review of previous results

In order to situate the present study in the context of the existing literature on disordered bosonic
systems, we briefly review previous analytical approaches and their key results, before giving a short
overview of the results of this paper.

3.1. 1-dimensional systems

Many previous studies have focused on the properties of ground states and the quantum phase
transition between insulating and superfluid phases of 1d spin chains and bosons at T = 0.
Strongly interacting Bose gases in weak disorder in 1d are amenable to a Luttinger liquid description
[16,58]. The superfluid–insulator quantum phase transition occurs at a universal value K = 3/2
of the Luttinger parameter [59], corresponding to an unstable fixed point of a Kosterlitz–Thouless-
type renormalization group flow. In the opposite limit of strong disorder and moderate interactions,
complementary approaches suggest that the quantum phase transition is still present [19,22,60], but
occurs at a different, non-universal value [61] of K , and the transition may thus belong to a different
universality class. While this was supported by the recent numerical study [62], the later work [63]
argued that in strong disorder the true critical behavior emerges only at exponentially large scales,
predicting the universal value of Kc = 3/2 to hold even in that limit. An attempt to extend the analysis
of the critical point from d = 1 to higher dimensions via an ✏-expansion was made in Ref. [64].

At finite temperatures, the weakly interacting, disordered Bose glass has been argued to undergo
a localization transition between a fluid phase with finite d.c. transport at high temperature and an
ideal insulator with no conduction at low T [65]. Hereby the transition temperature plays the role of
an extensive mobility edge separating localized and delocalized states of the system. In Ref. [65] it
has been conjectured that in d = 1 the transition temperature is non-zero everywhere in the Bose
insulator, with a Tc that tends to zero at the superfluid transition.
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Closely related disordered spin chains have been studied in rather great detail, see e.g., Ref. [66].
An important, canonical example is the random transverse field Ising chain (4). Its disorder-driven
transition from paramagnet to ferromagnet and the associated critical behavior can be described by
the asymptotically exact real space renormalization group (RSRG) [67], which flows towards infinitely
strong randomness at the fixed point. An important hallmark of this type of fixed points is activated
dynamical scaling (characteristic frequencies scaling exponentially with the relevant length scales)
which formally corresponds to an infinite dynamical critical exponent [68]. An important insight from
these studies is the fact that at the critical point average and typical observables behave very differ-
ently, since averages are dominated by exponentially rare events. The difference between average and
typical observables persists also in the off-critical regions in the form of gapless Griffith phases.

3.2. Higher dimensions d > 1

In strictly one-dimensional chains the disordered XY model Eq. (3) is always in a localized phase,
as a Jordan–Wigner transformation maps it to free, disordered fermions. In higher dimensions XY
models can however develop true long-range order, aswas shown by numerical studies on disordered
hard core bosons [35,49,50]. The transport properties of the Bose glass phase remains however a non-
trivial and controversial problem, especially close to the superfluid transition,where the question as to
the existence of many body mobility edges and their relevance for purely bosonic conductivity arises
[42–44,53,65].

For Ising models, in higher dimensions the RSRG procedure can still be employed. However, it can
only be carried out numerically as the effective lattices generated upon decimation becomemore and
more complex. Numerical studies in dimensions d = 2, 3, 4, as well as on regular graphs, have found
that transverse field Ising models are still governed by infinite randomness fixed points, which justify
the RSRG procedure a posteriori, at least close to criticality [69–71]. In 2d, the conclusions about the
critical behavior have been verified by quantumMonte Carlo (QMC) simulations [72,73]. The RSRG of
Ref. [69] suggests that the phase transition occurs as a kind of a percolation–aggregation phenomenon
of spin clusters, which form a system-spanning cluster of low fractal dimension df < d at criticality
(df ⇡ 1 in 2d).

Deep in the disordered phase of Ising models low energy excitations have been studied within
leading order perturbation theory in the exchange [37,43,44,74]. This approach will be revisited and
put on firm ground in this paper, extending the analysis to finite excitation energies. In dimensions
d > 1 the lowest order perturbation theory maps off-diagonal susceptibilities in the transverse field
Ising model to directed polymer problems, which have been studied extensively. Griffith phenomena
are obtained naturally within such an approach as well. If the approximation is pushed all the
way to the quantum phase transition (disregarding that perturbation theory becomes uncontrolled
in low dimensions) unconventional activated scaling is found, similarly as expected from infinite
randomness [74]. For XY models, the exact mapping between the leading order perturbation theory
for boson Green’s functions and directed polymers has been used to analyze the magnetoresistance
in the insulating phase of charged hard core bosons [57].

Regarding the long range ordered side of these systems, excitations of the strongly inhomogeneous
ordered Ising phase were analyzed in Refs. [75,76] by employing a ‘‘cavity’’ mean field approximation,
to obtain spatial order parameter distributions. However, the status of this approximation remains
unclear. On the superfluid side of strongly disordered bosons (or XY spins), a variety of approaches
have been used to address the properties of Bogoliubov excitations [38,40,42].

3.3. The role of order parameter symmetry

RSRG studies in higher dimensions have pointed towards an important difference between Ising
models and models with continuous spin symmetry: While the former were found to exhibit infinite
randomness fixed points with activated scaling, models with continuous symmetry are found to have
more conventional power law scaling at their quantum critical points [68,69,77]. This was confirmed
by Quantum Monte Carlo simulations for Heisenberg models [78]. The recent work by Feigelman
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et al. [44] suggested that in high dimensions, or at least on the Bethe lattice, the difference between
the models studied here is inessential. However, we will show that a closer analysis does distinguish
the two symmetries, and reveals their rather different critical properties.

3.4. Summary of new results

In this paper, we focus on the models (3), (4), defined on general lattices. We first consider them
deep in their insulating (disordered) phase, where we can safely work at low orders of perturbation
theory in small hopping or exchange.We study the localization properties of excitations, by analyzing
the lifetime of excitations due to an infinitesimal coupling to a bath at the boundaries of the sample,
which allows us to characterize the exponential localization of bulk excitations. Comparing this
perturbative approach to exact results for one-dimensional Ising and XY chains, we obtain insight
on the relevance of themost important subleading corrections, and use them subsequently to analyze
higher dimensional lattices, in particular highly connected Bethe lattices.

As shown in Ref. [37] in the insulator, excitations at low energies extend the farther in space the
lower their energy, both in Ising and XY models, provided the disorder is uniformly distributed. This
phenomenology is in qualitative agreement with RSRG approaches (in regimes where those apply),
in that the real space decimation constructs lower and lower energy excitations with increasing
spatial extent. This distinguishes the bosonic models from non-interacting fermions, which are rather
insensitive to the excitation energy. Furthermore, for Ising chains we find a non-analytic behavior,
⇠�1(!)� ⇠�1(0) ⇠ |!|↵ of the localization length at small excitation energies, where ↵ > 0 vanishes
upon approaching the phase transition. This exponent remains small in a substantial interval around
the critical point before it eventually saturates to ↵ = 2, corresponding to analytical behavior. We
predict similar behavior also for higher dimensions. This is closely related to the Griffith phenomena
found by the RSRG approach for Ising models.

In order to approach the quantum phase transition to the long range ordered phase, we apply
our formalism to Cayley trees of large connectivity, where a perturbative approach is controlled up
to a parametrically small vicinity of the transition. Moreover, we argue that the phenomenology of
the transition is correctly captured by summing the most relevant subleading contributions in the
perturbative approach. In this limit we find that independently of the symmetry of the model, the
localization length at non-extensive low energy excitations remains a local maximum at ! = 0, all
the way to the phase transition. In the Ising model, we argue that this statement holds in a finite
range of frequencies up the transition, while in the XY model we control only a regime of frequencies
which shrinks to zero as the transition is approached. For the Ising model our findings suggest that
the ordering transition occurs by a delocalization initiated at ! = 0, i.e., without the preceding
delocalization of excitations at small positive energies. In both considered models, in the presence
of uniform disorder potential, we did not find evidence for a mobility edge of bosonic excitations at
finite energies on the insulating side. However, close to criticality, we cannot exclude the existence
of such a mobility edge at higher intensive energies, since our perturbative approach to low orders
cannot fully describe the propagation of larger lumps of energy.

However, a mobility edge is found rather trivially at higher energies (at least in d > 2) for non-
uniform disorder, if the density of disorder energies increases away from the chemical potential.
Our results for the Bethe lattice indicate that the percolating structure on which the emerging long
range order establishes is significantly more sparse for random transverse field Ising models than for
systems with XY symmetry.

4. Locator expansion

4.1. Decay rate of local excitations

In this section we study the decay of local excitations (spin flips) sufficiently deep within the
disordered phases – the insulating Bose glass or the paramagnet – of the models (3) and (4),
respectively. The transverse quantum fluctuations due to the exchange J (or hopping t) allow spin
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flips to propagate over somedistance. However,within a localized regime, they die off exponentially at
large distance. Following, in spirit, Anderson’s approach to single particle localization, we characterize
localization by the decay rate � of a local excitation, as induced by the coupling to a bath at the
distant boundaries of the sample. In the localized phase � is exponentially small in the linear size
of the system. A good measure for the localization radius ⇠ of such excitations is thus given by the
decrease of log� with the distance R to the boundary, which generally behaves as log� ⇡ �2R/⇠ .
For delocalization, and thus energy diffusion, to occur in amany body context, typical decay ratesmust
remain finite in the thermodynamic limit, as the system size tends to infinity, while the coupling to
the bath is kept infinitesimal.

We study the models (3) and (4) on a general lattice ⇤. We assume the system to be coupled
infinitesimally to a zero temperature bath via the spins on a ‘‘boundary set’’ @⇤ of the lattice, which
becomes infinite in the thermodynamic limit, too. Later on, to simplify the discussion, we will choose
this subset to be the spatial boundary of the finite lattice⇤ [79]. All boundary sites l 2 @⇤ are assumed
to be coupled to independent, identical baths, described by a continuum of non-interacting harmonic
oscillator modes b↵,l of energy ✏↵ and coupling strength �↵:

Hb =
X

l2@⇤

X

↵

✏↵b
Ñ
↵,lb↵,l. (5)

Such a bath is characterized by its spectral function

Jb(✏) =
X

↵

�2↵�(✏ � ✏↵). (6)

For both the XY and Ising models we consider the following system–bath couplings:

H = H0 + Hs,b + Hb,

Hs,b =
X

l2@⇤
� x
l

X

↵

�↵

⇣
bÑ↵,l + b↵,l

⌘
, (7)

where H0 = HXY,Ising is the uncoupled spin Hamiltonian. Obviously, the details of the coupling to the
bath are irrelevant for the determination of localization radii ⇠ of localized excitations, or to determine
the presence of delocalization.

In the limit J ⌧ 1, the ground state is well approximated by the product state

|GSi ⇡ ⌦i2⇤
��� z

i = sign(✏i)
↵
. (8)

Let us now characterize the temporal decay of a local excitation close to the site 0 2 ⇤ in the bulk of
the lattice. As a canonic example we will study the spin flip excitation � x

0 |GSi. For J = 0 this creates
the excited state

|E0i = ⌦i2⇤
��� z

i = (1 � 2�0i)sign(✏i)
↵
. (9)

At finite J we denote by the same ket |E0i the eigenstate, which evolves adiabatically from the
excited state (at J = 0) and thus has largest overlap with the local spin flip excitation at small J . Our
aim is to determine the lifetime of that eigenstate in the limit of large system size. In large but finite
systems, the lifetime is finite since the coupling to the bath induces decays to lower energy states, and
in particular back to the ground state. As an explicit calculation below will confirm the lifetime can
be evaluated simply by applying Fermi’s Golden rule.

