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Collision-dominated conductance in clean two-dimensional metals
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We study the temperature-dependent corrections to the conductance due to electron-electron (e-e) interactions
in clean two-dimensional conductors, such as lightly doped graphene or other Dirac matter. We use semiclassical
Boltzmann kinetic theory to solve the problem of collision-dominated transport between reflection-free contacts.
Time-reversal symmetry and the kinematic constraints of scattering in two dimensions (2D) ensure that inversion-
odd and inversion-even distortions of the quasiparticle distribution relax with parametrically different rates at
low temperature. This entails the surprising result that at lowest temperatures the conductance of very long
samples tends to the noninteracting, ballistic conductance, despite the relaxation of the quasiparticle distribution
to a drifting equilibrium. The relative correction to the conductance depends on the ratio of relaxation rates of
even and odd modes and scales as δG/Gballistic ∼ (T/εF )

√
log ( εF

T
), in stark contrast to the behavior in other

dimensionalities. This holds generally in 2D systems with simply connected and convex but otherwise arbitrary
Fermi surfaces, as long as e-e scattering processes are dominant and umklapp scattering is negligible. These
results are especially relevant to the bulk of wide and long suspended high-mobility graphene sheets.
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I. INTRODUCTION

Recent experiments on suspended single-layer graphene
[1–3] and on conventional two-dimensional electron gases
(2DEG) [4–9] have reached very high levels of purity and
thus high mobilities. This has raised interesting questions as
to the role of electron-electron interactions in such systems,
especially in Dirac or Weyl materials such as graphene, as
well as in other ultraclean 2D (semi)metals. Those systems
are of particular interest because the electron-electron (e-e)
interactions compete differently with the kinetic energy than
in conventional materials with quadratic dispersion, where the
interactions are significant only at low carrier density. In con-
trast, in graphene, on the 2D surfaces of three-dimensional (3D)
topological insulators, or on 2D system where the dispersion
close to a Dirac or Weyl point at the Fermi level is linear,
the interactions remain significant at all densities [10,11].
Although the carrier concentration in a conventional 2DEG in
semiconductor heterostructures can in principle be tuned down
by gate voltage, it is very challenging to exhibit the effect of
e-e interactions on charge transport, because at the relevant
low densities transport tends to be dominated by impurity
scattering, e.g., from random charges at the interface between
the 2DEG and the substrate [12–14]. The availability of very
clean suspended 2D materials such as graphene, with mean
free paths of the order of microns [1–3] and with significant
e-e interactions, has thus made it possible to investigate
regimes in which e-e scattering dominates all other scattering
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channels. This so-called collision-dominated regime occurs at
intermediate temperatures. On one hand, the temperature has
to be high enough such that the inelastic scattering rate due
to e-e interactions, τ−1

ee (T ), is much greater than the elastic
scattering rate due to impurities [12–16]. On the other hand,
the temperature has to be low enough so that electron-phonon
scattering [17–21] is still subdominant. In cases (such as in
lightly doped graphene) where the structure of the Fermi
surface and the dominant interactions are such as to suppress
umklapp scattering [22,23], the total momentum of the electron
fluid is essentially conserved by the translation-invariant e-e
interactions. The electron fluid in the collision-dominated
regime then behaves like a hydrodynamic fluid [24–28].