One should naturally ask whether the lifetime of spin flip excitations (which carry Ising or
U(1) charge) should be characteristic for the lifetime of other excited states that are created by
local operators. Among the excitations that transform the same way under Ising or XY symmetry
operations, we expect that deep in the disordered phase, the localization length (as defined via the
exponentially small inverse lifetime) is the same function of energy as that of single spin flips. This is
because the propagation to long distances proceeds furthest by making the minimal use of exchange
couplings. At energies below the bandwidth this is always achieved by the shortest chains of exchange
bonds between the location of excitation and the point of observation, whichwill be analyzed in detail
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below. For excitations with different symmetry, e.g. neutral ones, such as a pair of opposite spin flips,
the localization is stronger in the regime of small J , since the matrix element to transport such an
excitation by a distance R decays as ⇠J2R, as compared to the amplitude ⇠JR for single spin flips.
However, we do not know whether this property remains generally true all the way to the ordering
transition, where the expansion in J starts to diverge. There an estimate of the relative importance
of various propagation channels can be very difficult, and depends on the details of the considered
model. Throughout this paper we thus stay within regimes where the perturbative expansion in the
small exchange J is controlled.

In order to make the above notions formally precise, we define the retarded spin correlator

Gl,0(t) ⌘ �i⇥(t)bhGS|[� x
l (t), �

x
0 ]|GSib, (10)

where |GSib = |GSi ⌦ |bath(T = 0)i denotes the ground state of the uncoupled system, |GSi being
the ground state of H0,H0|GSi = EGS|GSi, and |bath(T = 0)i being the ground state of the bath.
A(t) = e�iHtAeiHt denote Heisenberg operators. In the following, we will analyze in particular local
correlators, such as G0,0(t). It will be convenient to study these correlators in the frequency domain

Gl,0(!) =
Z 1

�1
dtei(!+i⌘)tGl,0(t), (11)

with ⌘ ! 0+. Introducing U(t) = eiH0te�iHt , we can write

G0,0(t) = �i⇥(t)bhGS|[UÑ(t)eiH0t� x
0 e

�iH0tU(t), � x
0 ]|GSib. (12)

We evaluate (12) perturbatively in the coupling to the bath, expanding U(t) in �↵ . To second order
one finds

U(t) ' 1 � i
Z t

0
dt1Hs,b(t1) �

Z t

0
dt1

Z t1

0
dt2Hs,b(t1)Hs,b(t2) + O(�3↵), (13)

where Hs,b(t) = eiH0tHs,be�iH0t . Inserting into G0,0(!) we obtain the expansion

G0,0(!) = G(0)
0,0(!) + G(2)

0,0(!) + o(�2↵), (14)
whereby the linear term in �↵ vanishes due to conservation of the parity of the total spin projection,P

i �
z
i . The leading term is

G(0)
0,0(!) =

X

n

✓ |hGS|� x
0 |Eni|2

! + EGS � En + i⌘
� |hEn|� x

0 |GSi|2
! + En � EGS + i⌘

◆
, (15)

where n runs over all eigenstates of H0, which are labeled by their energy En.
The second order term G(2)

0,0(!) has a relatively complicated structure for arbitrary!. However, we
are particularly interested in understanding the lifetime of excitations, i.e., the imaginary part of the
poles that appear in the leading term G(2)

0,0(!). Therefore we focus on ! ⇡ En � EGS, and extract only
the most singular term in the imaginary part of G(2)

0,0(! ! En � EGS), which evaluates to:

ImG(2)
0,0(! ! En � EGS) = �⇡ |hGS|� x

0 |Eni|2
(! + EGS � En)2

X

l2@⇤

X

Em<En

Jb(En � Em)|hEm|� x
l |Eni|2

⇥ [1 + O(! + EGS � En)] . (16)
As the bath couplings and the spectral functions Jb(!) are assumed to be very small, we can account
for this imaginary part as a shift of the poles into the complex plane:

G0,0(!) ⇡
X

n

|hGS|� x
0 |Eni|2

! � (En � EGS � i�n/2)
, (17)

where, to quadratic order in the bath coupling,

�n = 2⇡
X

l2@⇤
Jb(En � EGS)|hGS|� x

l |Eni|2 + 2⇡
X

l2@⇤

X

EGS<Em<En

Jb(En � Em)|hEm|� x
l |Eni|2
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is the decay rate of the excited state n under emission of a bath mode. This is easily recognized as
the inverse lifetime expected from Fermi’s Golden rule. We have dropped the real parts of the self-
energies which shift the poles by small amounts proportional to the coupling to the bath.

Note that the rate �n includes the decay to the ground state as well as to other excited states
of lower energy. However, we will merely focus on the contribution from the decay to the ground
state,

� (GS)
n = 2⇡ Jb(En � EGS)

X

l2@⇤
|hGS|� x

l |Eni|2. (18)

This indeed suffices for our purposes, for two reasons: On one hand, if we are interested in the rate at
which energy escapes the system, we should not consider decays to other excited states, since those
retain part of the excitation energy within the system. On the other hand, the relevant contributions
to the full inverse lifetime due to decays into excited states are comparable in magnitude to the
contribution from the decay to the ground state. Therefore the latter furnishes enough information to
determine the localization radius of the excitations in a deeply insulating regime.

As we explained before, we are interested in the excited state |Eni = |E0i which dominates the
many body wavefunction after a spin flip at site 0. To compute its lifetime, according to (18), we need
to evaluate the matrix element

hGS|� x
l |E0i ⇡ hGS|� x

l |E0ihE0|� x
0 |GSi ⌘ Al0, (19)

since hE0|� x
0 |GSi = 1 � O(J2). Note the asymmetry of l and 0 in the definition of this amplitude:

Al0 6= A0l. The right index (0) denotes the site where the excitation is created, while the left index l is
the site at which the excitation is probed.

From a Lehmann representation of the retarded Green’s function (10) it becomes clear that Al0 is
simply one of its residues:

Gl,0(!) =
Z 1

�1
�i⇥(t)hGS|[� x

l (t), �
x
0 ]|GSiei(!+i⌘)dt

=
X

n
hEn|� x

0 |GSihGS|� x
l |Eni


1

! � (En � EGS � i⌘)
� 1
! + (En � EGS + i⌘)

�
.

Indeed, the residue of the pole at ! = E0 � EGS is the desired matrix element,

Al0 = lim
!!E0�EGS

[! � (E0 � EGS)]Gl,0(!). (20)

This observation can be used to determine Al0 in perturbation theory in J in an efficient manner, by
solving recursively the equation of motion for Gl,0 in a locator expansion. As we will discuss further
below, thematrix elements Al0 are needed not only to calculate the decay rate to the ground state, but
also to determine the onset of long range order.

The above derivation is easily adapted for the XY model, cf. Section 4.3.

4.2. Equations of motion—the Ising model

Let us now evaluate the Green’s function Gl,0(t) to the leading order in the exchange J . We first
split Gl,0(t) into two parts

Gl,0(t) = G+
l,0(t) + G�

l,0(t), (21)

G±
l,0(t) = �i⇥(t)hGS|[�±

l (t), � x
0 ]|GSi,

which satisfy simpler equations of motion,

i
dG±

l,0(t)
dt

= �(t)h[�±
l (t), � x

0 ]i � i⇥(t)h[i�̇±
l (t), � x

0 ]i. (22)
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The spin flip operators �±
l (t) satisfy Heisenberg equations. For the Ising model, they read

i�̇±
l (t) =

⇥
�±
l ,H0

⇤
= ±2✏l�±

l (t) ⌥ J� z
l (t)

X

j2@ l
� x
j (t). (23)

The sum is over the set @ l of nearest-neighbors of site l. To leading order in J , we can restrict
ourselves to the neighbors j whose distance to site 0 is smaller than that of site l. Other terms lead
to contributions of higher order in J . Furthermore, when evaluating the expectation value in the last
term of Eq. (22), we can decouple the average over � z

l (t) from the other operators,

h� z
l (t)� x

j · · ·i = h� z
l (t)ih� x

j · · ·i, (24)

and use h� z
l (t)i = sign(✏l) + O(J2). Corrections to this approximation lead again to higher powers of

J . They can be determined systematically by an extension of the present approach [54].
To the leading order in the exchange, the recursion relations for the Green’s functions, after Fourier

transform, become

(2✏l ⌥ !)G±
l,0 = J sign(✏l)

X

j2@ l
Gj,0(!). (25)

Solving for Gl,0(!) from Eq. (21) we obtain the recursion relation

Gl,0(!) =
X

j2@ l
J sign(✏l)

4✏l
(2✏l)2 � !2 Gj,0(!), (26)

which is exact to leading order in J . Upon iterating the recursion until we reach the site 0, we obtain
the leading order of the Green’s function as a sum over all shortest paths from l to 0 (of length
L = dist(l, 0), the Hamming distance on the lattice between l and 0),

Gl,0(!) = G0,0(!)
X

P={j0=0,...,jL=l}

L=dist(l,0)Y

p=1

4J|✏jp |
(2✏jp)2 � !2 + o(JL). (27)

Notice that G0,0(! ! E0 � EGS) ⇡ 1
!+EGS�E0 to zeroth order in J . Therefore, the sought residue of the

pole at ! = E0 � EGS = 2|✏0| + O(J2) in Gl,0(!) is

Al0 = Gl,0(!)

G0,0(!)

����
!=2|✏0|

=
X

P={j0=0,...,jL=l}

LY

p=1

J|✏jp |
✏2jp � ✏20

+ o(JL), (28)

to the leading order in J . An alternative derivation of this result by standard perturbation theory is
given in the Appendix for the special, but non-trivial case of a three site Ising chain.

4.3. Equations of motion—the XY model

It is straightforward to repeat the same steps for the XY model. Without loss of generality, we
suppose that the flipped spin sits on a site 0 with ✏0 � 0 and thus essentially points up in the ground
state. We aim at the matrix element of the operator � x

l between the ground state and the excited
eigenstate |E0i = ��

0 |GSi (up to corrections of order O(J2)),

hGS|� x
l |E0i ⇡ hGS|�+

l |E0ihE0|��
0 |GSi ⌘ Al0. (29)

We thus define the relevant Green’s function as

GXY
l,0(t) ⌘ �i⇥(t)hGS|[�+

l (t), ��
0 ]|GSi. (30)
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Employing the Lehmann representation and solving recursively the equations of motion in powers of
J , allows us to extract the matrix element of interest

Al0 = GXY
l,0(!)

GXY
0,0(!)

�����
!=2|✏0|

=
X

P={j0=0,...,jL=l}

LY

p=1

Jsign(✏jp)

✏jp � |✏0|
+ o(JL), (31)

to the leading order in powers of J .
Notice the difference between Eqs. (28) and (31), which arises due to the different symmetries of

the two models. Indeed, in the Ising model, by a gauge transformation, one can always choose ✏i > 0,
and therefore the physical correlators can only be functions of |✏j|, cf. Eq. (28). However, the same is
not true for the XYmodel. Within the leading order approximation the difference shows only at finite
excitation energies ! ⌘ 2|✏0|, but disappears at low energies, ✏0 ! 0. This will be further discussed
in Section 4 below.

4.4. Comparison with non-interacting particles (fermions)

The result (31) was derived in Ref. [37] for hard core bosons. Using the correspondence J ! t , one
obtains, up to subleading corrections,

hGS|bÑl |E0i = Al0,

where in this case we denote by

|E0i = b0|GSi + O(t)

the excited state with a boson removed from site 0. Note that Eq. (31) has nearly the same form as the
analogous sum for non-interacting fermions [14,56], which can be obtained from a recursive solution
of the Schrödinger equation, or alternatively, using equations of motions as above for bosons. The
fermion result differs only by the absence of the sign factors in the numerator sign(✏). This is easy
to understand physically: Consider a loop formed by two shortest paths between two different sites
0 and l. Taking the first path in forward direction and the second path backward, a ring exchange of
particles is carried out. Indeed, in this process each particle is moving to the next negative energy site
ahead of it on the loop. The corresponding amplitude for bosons and fermions should thus differ by an
extra sign factor, if there is an odd number of particles on the loop (in the ground state). This results
precisely in the extra factor

Q
j2loop sign(✏j) which makes bosons distinct from fermions.

One should note that for non-interacting fermions the recursion relation for the Green’s function is
exact and does not require the decoupling (24) of the correlation function to obtain a closed recursion
relation. Therefore the full Green’s function can be expressed formally exactly as a sum over all paths,
with amplitudes being products of the locators t/(✏i � !), analogous to Eq. (31), but without sign
factors. In contrast, for hard core bosons this simple form is exact only for contributions from non-
intersecting paths, where each link contributes a single factor of J . Loop corrections take a more
involved form and require an extension of the equation of motion techniques used above [54].

5. 1-d case: localization in the Ising chain

In order to analyze certain features of higher dimensional cases, it is useful to review some
properties of one-dimensional chains, which are exact solvable due to exact mappings to free
fermions [80], and are even better understood with through the complementary approaches of
bosonization [16] and the strong randomness renormalization group [67,81]. The latter was first
introduced for random transverse field Ising chains where it becomes asymptotically exact close to
criticality.

On the other hand it is well-established that the random transverse field XY model, or hard core
bosons in strictly one dimension does not exhibit a quantum phase transition, but only possesses the
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paramagnetic (insulating) phase. This can easily be seen from after a Jordan–Wigner transformation,
which maps the hard core bosons to free fermions, which are always localized, even if the disorder
potential is very weak. In bosonization language, hard core bosons in weak disorder are described by
a Luttinger liquid with Luttinger parameter K = 1. Only upon reducing the interactions strength, or
compensating the hard core repulsion with an attractive interaction between bosons (equivalent to a
szi s

z
i+1 interaction between spins) the value of K can be increased above the critical value Kc = 3/2,

and a superfluid phase can emerge in sufficiently weak disorder [16,58].
In contrast to the XY spin chain without szsz coupling, the random transverse field Ising chain

does undergo a para-to-ferromagnetic quantum phase transition, which is captured by an infinite
randomness fixed point [67]. We recall some of its properties that are relevant to our discussion for
higher dimensions. We consider the strictly one-dimensional model

H = �
X

j

✏j�
z
j � J

X

j

� x
j �

x
j+1. (32)

As mentioned above, by a suitable gauge transformation, we can choose ✏i > 0. Following
the transformations and notations of Ref. [35], we introduce free fermions by the Jordan–Wigner
transformation

cj = ��
j ei⇡

P
k<j �

+
k �

�
k , cÑj = �+

j e�i⇡
P

k<j �
+
k �

�
k . (33)

They satisfy the canonical anti-commutation relations

{cÑj , ck} = �jk, {cÑj , cÑk } = {cj, ck} = 0. (34)

In terms of fermionic degrees of freedom, the model (32) can be written as

H =
X

jk

�
cÑj cj

�
Hjk

✓
ck
cÑk

◆
, (35)

where

Hjk = 1
2

✓
Djk + D

Ñ
jk Djk � D

Ñ
jk

D
Ñ
jk � Djk �Djk � D

Ñ
jk

◆
, (36)

and D is the matrix defined as

Djk = �✏j�jk � J�j,k�1. (37)

It is useful to perform a unitary transformation

(i� 1
j , � 2

j ) = (cÑj , cj)U, (38)

with

U = 1p
2

✓
1 1

�1 1

◆
. (39)

The operators � 1(2)
j are Majorana fermions corresponding to the imaginary(real) parts of cÑj . In terms

of those the Hamiltonian takes the form

H =
X

jk

�
i� 1

j � 2
j
� eHjk

✓
�i� 1

k
� 2
k

◆
, (40)

where

eH = U�1HU =
✓

0 D
DÑ 0

◆
, (41)
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which makes explicit the chiral symmetry of the problem. According to the classification of Altland
and Zirnbauer [82], the single particle Hamiltonian eH belongs to the chiral class BDI [35,81]. It is real,
and there exists a matrix⌃3, namely

⌃3 =
✓
1 0
0 �1

◆
, (42)

such that
⌃3 eH⌃3 = � eH . (43)

5.1. Transfer matrix approach

For a chain of length L, there is a unitary 2L ⇥ 2Lmatrix V which diagonalizes eH ,

V eHV�1 = diag(!1, . . . ,!2L), (44)
and its n’th column vector ( 1

n,i, 
2
n,i) satisfies the Schrödinger equation

✓
0 D

DÑ 0

◆ ✓
 1

n
 2

n

◆
= !n

✓
 1

n
 2

n

◆
. (45)

The corresponding operators

dn =
LX

i=1

⇥
 1

n,i(�i� 1
i ) +  2

n,i�
2
i
⇤

(46)

and their conjugates satisfy canonical anti-commutation relations. They annihilate fermionic degrees
of freedom of energy !n, [H, dn] = �!ndn.

In the lattice basis, Eq. (45) takes the explicit form
X

j

Dij 
2
j = ! 1

i , (47)

X

j

D
Ñ
ij 

1
j = ! 2

i , (48)

where from here on we drop the mode index n. Noting from (37) that in these sums j is restricted to
the values i � 1, i or i + 1, we find

Dii+1 
2
i+1 = ! 1

i � Dii 
2
i � Dii�1 

2
i�1, (49)

D
Ñ
ii+1 

1
i+1 = ! 2

i � D
Ñ
ii 

1
i � D

Ñ
ii�1 

1
i�1. (50)

Using Eq. (37) and the fact that Dii�1 = D
Ñ
ii+1 = 0, this can be rewritten in the form of a recursive

relation [67,80]
✓
 1

i+1
 2

i+1

◆
= Ti(!)

✓
 1

i
 2

i

◆
, (51)

where the transfer-matrix Ti(!) is given by

Ti(!) =

0

BB@
� J
✏i+1

✓
1 � !2

J2

◆
!✏i

J✏i+1

�!
J

�✏i
J

1

CCA . (52)

5.2. Localization length

Except at the critical point all the mode functions  i are exponentially localized. The typical
localization length of these fermions, ⇠typ,f can be extracted from the full transfer matrix M(!) =
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Fig. 1. Lyapunov exponent of the Jordan–Wigner fermions, evaluated numerically from Eq. (53), at the critical point of the
Ising spin chain, J = Jc , for box distributed disorder. The localization length exhibits activated scaling ⇠�1(!) / 1/| log(!)|.

TL(!) . . . T2(!)T1(!), as the inverse of its largest Lyapunov exponent. This yields

1
⇠typ,f (!)

= lim
L!1

1
2L

log [max(�1, �2)] , (53)

where �1, �2 are the two eigenvalues of MT (!)M(!).
In the limit of zero energy, ! ! 0, the two blocks of the transfer matrix decouple, and one can

immediately read off the typical localization length as [83]

1
⇠typ,f (0)

=
�����log

✓
✏i

J

◆����� ⌘
����log

✓
Jc
J

◆���� ⌘ �, (54)

where

log(Jc) ⌘ log(✏i). (55)
The overbar denotes the disorder average over the random onsite energies ✏i. Jc denotes the critical

exchange coupling [67], at which ⇠typ,f diverges at ! = 0, and � is a dimensionless measure of the
distance from criticality.

From Eq. (54) one can see that near the critical point, the typical low energy degrees of freedom
delocalize as ⇠typ,f (0) ⇠ ��⌫ with ⌫ = 1. However, spatially averaged correlation functions are known
todecaymore slowly,with a faster diverging average correlation length [67], ⇠av,f (0) ⇠ ��2. This arises
because such averages are dominated by rare regions with favorable disorder configuration.

Note that the typical localization length defined in (53) is a smooth function of energy !. We have
studied the energy dependence using the transfer-matrix (52), evaluating 1/⇠typ,f (!) numerically
for a box-distributed disorder ✏j 2 [0, 1]. At the critical point, we find a logarithmically diverging
localization length, ⇠typ,f (!) ⇠ | log(!)|, cf. Fig. 1, which is consistent with the activated scaling
predicted by the strong randomness renormalization group [67].

Away from criticality, the localization length is finite at ! = 0, but it behaves non-analytically at
small !

⇠�1
typ,f (!) � ⇠�1

typ,f (0) ⇠ !↵, (56)
with ↵ > 0, cf. Fig. 2. We will discuss the origin of this power law and the exponent ↵ in Section 5.4
and compare it with exact results obtained in a continuummodel.

In the model with box-distributed disorder, at any distance from criticality, we always found the
localization length to decreasewith increasing energy, all theway up to the band edge. In otherwords,
the localization length is always an absolute maximum at ! = 0.
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Fig. 2. The numerically evaluated Lyapunov exponent of Jordan–Wigner fermions of the Ising spin chain as a function of energy.
The disorder is strong, and has a box-distribution in the interval [�W ,W ] with W = 1. Data is shown for the paramagnetic
regime (J < Jc ) off criticality. � measures the distance from the critical point. At small !, the localization length ⇠typ,f always
decreaseswith increasing !, the leading finite frequency correction being a power law.

5.3. Continuum limit

If the disorder is weak, or close to the critical point, the low energy physics can be captured by
coarse-graining the lattice model and taking the continuum limit of eH . After rewriting the matrix D
from (37) as

Djk = �J(�j,k�1 � �jk) + (✏j � J)�jk, (57)

the continuum limit of eH can be taken as

Dc = J

� d

dx
+ �(x)

�
, (58)

where the lattice spacing was set to unity. The random potential is given by

✏j � J
J

! �(x), (59)

where the continuous variable x corresponds to the (coarse-grained) position j.
For the casewhere�(x) is a Gaussianwhite noise potential of unit variance, the problemwas solved

exactly using supersymmetric quantum mechanics [84–86]. The continuum version of Eq. (45) is
equivalent to the Schrödinger equation for the component 2 with the supersymmetric Hamiltonian

Hc 
2 ⌘ DÑ

c Dc 
2

=

� d2

dx2
+ �2(x) + �0(x)

�
 2 = !2 2, (60)

whose spectrum is positive by construction (here and in the remainder of this sectionwe set J = 1). In
Ref. [85] the Lyapunov exponent (inverse localization length) of the eigenfunctions of the continuum
Hamiltonian (60) was obtained in closed form as

⇠�1
typ,f (!) = �! dMµ(!)/d!

Mµ(!)
, (61)
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where Mµ =
q
J2µ + N2

µ, Jµ and Nµ being Bessel functions of order µ of the first and second kind,
respectively. The index µ of the Bessel functions is given by the expectation value of the random
potential,

µ = �(x). (62)
In the vicinity of criticality µ approaches the value of � defined in Eq. (54), i.e., µ/� ! 1 as

µ, � ! 0.
Evaluating the expression (61) at the critical point, µ ! 0, one obtains a logarithmic (activated)

scaling at small !,

⇠�1
typ,f (!) = 1

|log(!)| + O(1/ |log(!)|2), (µ = 0). (63)

This matches with what we found numerically for the discrete, strong disorder case in the preced-
ing subsection, cf. Fig. 1.