A. Interaction-dominated, collective transport
in electron systems

The hydrodynamic description yields insight into the be-
havior of electronic current flow in the bulk of relatively large
spatial structures with nontrivial geometries and boundary
conditions [29]. Lateral boundaries affect the transport prop-
erties by breaking the momentum conservation and providing
a source of friction. In highly viscous fluids (low Reynolds
numbers), nonlinear phenomena like turbulence do not arise,
and the electron flow will be steady. In this case, the com-
bined effect of momentum-conserving e-e and nonconserving
diffusive boundary scattering [30] leads to interesting phe-
nomena such as the Gurzhi effect, an electronic analog of
Poiseuille flow which has a counterintuitive impact on the
longitudinal conductivity. In this regard, superballistic flow
exceeding upper bounds established for the conductance of
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noninteracting systems has been reported and was attributed
to the collective motion of interacting electrons which reduces
momentum loss at the boundary [30–34]. Negative nonlocal
voltages appearing near current injection points due to spatially
inhomogeneous current flow and vorticity has been detected
in recent experiments on graphene [35–38]. However, these
anomalous interaction-dominated effects are prominent only
within the viscous boundary layer; outside that layer, the
flow is almost potential. In this article, we do not address
such viscous effects, as we consider a wide sample with
negligible impact from lateral boundaries. Our results are
therefore valid for the bulk of the sample far from lateral
boundaries where only momentum-conserving e-e scattering
leads to quasiparticle scattering and equilibration. Instead, we
address a situation where the hydrodynamic description fails,
namely in the vicinity of the contacts through which the current
enters and exits the sample, and where the electron liquid
is far from equilibrium. We address the deceptively simple
question: What is the conductance through a wide and very
long strip, in the regime where transport is collision dominated
and momentum is conserved? Hydrodynamic considerations
imply that far from the contacts and the boundaries, the electron
liquid should reach a drifting equilibrium state with a drift
velocity (and thus a current) proportional to the applied bias.
However, these considerations do not allow one to determine
the drift velocity as a function of the bias, since this requires the
matching of the bulk of the sample to the boundary conditions
at the contacts, which are outside the domain of validity of
hydrodynamics.

B. Conductance and conductivity in Dirac liquids

In Dirac liquids, where interactions are significant at all
densities, the question of interaction-dominated current flow
is interesting for a wide range of densities. In general, as
long as one can neglect momentum-degrading scatterings,
one expects a finite conductance independent of the length
of the strip (corresponding to infinite bulk conductivity, as
expected from the 1/ω pole in the frequency-dependent con-
ductivity σ (ω) obtained in hydrodynamics). However, when
the chemical potential lies at the Dirac point, a special situation
arises, since there the electric current induced by an electric
field will carry no total momentum, because of particle-hole
symmetry. Therefore, the electrical current can relax despite
the conservation of momentum [39,40]. In that case, a finite,
interaction-dominated conductivity arises (with a conductance
that decreases with inverse sample length according to Ohm’s
law), which was evaluated in Refs. [39–41]. Here instead, we
restrict our investigation to the effect of interactions on the
conductance of 2D systems at finite carrier density, away from
the Dirac point. Our study is in part motivated by experiments
on suspended graphene, where a length-independent conduc-
tance was reported in clean samples that were longer than
the estimated inelastic scattering length [1–3]. However, our
results apply equally well to the conductance in conventional
systems with parabolic dispersion, as long as interactions
provide the dominant scattering channel [18,42].

In the absence of interactions, in clean samples, electrons
propagate ballistically through the system, keeping a mem-
ory of the lead they originate from. Essentially the same

holds for weakly interacting systems which are much shorter
than the inelastic scattering length, linel = vF τee(T ). In such
short samples, in the presence of reflection-free contacts,
the conductance is given by the standard Landauer-Büttiker
formula, which sums the transmission probabilities of con-
ducting modes [43,44]. However, in longer samples of length
L > linel, the interactions modify the distribution function
within the sample, resulting in additional resistance, and thus a
decreasing conductance with increasing length [45]. In general,
the distribution function depends on the distance from the
leads. For long samples, L � linel, and with interactions that
conserve momentum, the distribution in the bulk will relax
to a drifting equilibrium which is stable under collisions. The
negative interaction correction to the ballistic conductance then
saturates to a length-independent value. The drifting equilib-
rium is characterized by a nonzero drift (or center-of-mass)
velocity vd , which, within linear response, is proportional to
the applied bias.

C. Collision-dominated conductance: 1D vs 2D

The conductance of interaction-dominated electronic sys-
tems and the emergence of a drifting equilibrium state in
long samples has previously been addressed for 1D systems
[45–49]. Reference [45] studied the effect of interactions on
the conductance in long wires, as well as the crossover between
short ballistic samples and long interaction-dominated wires.
An electron fluid in 1D is highly constrained by conservation
laws, and it was found that the temperature dependence
of the interaction-dominated transport could be determined
without specifying the interactions in any detail but purely by
exploiting those conservation laws. It was shown that in 1D,
relaxation occurs by decreasing the imbalance between right
and left movers, which involves multiple three-particle scat-
tering events. In these systems with parabolic dispersion, the
correction to the conductance was derived to be proportional to

L
L+leq

( T
μ

)
2
, where leq is an inelastic scattering or equilibration

length which becomes exponentially large at low temperatures.
The coefficient of the correction turned out to be the universal,
interaction-independent number π2