Close to the critical point, the formula (61) predicts

⇠�1
typ,f (0) = µ, (64)

and the non-analytic behavior

⇠�1
typ,f (!) � ⇠�1

typ,f (0) = Aµ!
2µ[1 + o(!)], (65)

Aµ = 2µ
2�2µ

� (µ + 1)2
⇡µ

tan(⇡µ)
.

This, too, matches qualitatively the power law behavior we found numerically for strongly disordered
Ising chains.

It is interesting to note that in the limits µ ! 0 and ! ! 0, but keeping the product µ| log(!)|
constant, the formula (61) can be cast in the following scaling form

⇠�1
typ,f (!) ! µ coth(µ| log!|) (66)

which interpolates between the limits of Eqs. (63) and (65). Indeed the latter tends to

⇠�1
typ,f (!) = µ[1 + 2 exp(�2µ| log!|) + o(!)] (67)

for µ| log(!)| � 1.
Let us now proceed to analyze the exponent of the leading power law in !, and its physical origin

in greater generality.

5.4. Non-analyticity of ⇠(!) from rare events

The origin of the power laws Eqs. (56), (65) can be understood from an analysis of the transfer
matrix. This will also elucidate the kind of rare events which lead to the non-analytic low frequency
behavior of ⇠(!).

Let us consider the paramagnetic phase where log ✏i/J = � > 0. From Eq. (52), it is clear that at
! = 0 the Lyapunov exponent, i.e., the growth rate of the normof thematrix, is given by the product of
the elements T22. For 0 < ! ⌧ J , the normof the transfermatrix is stillmostly dominated by a product
of factors T22, but occasionally rare stretches along the chain may occur in which locally log ✏i/J < 0.
If such a rare fluctuation is strong enough it can compensate for the small factor ⇠!2 associated with
switching from the 2-channel to the 1-channel, and thus increases the Lyapunov exponent beyond its
! = 0 value. The increase of ⇠�1 is proportional to the spatial density of such rare fluctuations. Below
we analyze this effect quantitatively.

Consider the product of factors on a stretch of length `,

X` =
i+`�1Y

j=i

|✏j|
J

. (68)
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For independent, box-distributed ✏j (with W ⌘ 1) the probability density of the logarithm of X` is
easily obtained by a Laplace transform as

p`(log X` = a < aM) da = (aM � a)`�1

(`� 1)! ea�aM da. (69)

The support extends up to

aM = ` log(1/J) = `(1 + �), (70)

where � was defined in Eq. (54). For large ` the exact expression (69) can be approximated as

p`(log X` = a) ⇡ 1p
2⇡`

exp

�`

✓
aM � a
`

� 1 � log
aM � a
`

◆�
. (71)

For general disorder distributions, one can show that for large `, up to pre-exponential factors, p`
is given by a large deviation expression [87]

p`(log X` = a) ' exp[�`I(a/`)]. (72)

Here I(s) is the Legendre transform of the function

�(k) ⌘ log

"✓
✏i

J

◆k
#

, (73)

i.e.,

I(s) = [ks � �(k)]k:�0(k)=s. (74)

The change in the Lyapunov exponent is given by the sum over contributions from stretches of all
lengths, as

�⇠�1(!) /
Z

d` p`(log X` = log!)

' exp[�`⇤I(log!/`⇤)] = exp[↵ log!] = !↵. (75)

In the second line the smallness of ! justifies a saddle point approximation, with the maximal
integrand at ` = `⇤ ⇠ | log!| [88]. A little algebra shows that the exponent ↵ is given by the strictly
positive solution of

�(�↵) = 0. (76)

Pre-exponential factors of log(!) in Eq. (75) can be checked to cancel. Indeed, the normalization
factor, shown explicitly in the exact expression (71), cancels with the contribution from the Gaussian
fluctuations around the saddle point taken in Eq. (75). This cancellation of logarithms is also confirmed
by the exact result Eq. (65) for the continuous case.

For a box distributed disorder one finds

�(k) = �k log J � log(1 + k)
= k(1 + �) � log(1 + k). (77)

Close to the critical point (v ⌧ 1), the solution of Eq. (76) yields

↵ = 2� � 8�2/3 + O(�3). (78)

In Fig. 3 we show the good agreement between the prediction of Eqs. (76), (77) with the exponents
extracted from fits to numerical data for ⇠(!). Note that the result Eq. (65) of the continuum limit
applies close to the critical point, where coarse-graining on large scales is possible. It is recovered in
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Fig. 3. (Color online) Comparison between the theoretical prediction of Eqs. (76), (77) (red solid line) and the numerically
obtained exponents ↵ (black dots), extracted from fits of ⇠�1

typ (!) to a power law. The abscissa � defined in Eq. (54), measures
the distance to criticality.We also show the approximation↵ = 2µ/� 2, obtained by considering log(✏i/J) as Gaussian variables,
characterized by their mean µ = log(✏i/J) and variance � 2 = [log(✏i)]2 � log(✏i)

2
(green dashed line). Close to criticality, this

approximation is accurate, while further off criticality large non-Gaussian deviations dominate the behavior of ↵.

general if log(✏j/J) is assumed to be a Gaussian variable with mean µ and variance � 2, in which case
�(k) = µk + � 2k2/2 and thus [89] ↵ = 2µ/� 2.

The above shows that the leading non-analytic frequency correction to the localization length
is due to rare regions which locally favor the minority phase. The results show that low energy
excitations are less backscattered from such regions than excitations at higher energy. Furthermore,
we see that the regions which dominate the excess backscattering at a given low frequency ! have a
length ⇠| log!|.

While the above calculation makes a reliable prediction of the exponent in Eqs. (56), (65), the
prefactor Aµ in Eq. (65) is more sensitive to details of the disorder distribution. As we mentioned
before, from the numerical evaluation of the Lyapunov exponents in the strongly disordered spin
chains we found Aµ to be always positive, independently of the distance to criticality. In other words,
we find the localization length at ! = 0 to be always greater than ⇠typ,f (! > 0) at higher energies.
However, in the exactly solvable continuum model such a behavior is found only for µ < 1/2,
cf. Eq. (65), while further away from criticality the prefactor changes sign. Note that this is not in
contradiction with the numerical results for a box distribution, since in the corresponding regime
where large deviations become generally strongly non-Gaussian, the two disorder models have no
reason to yield similar results. In contrast, the behavior close to criticality is expected to be well
captured by the continuummodelwithGaussian disorder,whichwehave shown to predict the correct
exponents↵ close to criticality. The exactly solvable continuum result then suggests that close enough
to criticality, ⇠typ,f (!) assumes a local maximum at ! = 0, whatever the specific disorder. Moreover,
one may conjecture that the activated scaling form (66) is actually universal close to criticality.

5.5. Implications for spin–spin correlations

The above results describe the Lyapunov exponents of the free fermions which arise in the
Jordan–Wigner decomposition of the 1d Ising chain. Their relevance for spin–spin correlation
functions is not completely obvious, however. Indeed spin correlation functions, which inform about
the localization properties of spin excitations, are difficult to extract in general from the fermion
representation, because of the nonlocal relation between spin and fermion operators. Nevertheless,
we expect that the localization length of fermion Green’s functions also controls the spatial decay of
spin correlations at low enough energies.
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It is interesting, in particular, to compare the exact results for the free fermions to the results we
obtained to leading order for the spin problems. Applying the locator expansion to the spin chain, and
defining the localization length via the spin correlation function as [37]

⇠�1
s (!) = � lim

l!1
log(|Gl,0(!)/G0,0(!)|)

|l| , (79)

we find from Eq. (28) the expression

⇠�1
s (!) = � lim

l!1
1
l

lX

j=1

log


4J|✏j|
(2✏j)2 � !2

�
, (80)

to leading order in J . Remarkably, at zero frequency ! = 0, the exact result for JW fermions, Eq. (54)
and the locator expansion (80) yield the same result. This suggests that at least at low energies fermion
localization lengths are indeed good indicators for spin–spin correlation lengths.

5.6. Protected resonances at ! = 0 in general Ising models

The above implies that the leading order locator expansion is actually exact at ! = 0. The reason
for this phenomenon is that in Eq. (45), when ! = 0, the fermion modes  1 and  2 decouple and
satisfy independent equations, which are easily solved by forward integration. Thus, no higher order
corrections from loops arise [90].

The fact that, at ! = 0, the denominators 1/✏i are not renormalized by higher order corrections
(such as self-energies, as in the standard Anderson model) is deeply rooted in the Ising symmetry. To
see this, let us suppose that one of the transverse fields vanishes, ✏i = 0. The Ising Hamiltonian always
enjoys the discrete global Ising (parity) symmetry,

UIsing =
Y

j

� z
j , (81)

satisfying UIsingHU�1
Ising = H . However, if ✏i = 0 it possesses the additional local symmetry,

Uloc = � x
i , (82)

with UlocHU�1
loc = H . Since UIsing and Uloc do not commute, it immediately follows that every

eigenenergy of the full Hamiltonian is twofold degenerate. In particular the ground state is doubly
degenerate. Note that this conclusion is valid independently of the dimension.

It is interesting to note that in the paramagnetic phase the two degenerate ground states differ only
in observables depending on degrees of freedom close to the site i, as one can explicitly show in the
case of a 1d chain. As a consequence of this local degeneracy, correlation functions evaluated in the
ground state will be singular at ! = 0. This is only ensured if the pole of the bare denominator 1/✏i
never shifts away from ✏i = 0 by any higher order exchange corrections, when evaluated at ! = 0.
In other words there cannot be any finite self-energy-like corrections at ! = 0 in the ground state
of the Ising model, as an onsite energy approaches ✏i ! 0. This contrasts with the XY model, where
there is no symmetry reason that suppresses exchange corrections to resonant small denominators.
Those self-energy-like corrections actually play a crucial role in regularizing correlation functions and
localization properties. We will discuss the consequences of protected resonances at ! = 0 on the
nature of the ordering transition further below in Section 6.

5.7. Localization length at finite ! : d = 1

At finite !, the leading order locator expansion in d = 1 captures correctly the qualitative feature
that ⇠�1

s (!) decreases with increasing energy. However, it misses the non-analytic corrections due
to rare regions whose disorder strength is typical for the opposite phase than realized in the bulk of
the sample. Those regions lead to backscattering, which tends to enhance the localization of higher
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energy excitations. In the next section we will discuss the effect of such rare regions on the Cayley
tree, and argue that, similarly as in 1d, there are non-analyticities in ⇠(!) at ! = 0 off criticality, and
activated scaling at criticality.

We mention in passing that the non-analyticity of the localization length in 1d, as well as
its divergence at the critical point in 1d, come along with an accompanying Dyson singularity in
the density of fermionic states [85], very similarly as in tight-binding chains with off-diagonal
disorder [81,84,91]. Both occur naturally due to the BDI symmetry of the fermionic problem.

5.8. Localization length at finite ! : d > 1

In higher dimensions, d > 1, there is a further reason for the localization length to decrease with
increasing frequency, as discussed in Ref. [53]. The interference between alternative forward directed
paths in Eqs. (28), (31) is maximally constructive at vanishing excitation energy ! = ✏0 = 0, while
at finite ! negative scattering amplitudes arise, which spoil the perfect interference and decrease the
propagation amplitude at large distances.

Qualitatively similar effects are achieved by a magnetic field acting on charged bosons, which
endows the various paths with different Aharonov–Bohm phases, which also degrade the perfect
interference. The resulting magnetoresistance was discussed in detail in Ref. [57].

The arguments for both these effects rely a priori on the lowest order expansion in the exchange
J . However, we expect those to capture the essential features of localization in d > 1 well within
the strongly localized regime. Subleading effects due to loop corrections will be discussed in more
details elsewhere [54]. Closer to criticality and at sufficiently high energies, rather high orders of the
exchange expansionmay become relevant. The above conclusions should thus not be applied without
caution to that regime.

6. Approaching delocalization: Boson and spin models on highly connected Cayley tree

In an attempt to approach the delocalization transition, we now apply our formalism to a situation
where the expansion in exchange is expected to remain applicable even close to the phase transition.
A priori one expects this to be the case in high dimensions, where subleading loop corrections can
be expected to be relatively unimportant. An extreme case where loops are absent altogether is the
Cayley tree. Motivated by closely related studies [43,44] we consider Cayley trees of large branching
number K which locally resemble cubic lattices in d = (K + 1)/2 dimensions. The related Anderson
model of non-interacting fermions on such trees can be solved exactly due to the absence of loops
[92,93]. Since it is known that in this case the delocalization transition happens when the hopping is
still parametrically small, tc ⇠ 1/K log(K) as K ! 1, onemay hope that a leading order expansion in
the exchange/bosonhopping can capture the vicinity of the transition. Such an approachwas proposed
in Refs. [43,44] where the localization properties of intensive low energy excitations in the disordered
phase were studied. The authors claimed that in the disordered regime, close enough to criticality an
intensive mobility edge !c exists, that separates delocalized high energy excitations from localized
low energy excitations. Furthermore, it was stated that upon approaching criticality !c decreases
to zero and vanishes simultaneously with the onset of long range order. Similar scenarios had been
proposedby other authors aswell [36,53]. Herewe revisit this question, using the leading order locator
expansion formulas (28), (31). However, they differ from the expressions postulated in Refs. [43,44]
in crucial details, which lead us to qualitatively different conclusions.

Let us now analyze the spin models Eqs. (3), (4) on a Cayley tree with a root site 0, branching
number K and depth L, cf. Fig. 4. We will be interested in two distinct aspects: (i) the propagation
of long range order (emergence of ‘‘surface magnetization’’), (ii) the localization properties of local
excitations at the root, as a function of the associated energy ⇡2✏0.

Anticipating that the delocalization transition appears when the exchange is of order J ⇠
1/K log(K), as for single particle hopping, we introduce the notation

J ⌘ g
K

. (83)
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Fig. 4. Cayley tree with branching number K = 2. The depth of the tree, i.e., the distance from the root to a boundary site is L
(in this figure L = 3). The wavy lines represent the coupling of the boundary spins to independent baths.

We then rely on the smallness of the parameter J close to criticality to restrict ourselves to leading
order perturbation theory in J . This will give indeed a reliable estimation of localization properties up
to a narrow critical window close to the phase transition, where subleading terms should be included,
as we will discuss in detail below.

6.1. Ordering transition out of the paramagnetic phase

The disorder-induced quantum phase transition in the models (3), (4) can be approached from the
ordered or the disordered side. The route from the symmetry broken side was pioneered by Ioffe,
Mézard and Feigelman [43,44], where (approximate) self-consistent equations for cavity mean fields
(local order parameters) were analyzed and solved. This inhomogeneous mean field approach was
further exploited byMonthus andGarel [74], both in finite dimensions and on the Cayley trees, finding
that strong randomness physics governs the excitations in these disordered systems.

These works pointed out the close relationship between magnetic correlation functions at large
distances and the physics of directed polymers in random media, which may indeed play a role
in the distribution of local order parameters, as recent experiments in strongly disordered 2d
superconductors suggest [94]. The mapping between bosonic correlation functions and directed
polymers is rendered exact on the insulating side J ⌧ 1 where the correlation functions can be
argued to be well represented by the lowest order expansion in the exchange [37,57]. By restricting
to the leading order the expansion of order parameter correlations in the ordered phase, or of two
point functions like Gl0 in the localized phase, one obtains the same estimate for the critical point
Jc = gc/K where long range correlations set in. However, it is hard to assess the quality of the mean
field approximation, and to improve systematically beyond it, which would be desirable especially
in low dimensions. In contrast, higher order corrections in the localized phase are amenable to a
systematic expansion in powers of J , and thus seem a simpler route towards describing criticality.

In this sectionwe approach the ordering transition from the insulating phase.Wedefine the surface
susceptibility, i.e., the susceptibility to a homogeneous field hx applied to the boundary sites, as

�s ⌘
X

l2@⇤

Gl,0(0)
G0,0(0)

. (84)

The sum is over all boundary spins l, andwe included a normalization factorG0,0(0) for convenience. In
the insulating phase, all Gl,0 decay rapidly, such that the large number of boundary sites cannot offset
the smallness of this susceptibility. Upon increasing the exchange coupling, g , the ordering transition
(in typical realizations of disorder) occurs when the typical value of �s is of order O(1). In finite di-
mensions this criterion is equivalent to asking that� logGl,0 does not grow linearly with the distance
from the bulk site 0 to a boundary site l. However, on the Cayley tree, where there are exponentially
many (KL) boundary sites, the criterion of non-exponential decay with Lmust be applied to the whole
sum, and cannot so easily be reduced to a criterion on typical or dominant paths on the tree.

The above criterion is valid on general lattices. However, in finite dimensions, the Green’s functions
Gl,0 are hard to study analytically, especially close to the phase transition. In contrast, on a Cayley tree
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with large branching number K a simplification occurs. First of all, there is only one shortest path
connecting any two points, and thus there is only a single term contributing to the leading order
locator expansion of Gl,0. Subleading terms are not very important when K is large, since paths with
extra excursions on side paths are formally penalized by an extra factor of. g2

c /K (which is dominated
by exchange processes with the most favorable neighboring sites). This argument is however known
to be a bit too naive. Indeed, from the analogous single particle problem [14,92], it is known that
these self-energy corrections regularize resonances from very small denominators and modify the
numerical prefactor A in the large K scaling for the critical hopping, gc = A/(K log K), as compared
to the so-called ‘‘Anderson upper limit ’’ estimate, in which self-energy contributions are neglected.
Similar effects are a priori to be expected in the many body case as well.

Keeping this caveat in mind, we nevertheless start by restricting ourselves to the leading order
perturbation theory. We use the results of Eqs. (28) or (31) to evaluate Gl,0 as

�s =
X

l2@⇤

Y

i2Pl

g/K
|✏i|

, (85)

where Pl is the unique path from the root to the boundary site l. This certainly captures well the
behavior deep in the insulator, but as argued above, also rather close to the ordering transition if the
limit of large K � 1 is taken. We recall that to this leading order the two point functions at! = 0 are
the same in the XY and the Ising model, which thus leads to the same estimate of the critical coupling
gc [43,44].

A similar conclusion was reached based on cavity mean field equations applied to the ordered
side, linearizing them in the exchange coupling and the local order parameter. As the local order
parameter susceptibility is 1/✏i in both models, the mean field approximation estimates the order
parameter susceptibility at large distances to be a product of local susceptibilities, resulting in the
same expression as Eq. (85) derived for the insulating side—independently of the symmetry of the
order parameter.

The (near) coincidence of the critical values gc in the two models appears less obvious when
reasoning from the disordered side. Naively, onemight think that the additional exchange term J� y

i �
y
j

in the XY model leads to enhanced fluctuations as compared to the Ising model. However, this effect
is almost exactly compensated by the fact that the XY symmetry (conservation of hard core bosons)
restricts the quantum fluctuations more strongly than the Ising symmetry.

However, we will argue below that the coincidence of the two values of gc is an artifact of the
various approximations. In fact, the inclusion of subleading terms in the locator expansion will
be shown to split the degeneracy of the two critical values, see Eq. (112). Since these corrections
regularize resonances (small denominators) in the XYmodel, they have a non-perturbative effect that
modifies gc at the leading order in the large K asymptotics. For the time being we nevertheless carry
on with the analysis to the leading order in exchange, which will set the stage for later refinements.

6.2. Mapping to directed polymers

The evaluation of the typical susceptibility can be accomplished via the exact mapping of the
leading order expression for the surface susceptibility to the problem of a directed polymer on the
Cayley tree. The latter was solved exactly by Derrida and Spohn [95], and their result was applied to
the present context in Refs. [43,44]. The susceptibility itself is a strongly fluctuating random variable,
which depends on the disorder realization. However, its logarithm is a self-averaging quantity. Upon
re-exponentiation one obtains the typical value, which is characterized by the logarithmic disorder
average [43,44,95]

lim
L!1

1
L
log�s ⌘ log

⇣ g
K

⌘
+ min

x2[0,1]
f (x), (86)

where the function f (x) is defined by

f (x) = 1
x
log


K

Z 1

�1

1
|✏|x

d✏
2

�
. (87)
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Let us denote by xc the argument at which f (x) takes its minimum on the interval x 2 [0, 1]. If
xc < 1, the associated directed polymer problem is in its low temperature frozen phase whose
thermodynamics is essentially dominated by a single path on the tree. More precisely, the partition
sumover paths that go to the boundary is dominated by a set of configurations, which all stay together
and split only at a short distance before reaching the boundary. Thereby, that last distance does not
scale with L in the limit L ! 1. In spin glass terminology, the dominating paths have ‘‘mutual
overlap’’ tending to 1 in the thermodynamic limit. This situation corresponds to a phase of broken
replica symmetry (RSB) for the directed polymer. In the language of onsetting long range order in the
spinmodel this translates into the statement that (in leading order approximation in the exchange) the
surface susceptibility is dominated essentially by one or a few single paths. If instead one finds xc = 1
the dominant contribution to �s, or to the partition function of the equivalent polymer problem, is
due to infinitely many configurations in the thermodynamic limit. We will come back to these issues
in Section 7 where we will discuss the difference between Ising and XY models in this respect.

Within the approximation to leading order in the hopping one finds that the ordering transition
occurs when [43],

0 = log
⇣gc
K

⌘
+ f (xc), (88)

which corresponds to the vanishing of the free energy of the directed polymer per unit length. This
has the solution [43]

gc exp
✓

1
egc

◆
= K , xc = 1 � egc, (89)

or, in the limit of large K � 1,

gc ⇡ 1
e log(K)

. (90)

It is worth noting that the Eqs. (86), (87), which determine the critical exchange gc , are identical to
those obtained by Abou-Chacra et al. [92] for the delocalization of non-interacting particles, within
the so-called ‘‘Anderson upper limit’’ approximation. The latter consists in dropping self-energy
corrections, which is equivalent to the leading order approximation in hopping [14]. The coincidence
of these results is not very surprising, since the localization properties of fermions and hard core
bosons are very similar on the Cayley tree. In fact, to leading order in hopping, one considers only
forward scattering processes, and since the Cayley tree does not contain loops, the quantum statistics
of the particles is irrelevant at that order. Similarly, to leading order in the hopping, the dependence
of localization properties on frequency will not differ between fermions and hard core bosons, as we
will see in the following subsection.

6.3. Spatial decay rate in the paramagnet phase of the XY model

Let us now turn to the localization properties in the insulating phase (g < gc), where the locator
expansion is best controlled. We are interested in particular in determining whether there exists
an intensive mobility edge, i.e., an energy of order O(1) which separates localized from delocalized
excitations in the many body system, as claimed in Refs. [43,44].

In order study the decay process of a local excitation on the root 0, we couple our system to zero
temperature baths via the spins at the boundary @⇤ of the Cayley tree, cf. Fig. 4. On a Cayley tree,
there is only one shortest path between the root site 0 and any boundary site l. This simplifies the
analysis of decay rates significantly, since to leading order no path interferences need to be taken
into account. As discussed above, for K � 1 the leading order approximation captures rather well
the insulating phase, because it disfavors subleading corrections in g/K , which arise from paths with
transverse excursions.Within this approximationwe evaluate the decay rate of a local excitationwith
energy ! ' 2✏0 as

�0(!) =
X

l2@⇤

Y

i2Pl


2g/K

2✏i � !

�2

Jb(!). (91)
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As in the calculation of the surface susceptibility, the decay rate �0(!) can be seen as the partition
function for a directed polymer on the tree, whereby the squares of the locators 2g/K(2✏i � !) take
the role of random local Boltzmann weights.

The typical value �0 at fixed frequency ! is best characterized by its mean spatial rate of decrease,

�XY(!) ⌘ � lim
L!1

1
L
log


�0(!)

Jb(!)

�

= �

log

⇣ g
K

⌘
+ min

x2[0,1]
f!(x)

�
, (92)

where the function f!(x) is defined by

f!(x) = 1
2x

log
✓
K

Z 1

�1

1
|✏ � !/2|2x

d✏
2

◆
. (93)

Notice that due to the assumed symmetry of the onsite disorder distribution, we have f�!(x) = f!(x),
so it suffices to study ! > 0. Suppose again that f!(x) takes its minimum on the interval [0, 1] at
x = xc . Due to the small denominators arising from sites with ✏i ! 0, Eq. (93) is well-defined only for
x < 1/2 and thus xc must be less than 1/2. Further belowwewill discuss however that this restriction
does not apply when the resonant levels are regularized by self-energy corrections.

6.3.1. Search for a mobility edge
�XY(!) controls the decay or growth of �0(!) with L. Clearly, as long as �XY(!) > 0, the typical

value of �0(!) is exponentially small as L ! 1, which implies that an excitation of energy !
is localized and does not decay into the bath in the thermodynamic limit L ! 1. Instead, the
delocalization of an excitation with energy ! occurs at the point where

0 = �XY(!) = log
⇣ g
K

⌘
+ min

x2[0,1/2]
f!(x). (94)

By minimizing the function f!(x) with respect to x, one obtains the two simultaneous conditions for
! and x = x! ,

1 = K
2

⇣ g
K

⌘2x!
Z 1

�1

1
|✏ � !/2|2x! d✏, (95)

log
⇣ g
K

⌘
= K

2

⇣ g
K

⌘2x!
Z 1

�1

log(|✏ � !/2|)
|✏ � !/2|2x! d✏. (96)

However, one finds that on the disordered side of the transition, g < gc , there is no ! > 0 such that
Eqs. (95) and (96) are satisfied simultaneously. In other words, at this order of perturbation theory
there is no indication of a critical energy (mobility edge) abovewhich excitations are delocalized in the
insulator. Rather, the excitations with intensive energy are all localized in the quantum paramagnet
(Bose insulator). Moreover, we find that in the whole localized phase, g < gc, �XY(!) > �XY(0) for
any 1 � |!| > 0, cf. Fig. 5.

6.3.2. Comparison with earlier studies
The above results contradict those reported in Refs. [43,44]. On a technical level, the difference

between the two results arises because in Refs. [43,44] the authors restricted the on-site energies ✏i
to be positive, and postulated a matrix element of the form

Q
i

h
2g/K

2|✏i|�!

i2
as in Eq. (91). However, the

former can be imposed only for the Ising model without restricting generality. On the other hand, the
Isingmodel requires the use of a differentmatrix element than in (91), see Eq. (106). Hence, the actual
calculation neither applied to the XY nor to the Ising model.

As the results predicted from that calculation lead to qualitatively different results from ours, it
is instructive to analyze in more detail the reasonings and pitfalls which may lead to it. The above
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Fig. 5. Spatial decay rate of excitations in the XY model as a function of frequency !. The two curves correspond to exchange
constants g/gc = 2/3 and 4/5 (� = log(3/2) and log(5/4)), respectively, evaluated on a Cayley tree of connectivity K = 2. The
lowest frequency excitations have the slowest decay rate with spatial distance.

form of the matrix element was probably guessed from perturbation theory where spins are flipped
progressively along the path—even though this yields a decay rate which is 2L times smaller than
Eq. (91). Such a guess can be motivated by viewing spin flip propagation as a linearly progressing,
single-particle like process. However, in reality the process is much more complex, because virtual
intermediate states with many spin flips contribute as well. A flavor of this may be obtained from the
non-trivial example treated in the Appendix via standard perturbation theory.

A similar thinking underlied the reasoning in Ref. [53] where it was argued that excitations close
to the chemical potential should be more localized than at higher intensive energies. The idea was
that such excitations behaved as if they were at a band edge of a single particle problem, given that
any local excitation costs a positive energy. For an Ising model, this idea is equivalent to restricting
virtual states of the perturbation theory to states with only one single spin flip, and thus leads to
the incorrect conclusion that the localization length should always increase with increasing energy.
A similar reasoning for XY models or hard core bosons would impose an artificial restriction of
perturbation theory to intermediate states where only one extra boson is allowed to be placed on
a formerly empty site, with no rearrangements of other particles. However, this is incorrect since
it neglects the indistinguishability of particles and the resulting exchange effects. This is seen most
easily by considering a non-interacting disorder Fermi sea (Anderson insulator), where an analogous
restriction of perturbation theorywould lead to the obviously incorrect conclusion that the excitations
are most localized at the Fermi level.

6.3.3. Decay rate close to criticality
Let us now study the behavior of �XY(!) for small ! close to the critical point, within the leading

order perturbation theory. For 0 < ! ⌧ 1, we may expand

f!(x) = 1
2x

log
K

1 � 2x
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+ o(!2). (97)

Using this close to the critical point, we deduce the frequency dependence of the spatial decay rate as

�XY(!; g = gc) = �

log

⇣ g
K

⌘
+ min

x2[0,1/2]
f!(x)

�

' � +
✓
1
2

� xc
◆ ⇣!

2

⌘2
, (98)



X. Yu, M. Müller / Annals of Physics 337 (2013) 55–93 81

where we recall the definition � = log
�
Jc,XY/J

�
= log

�
gc,XY/g

�
, measuring the distance to criticality.

Here the parameter xc satisfies df!=0/dx(x = xc) = 0. At criticality this becomes

log
⇣gc
K

⌘
+ 1

1 � 2xc
= 0, (99)

upon using the condition of criticality, log
� gc

K

�
+ f!=0(xc) = 0. However, in the next subsection,

Eq. (105), when taking into account the most important subleading corrections, we will find a
coefficient of the term ⇠!2 which is differs from Eq. (98).

6.4. Self-energy corrections in the XY model

Notice that Eqs. (95) and (96) are identical to the condition for a single particle delocalization
transition on a Cayley tree, if the real parts of the local self-energies are neglected in that problem [92].
It iswell-known [14] that themain physical effect of those self-energies is tomoderate the influence of
strong resonances due to sites with ✏i ⇡ !/2. Those lead to large self-energies⌃(!) ⇡ J2/(✏i �!/2)
on the neighboring sites, producing a large denominator in the locator expansion, which tends to
neutralize the effect of the resonance. As we will recall below the inclusion of this effect corrects the
location of the transition point by a factor e/2 in the limit of large K , but is of little further consequence
for delocalization [14,92,96]. A simple, but quite accurate way to take into account such self-energy
effects,which arise in higher order of perturbation theory, [54] is sometimes referred to as ‘‘Anderson’s
best estimate’’. It consists in modifying the local density of states by excluding sites with energies
closer !/2 than a distance

� ⌘ J2 = (g/K)2, (100)
since those tend to self-neutralize. This leads to a modification of the function f!(x) as

f �! (x) = 1
2x

log

K

Z
⇢�(✏)

|✏ � !/2|2x d✏
�

. (101)

Here ⇢�(✏) ⌘ ⇥(|✏ � !/2| � �)⇢(✏) simply excludes paths through sites with strong resonances.
With this modification one finds that f �!=0(x) is minimized by xc = 1/2 and thus

min
x2[0,1/2]

f �! (x) = log K + log

2 log

✓
K
g

◆
� 1

2

⇣!
2

⌘2
+ o(!2)

�
. (102)

Using that df �!=0/dx(xc = 1/2) = 0, this approximation gives the modified condition for
delocalization (critical exchange gc) at ! = 0

K = gc,XY exp
✓

1
2gc,XY

◆
. (103)

At large K , this tends to

gc,XY ⇡ 1
2

1
log K

, (104)

which modifies Eqs. (89), (90). For single particles the above results have been rigorously proven to
give the correct leading asymptotics at large connectivity K [92,93,97]. Considering that the leading
terms and the dominant subleading corrections are the same for hard core bosons, it is very likely that
the same leading asymptotics holds rigorously for hard core bosons as well [54].

Close to the critical point, g = gc,XY, we extract from the above the frequency-dependent decay
rate

�XY(!) ' � + 1
4 log(K/gc,XY)

⇣!
2

⌘2
. (105)

Note that at large K the prefactor scales as 1/ log K , as also predicted by the calculation that neglected
self-energy effects, cf. Eqs. (98), (99). However, the numerical prefactor is different. We will analyze
the range of validity of Eq. (105) further below.
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6.5. Spatial decay rate in the Ising paramagnet to leading order in J

Let us now analyze the Ising model in turn and contrast it with the XY model. The relevant matrix
element hGS|� x

l |E0i for the Ising model is given by Eq. (27). Hence, the decay rate of a local excitation
with energy ! at site 0 can be written as

�0(!) =
X

l2@⇤

Y

i2Pl


✏i g/K

✏2i � (!/2)2

�2

Jb(!). (106)

Similarly as in the XY model, we obtain

�Ising(!) ⌘ � lim
L!1

1
L
log


�0(!)

Jb(!)

�

= �

log

⇣ g
K

⌘
+ min

x2[0,1]
h!(x)

�
, (107)

where the function h!(x) is now given by

h!(x) = 1
2x

log

"

K
Z 1

�1

����
✏

✏2 � (!/2)2

����
2x d✏

2

#

. (108)

Delocalization at energy ! occurs when �Ising(!) = 0. We find again that in the paramagnetic phase
(g < gc) no finite ! > 0 satisfies this condition. This implies that at finite energies, excitations are
localized in the disordered phase, similarly as in the XY model.

For 0 < ! ⌧ 1, by expanding h! around ! = 0, one finds

h!(x) = 1
2x

log
⇢
K


1

1 � 2x
� 2x

1 + 2x

⇣!
2

⌘2
+ o(!2)

��

= 1
2x

log
K

1 � 2x
� 1 � 2x

1 + 2x

⇣!
2

⌘2
+ o(!2). (109)

A correction of order !1�2x which one might expect at first sight, can be shown to cancel.
Close to the critical point, g = gc , we finally obtain the frequency-dependent decay rate

�Ising(!) = �

log

⇣ g
K

⌘
+ min

x2[0,1/2]
h!(x)

�

= � + 1 � 2xc
1 + 2xc

⇣!
2

⌘2
+ o(!2), (110)

where xc is determined by dh!=0/dx(x = xc) = 0, and is related to gc by the condition for criticality,

h!=0(xc) = 1
1 � 2xc

= � log
⇣gc
K

⌘
. (111)

However, as we will see in Section 6.7, this leading order result is substantially modified by non-
perturbative corrections.

6.6. Critical point of the Ising model

Note that Eq. (111) leads to the same expressions for gc and xc as derived above in Eq. (89) for the
XY case. However, as we will argue in the following subsection the leading asymptotic expression for
gc in Eq. (90) is not renormalized by higher order corrections, unlike in the XY case. This implies that
on the Cayley tree,

gc,Ising ⇡ 2
e
gc,XY ⇡ 1

e log K
, for K � 1. (112)
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Upper bound of the decay rate

Decay rate along the optimal path at finite

Fig. 6. (Color online) Spatial decay rate � as a function of frequency ! for the Ising model at the transition point for a tree
branching ratio K = 2. � is strictly positive for ! > 0. The red solid line shows the decay rate along a rare path with a biased,
!-dependent disorder distribution (116). The blue dashed line shows the upper bound obtained by restricting the propagation
to a path P0 with distribution (113) which is optimal for propagation ! = 0. At low energy, the two estimates nearly coincide
and exhibit the activated scaling 1/| log(!)| ; cf. Fig. 7.

In other words, the Isingmodel orders atweaker exchange than the XYmodel, given an equal strength
of random field disorder. This essentially reflects the fact that propagation of order in the Ising model
is stronger at! = 0, as resonances at low energy are not softened by self-energy effects, unlike in the
XY model.

We conjecture that the ratio gc,Ising/gc,XY ⇡ 2/e yields a good estimate for the ratio of critical points
in the limit of high dimensional lattices.

6.7. Effects from rare regions on spatial decay rates in the Ising paramagnet

Note that so far our analysis for frequency dependent decay rates in the Ising model was restricted
to the leading order in exchange. This yielded corrections � (!)�� (0) ⇡ A!2 for both the Isingmodel
and the XY model, with a coefficient A, which is only slightly bigger in the Ising case.

However, from the 1-dimensional Ising chain studied in Section 5, it is clear that for the Isingmodel
we should expect strong corrections to this quadratic behavior, because of the special role played
by ! = 0 and the analogue of the rare stretches that we identified in 1d. The effect of subleading
corrections in the Ising model is indeed quite different from the XY case. As we argued in Section 5.6,
and as also appears clearly from the explicit calculations in the 1d chain, self-energy corrections
are essentially absent in the limit ! ! 0, while they do appear at finite !. On the other hand, as
we discussed above for the XY model, the regularizing self-energy corrections along the dominant
delocalizing path at ! = 0 are responsible for the leading corrections to the decay rate, both in free
fermions and in the XY model [92,97]. Since such self-energy corrections are absent along 1d Ising
chains, we expect that the first corrections to gc,Ising will be subleading in the large K limit. Hence we
expect that Eq. (112) captures the correct asymptotics for the critical point of the Ising model.

To assess the effect of rare regions on excitations at finite energy, we need to study the spatial
decay rate of finite energy excitations. One expects that such excitations still decay preferentially
along one preferred path, which optimizes the Lyapunov exponent at that given frequency. However,
this path in general depends on the frequency, and thus is not necessarily identical to the path P0
which optimizes propagation at ! = 0. Nevertheless, by restricting the analysis of propagation to
P0 we obtain an upper bound on �Ising(!). This bound turns out to be rather tight at very low !, as
we confirmed by comparing it with a calculation where the paths are optimized for each frequency
individually, cf. Fig. 6.
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Fig. 7. (Color online) The same data as in Fig. 6, plotted against 1/| log(!)| at low energy. The two estimates nearly coincide
and exhibit the activated scaling 1/| log(!)| with  = 0.98 ± 0.01.

6.7.1. Biased energy distribution on optimal paths (! = 0)
Let us first point out some interesting properties of the optimal path P0. It is physically intuitive

that the path at! = 0will have a non-uniform distribution of on-site energies, peaked around ✏i = 0.
More precisely, by exploiting the mapping to directed polymers, and using the exact solution by
Derrida and Spohn [95], one can show that the onsite energies along the optimal path are distributed
according to the density

⇢(✏) = 1 � 2xc
✏2xc

, for ✏ 2 [0, 1]. (113)

This follows from the observation that the locators 1/✏ take the role of local Boltzmannweights of the
directed polymer. In the frozen phase of the polymer, where a single path dominates, the distribution
of visited ✏’s is the same as that in a high temperature phasewith an effective temperature Teff = T/xc ,
i.e., with correspondingmodified Boltzmannweights 1/exc [95]. Hereby, Teff is the temperaturewhere
the freezing transition occurs, which is the last temperature where an annealed calculation of the
partition function can be used. From the latter it follows that sites with given locators are visited
by the polymer with a probability proportional to their modified Boltzmann weight, which implies
Eq. (113) [98]. Using this distribution of onsite disorder along the optimal path, the criterion
Eq. (55) for the critical point on this path correctly yields the critical exchange gc,Ising of Eq. (112),
as it must be.

It is instructive to obtain this result in a different way, which is generalizable to finite frequencies.
Anticipating that delocalization occurs along the most favorable path, we should find rare paths of
probability P ⇡ 1/KL with optimally biased distribution of onsite energies, such that the Lyapunov
exponent is maximized. Let ⇢(✏) be that distribution. The probability P⇢ of finding a path of length L
with such a biased distribution is given by the relative decrease in entropy as compared to the uniform
distribution found on typical paths,

ln(P⇢) = L
Z 1

0
d✏⇢(✏) ln[⇢(✏)]. (114)

Neglecting, as previously, the small corrections from sites adjacent to the path [99] the Lyapunov
exponent at ! = 0 is simply

�⇢(! = 0) =
Z 1

0
d✏⇢(✏) ln(J/✏). (115)

Maximizing this with respect to ⇢ under the constraint ln(P⇢)/L = � ln(K) yields back the power law
distribution (113).
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6.7.2. Optimal paths at finite !—activated scaling
To optimize the propagation path for finite energy excitations ismore complex, since at finite! the

Lyapunov exponent along a path is not simply the logarithmof a product of factors on each site, but the
eigenvalue of a product of non-commutingmatrices. This implies that the Lyapunov exponent not only
depends on the distribution of energies along the path, but also on their sequence and correlations.
Wewill neglect this fact and optimize with respect to distributions ⇢(✏), which are uncorrelated from
site to site. However, since the Lyapunov exponent cannot be expressed simply as a functional of ⇢,
we estimate � (!) by the Ansatz, generalizing (113) to

⇢!(✏) = A
|! � ✏|� . (116)

Hereby A and � have to be determined by the normalization condition and the requirement that
a path with this atypical distribution can be found with finite probability among the KL paths, i.e.,
ln(P⇢)/L = � ln(K). The resulting decay rate � (!) is plotted in Fig. 6 for K = 2. We show the
data together with the upper bound obtained from the decay at finite ! on the path P0 with energy
distribution (113). At very low energies the two estimates nearly coincide, cf. Fig. 6.

To discuss the off-critical behavior at low frequencies, we therefore restrict ourselves to the fixed
pathP0 which is optimized for! = 0. Using Eqs. (73), (76) for the Lyapunov exponent along this fixed
path, and the relation (99) we obtain the equation

log
✓
1 � ↵

1 � 2xc

◆
+ ↵

✓
1

1 � 2xc
+ �

◆
= 0 (117)

for the exponent ↵, which governs the non-analytic correction

� (!) � � (0) = O(!↵). (118)

As previously, the distance from criticality is defined as � = log(Jc/J). Close to the transition point
↵ ' 2(1�2xc)2�, which vanishes at criticality. This suggests that the non-analytic correction vanishes
more slowly than any power law as ! ! 0. Therefore, we expect the critical scaling to be activated
with

�Ising(!) = ⇠�1
Ising(!) / 1

| log(!)| . (119)

This is in agreement with the empiric observation of infinite randomness fixed points in Ising models
on Erdös–Rényi graphs [71].

We fit the expected law (119) to the data obtained for � (!) at low !, along optimized paths with
biased distributions of the form (116). This yields an exponent  ⇡ 0.98 ± 0.01. This exponent is
consistent with the value  = 1, which we obtained rigorously for 1d chains. In Fig. 8 we show data
for � (!) evaluated on P0, illustrating that the essentially linear behavior in 1/ log(!) is essentially
independent of the branching ratio K .

The exponent = 1 is expected fromscaling considerations. Let us suppose that close to criticality,
at low!, � assumes a scaling behavior. From Eq. (118) we expect that � = �+ const·!↵ with ↵ / �.
This suggests, in analogy to Eq. (66), that there should be a scaling limit, � ! 0 and ! ! 0, whereby
�| log(!)| is kept constant, and �Ising(!) tends the following scaling form

�Ising(!) ! �f (�| log!|). (120)

The scaling function f (x) should behave as f (x) ! 1+ a exp(�bx) for x � 1, with positive constants
a and b.

To obtain a finite limit when � ! 0, f (x)must behave as⇠1/xwhen x ! 0, fromwhich one infers
the

�Ising(!; � = 0) ⇠ 1/| log!|. (121)
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Fig. 8. Inverse of the localization length in the Ising model as a function of frequency !. It is evaluated at the critical point
for connectivity K = 2, 3 along the path that optimizes propagation at ! = 0. The numerical data is fitted to a logarithmic
dependence ⇠�1

Ising(!) ⇠ 1
| log(!)| , yielding values  ' 0.98 ± 0.01 consistent with the expected  = 1, independently of K .

6.7.3. Ising vs. XY model—comparison with finite d
On the Cayley tree the decrease of the localization length with increasing ! in the critical Ising

model is thus much faster than in the critical XY model. This matches with what is known in finite
dimensions from various numerical approaches. Indeed, the Ising model in strong random field dis-
order is known to be governed by infinite randomness fixed points, both in low dimensions [69,70]
and in the infinite-dimensional limit of random Erdös–Rényi graphs [71]. The infinite randomness
fixed points exhibit activated scaling, which implies that at criticality the inverse localization length
grows only logarithmically with energy, ⇠typ = ��1 ⇠ | log(!)| . In contrast, XY models in dimen-
sions d > 1 were found to exhibit power law scaling ⇠typ = ��1 ⇠ !�1/z [68]. As we will discuss
next, however, our calculation for the XY model on the Cayley tree does not apply at finite frequen-
cies at criticality, and thus does not allow us to infer the dynamical exponent z in the limit of infinite
dimensions.

6.8. Range of applicability of the results close to criticality

At this point we should recall the limits of validity of the locator expansion onwhich the above cal-
culations are based. Far from criticality, the localization properties of intensive excitations (i.e., excita-
tions at T = 0) arewell described by loworders of perturbation theory, once the physics of resonances
has been taken into account. However, close to criticality, one has to be more careful, as the conver-
gence of the perturbation expansion is much slower, which requires an analysis of the contributions
from significantly higher orders in perturbation theory.

This is well illustrated by the discussion of a simple condition which the localization length as
a function of ! must satisfy. Suppose a finite energy excitation of energy ! splits effectively into
n independently propagating excitations of energy !n, which do not interfere with each other at
large distances. This is one possibility of a high order process, which goes beyond the calculations
presented above. Indeed it only occurs at ordersO(JnL) of perturbation theory for correlation functions
at distances L. Supposing that excitations of energy! decay in space with rate � (!), n independently
propagating packets of energy will decay as a whole like exp[� Pn

i=1 � (!i)L]. For large distances this
propagation mode yields a lower bound for the decay rate of an excitation of energy ! = Pn

i=1 !i.
Applied to the spin models considered here, we thus obtain the consistency condition

� (!) 
nX

i=1

� (!i), ! =
nX

i=1

!i, (122)
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for all odd integers n > 1 (since a single spin flip can only split into an odd number of individually
propagating excitations, due to parity conservation).

The result (119) for � (!) in the Ising model satisfies this inequality by large in a broad range of
low frequencies, at any distance � from criticality.We thus do not expect that higher order corrections
modify the results obtained in previous sections for low frequencies, even very close to criticality. In
particular this seems to preclude the possibility that the Ising transition coincides with the closing
of a mobility gap in the paramagnet. Instead our result suggests that the Ising order emerges by a
delocalization phenomenon at! = 0, while all low energy excitations (in a fixed finite range) are still
localized in the paramagnet.

In contrast, the result for hard core bosons (XY model) has a more restricted range of applicability.
A behavior of the form � (!) = � + C!2 as predicted by Eq. (105), is certainly valid without serious
restrictions for non-interacting fermions. However, for interacting hard core bosons it is consistent
with Eq. (122) only in the low frequency range

0  ! .
p
�/C, (123)

which vanishes upon approaching the transition, � ! 0. This indicates that much higher orders
processesmust be studied to describe the localization properties of finite energy excitations very close
to criticality in the XY model.

Nevertheless, we conjecture that the parabolic increase of the decay rate � with frequency does
hold in the range (123). This is almost certain for large enough �, due to the fast spatial decay of
excitations in that regime. However, a rigorous proof for small � would require an involved analysis
of the propagation of several lumps of energy !n and their scattering from each other, to ensure that
the latter does not significantly enhance the delocalization tendency of the considered excitation.
While we cannot exclude this possibility, it does not seem plausible to us at low enough energies, due
to the lack of phase space for such scatterings.

This then suggests that at any finite �within the paramagnet � (! = 0) is locallyminimal at! = 0.
However, due to the restricted range (123) of applicability of our results for the XY model, we cannot
firmly exclude the presence of many bodymobility edges at some!c(�) >

p
�/C , which nevertheless

might tend to zero as � ! 0. The possibility of a finite energy mobility edge in similar spin models
has been suggested by numerics on small random graphs [100], which is however subject to several
caveats [37].

Finally, we shouldmention here that suchmobility edges do exist almost trivially if the distribution
of onsite energies is not flat at the chemical potential, but has a substantial slope. This allows for better
hybridization, that is, enhanced propagation of excitations at higher energies. It is then easy to show
from the formulas in the previous subsections, that excitations at high enough energy are delocalized
while lowest energy excitations are still localized. The non-trivial content of our results discussed
above consists in predicting that in the paramagnetic phase, close enough to ! = 0 the localization
length always decreases with increasing !, if the density of bare disorder is uniform in a sufficiently
wide interval.

7. Nature of the ordering transition and fractality

As mentioned in Section 6.2, the value xc which minimizes the functions f (x) = f!=0(x/2) (Ising)
and f �!=0(x/2) (XY) determining the static surface susceptibility, actually contains physical meaning.
If at the critical point, where f (xc) = 0 one finds xc < 1, the response to a symmetry breaking field
applied at the surface is dominated by a finite number of different paths. In contrast, for xc = 1 an
infinite number of paths contributes to the response in the thermodynamic limit. More precisely, in
the thermodynamic limit 1 � xc is known to be equal to the disorder average of the following double
sum over boundary sites [95]

1 � xc =
X

l,l0

(q) wlwl0 , (124)
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where wl is the relative weight of the path from the root to site l in the total surface susceptibility,

wl = Gl,0(! = 0)P

l0
Gl0,0(! = 0)

. (125)

The sum
P(q)

(· · ·) in Eq. (124) restricts the sites l, l0 to pairs whose first common ancestor is not
too close to the root, but at least a finite fraction q of the diameter L from it. In analogy to spin glass
problems, q is called the overlap between the paths leading to l and l0, respectively. Remarkably, the
result (124) was shown to be independent of the value chosen for the overlap 1 > q > 0. This is
possible because in the thermodynamic limit the relevant contributions are due to pairs of sites with
overlap q ! 1. Those belong to small clusters of sites, different clusters being very far from each
other, with mutual overlaps q ! 0 between paths ending in different clusters.

The above thus allows one to rewrite 1 � xc more suggestively as an inverse participation ratio of
cluster contributions,

1 � xc =
X

C

w2
C, (126)

where wC = P
i2C is the weight of the cluster C.

The Ising and XY models crucially differ, as 1 � xc is finite for the first and vanishes for the latter.
Indeed, we have argued that for the Ising model the minimum occurs at xc < 1, implying that
the ordered state develops on a very sparse subgraph of the lattice, which essentially corresponds
to a finite number ⇠1/(1 � xc) of narrowly clustered paths. In contrast, in the XY model we have
argued that self-energy corrections bring the minimizing value of x to xc = 1. This implies that the
incipient transverse order establishes on a less sparse subgraph, since infinitelymany clusters of paths
are implicated in establishing it. Nevertheless the forming condensate is still very inhomogeneous.
Indeed, the number of paths contributing to the susceptibility (as defined by the inverse of (124)),
even though infinite in the thermodynamic limit, is still much smaller than the total number of paths
(⇠KL). In fact, it does not even grow exponentially with the diameter of the tree, the configurational
entropy of paths being proportional to df �!=0/dx(x = xc/2) = 0, which vanishes, because xc = 1 is a
local minimum of f �! = 0.

The fact that special paths tend to dominate the propagation in disordered quantum systems
was already anticipated by Anderson in his seminal paper on single particle localization, whereby
he assumed statistical independence of different paths [14]. While the latter turns out to be almost
literally true on the Cayley tree [92,101], propagation paths in finite dimensions are much more
correlated [102]. Nevertheless, one should probably consider the sparsity (and multifractality) of
critical wavefunctions in finite-dimensional Andersonmodels [46] as a remnant of themuch stronger
dominance by a few single paths on the Cayley tree.

Such fractality should not be specific to non-interacting problems. In fact, it is natural to expect
multifractality also at many body ordering transitions in the presence of strong enough quenched
randomness. A known example of such a phenomenon is the phase transition in classical disordered
Pott’s ferromagnets in 2d [103,104]. A real space RG study [69] of the random transverse field
Ising model in 2d also suggested that order sets in on a percolating cluster of fractal dimension
df ⇡ 1.

In order to define more precisely the concept of (multi)fractality of an emerging long range order,
we propose as a natural object of study the spatially resolved response to a transverse field  i =
dhsxi i/dhx [105]. At the critical point,  i is expected to behave similarly to a critical wavefunction at a
single particle Anderson transition. In particular, we expect multifractality in the form

P
i

| i|2q
✓P

i
| i|2

◆q / L�dq(q�1) (127)

with non-trivial fractal dimensions dq < d, L being the linear size of the d-dimensional system.
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Our result on the Bethe lattice, namely that the sparsity of the critical Ising condensate is more
pronounced than that of the XY condensate, leads us to conjecture that on finite dimensional lattices
the above defined fractal dimensions will be larger for XY models than for Ising models,

dIsingq  dXYq , (128)

with strict inequalities at least in some range of q-values. It would be interesting to check this
prediction numerically.

8. Conclusion

The two spin models considered in this paper – the random transverse field Ising model and the
XY model (hard core bosons) in disorder potentials – turn out to behave rather differently. They have
in common, that in the paramagnetic phase, with a uniform, unbiased disorder distribution, at low
! the localization length tends to decrease with increasing !. However, this increase is much more
dramatic for Ising models than for hard core bosons. This is due to the Ising symmetry which protects
resonances at low frequencies, while self-energy corrections regularize resonances in the XY model,
similarly as in free fermion models. This difference is at the root of the activated critical scaling at the
Ising transitions, whereas we expect standard power law scaling in the XY model.

The strong decrease of the localization lengthwith increasing energy in the Ising case suggests that
the ordering transition can be analyzed without resorting to very high orders in perturbation theory.
Under this assumption we found that order establishes due to a delocalization phenomenon that is
initiated at! = 0, while excitations at small but finite! are still rather strongly localized. For uniform
disorder we did not find evidence that there are any high energy (but intensive) excitations which are
already delocalized at this point. However, we cannot exclude it, as such delocalization phenomena
might only show up at high energies, in much higher orders of perturbation theory than we analyzed
here. It would be interesting to study the evolution of localization or diffusion properties of finite
energy excitations just slightly within the Ising ordered phase.

On a Cayley tree, themagnetic order is found to appear first on an extremely sparse subgraph,much
sparser than for the equivalent ordering transition in the XY model. We expect that this difference
also persists in finite dimensions, where we conjecture Ising condensates to emerge on percolating
structures with lower fractal dimensions than their XY counterparts.

In equivalent random field disorder we found that XY models order only at stronger exchange
couplings than Ising systems, because resonances at low energies are regularized, unlike in the
Ising models. In the XY case, however, the critical regime cannot faithfully be studied at the orders
of perturbation theory considered here, as the controllable frequency range shrinks to zero upon
approaching criticality. It remains an interesting open problem to describe the dynamics of finite
energy excitations in a (nearly) critical XY system. In particular, we expect the diffusion of an initial
energy packet to be significantly more complex than in an Ising model. The differences between hard
core bosons and fermions with respect to such delocalization transitions also remain an interesting
subject for further study.
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Appendix. Ising chain with three spins

As a non-trivial check of the result of the locator expansion Eq. (28), we calculate the matrix
element hGS|� x

l |E0i for a three spin chain by standard perturbation theory. Without loss of generality
we may suppose that ✏i > 0. Then |GS(0)i = | """i and |E(0)

0 i = ��
0 |GS(0)i = | #""i.
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We now evaluate hE0|� x
2 |GSi by standard perturbation theory. The Hamiltonian is

H = �
2X

i=0

✏i�
z
i � t

1X

i=0

� x
i �

x
i+1. (A.1)

We treat the exchange term HI ⌘ �t
P1

i=0 �
x
i �

x
i+1 as a perturbation and denote the matrix element

Hkl
I ⌘ hE(0)

k |HI |E(0)
l i. The perturbed eigenstates adiabatically connected to |E(0)

GS i and to the excited
state |E(0)

0 i are

|GSi = |E(0)
GS i � t

X

k6=GS

HGSk
I

E(0)
GS � E(0)

k

|E(0)
k i + t2

X

k6=GS

X

l6=GS

Hkl
I H

GSl
I

(E(0)
GS � E(0)

k )(E(0)
GS � E(0)

l )
|E(0)

k i

� t2

2

X

k6=GS

|HkGS
I |2

(E(0)
GS � E(0)

k )2
|E(0)

GS i + O(t3)

= | """i � t
✓

1
�2✏0 � 2✏1

| ##"i + 1
�2✏2 � 2✏1

| "##i
◆

+ t2
✓

1
(�2✏0 � 2✏2)(�2✏0 � 2✏1)

+ 1
(�2✏0 � 2✏2)(�2✏1 � 2✏2)

◆
| #"#i

� 1
2

✓
1

(2✏0 + 2✏1)2
+ 1

(2✏2 + 2✏1)2

◆
| """i

�
+ O(t3)
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For the excited state |E0i we find similarly
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where

A = 1 � t2

2

✓
1

(2✏0 � 2✏1)2
+ 1

(2✏1 + 2✏2)2
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,
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2✏0 � 2✏2

✓
1

2✏0 � 2✏1
+ 1

�2✏1 � 2✏2

◆
.

For the matrix element of the bath operator � x
2 between the excited and ground states we thus obtain

hE0|� x
2 |GSi = AH + BG + CF + DE + O(t3)

= H + BG + CF + D + O(t3). (A.6)

Combining the second term of H with BG and the second term of D with CF , the resulting four terms
can be factorized into the form

hE0|� x
2 |GSi =

✓
t

2✏1 � !
+ t

2✏1 + !

◆ ✓
t

2✏2 � !
+ t

2✏2 + !

◆
+ O(t3) (A.7)

with ! = 2✏0 being the excitation energy. This coincides precisely with the result of the locator
expansion, Eq. (28).
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