12 .
Here, we address the analogous question for 2D samples

which turns out to constitute a special and conceptually
interesting case. In contrast to 1D, the scattering processes
are far less restricted, and accordingly the solution is more
complex. A priori, one could expect the conductance to reflect
the strength and the characteristics of the specific interactions.
However, surprisingly, we find in this work that under cer-
tain general symmetry assumptions the interaction-induced
decrease of the low-temperature conductance invariably fol-
lows the temperature dependence T/εF [log(εF /T )]1/2, with
a coefficient independent of the strength of the interactions.
The coefficient merely depends on aspects such as the shape
of the Fermi surface and the range of the interactions. This
result strongly rests on the difference between even and
odd (under momentum inversion) distortions of the distri-
bution of quasiparticles from equilibrium, which in D = 2
dimensions have parametrically different relaxation rates at
low temperature [50,51]. Such a classification of modes is,
however, meaningful only in situations where the microscopic
scattering rates obey an inversion symmetry (invariance under
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kx → −kx), as, for example, in systems with time-reversal
symmetry and no significant spin-orbit coupling. Under these
conditions, head-on-collisions [42] make even modes relax
much faster than odd ones by an inverse power of temperature.
This reflects in the temperature-dependent correction of the
conductance, which scales as the square root of the ratio of the
two relaxation rates.

These results apply to generic 2D systems with the afore-
mentioned symmetries and convex Fermi surfaces. However,
since e-e interaction effects are particularly pronounced in
Dirac materials [10,11], these, and in particular suspended
graphene of high mobility, are among the most promising can-
didates for experimentally detecting the predicted signatures
of interactions in the conductance.

Our results are particular to 2D systems, because in 1D
systems binary collisions do not relax the total momentum,
while in higher dimensions, D > 2, there exist additional
scattering channels (other than head-on collisions), which relax
even and odd modes essentially equally rapidly, independently
of their parity under inversion of momenta.

The remainder of the paper is organized as follows. Sec-
tion II introduces the model setup of a wide strip between
biasing leads. In Sec. III, we discuss the Boltzmann equation
which governs transport when e-e interactions can be treated
semiclassically. In Sec. IV, we restrict to the case where the
collisions obey an inversion symmetry, and Sec. V shows
how the collision-dominated ballistic conductance crosses
over to Ohmic conduction in the presence of weak umklapp
scattering. Section VI discusses how to reduce the problem at
low temperatures to purely angular degrees of freedom. Section
VII is devoted to generic systems with inversion symmetric
collision kernel. Section VIII reduces to a rotationally invariant
Fermi surface and provides explicit results that apply to
graphene in particular. Section IX discusses what crucial role
the dimensionality D = 2 plays for our results. We conclude
with a summary and an outlook for future work. The Appendix
derives the parametrically differing relaxation rates for even
and odd modes, respectively.

II. COLLISION-DOMINATED CONDUCTANCE

Our aim is to calculate the corrections to the noninteracting,
ballistic conductance that arise as a consequence of inelastic
electron-electron scattering, but in the absence of impurity or
phonon-scattering processes. The latter do not conserve the
momentum of the electron fluid and thus induce the decay
of currents. This would establish a finite Ohmic conductivity
and thus a conductance vanishing as 1/L in the limit of
long sample length L. If instead only translationally invariant
interactions are present, the momentum of an electron fluid in
homogeneous space would be conserved, so that the associated
current cannot decay. However, the crystal lattice breaks the
translational invariance and thus reduces the conservation of
momentum to the conservation of quasimomentum, modulo
reciprocal lattice vectors. However, the conservation of total
quasimomentum

∑
k occ k of all quasiparticles will remain an

excellent approximation if umklapp processes can be neglected
at low temperatures. This is, for example, the case when the
Fermi surface is small as compared to reciprocal lattice vectors,
such that umklapp processes require high-energy excitations

FIG. 1. Free-hanging graphene sheet in the x-y plane. The leads
are gated so as to have a finite Fermi surface, with quasiparticles
described by Fermi-liquid theory. A potential difference is applied
along the x axis via weakly coupled leads at x = ± L

2 . The bias
results in a longitudinal current density Jx .

above εF and thus are exponentially suppressed. Particularly
interesting examples are surfaces of topological insulators
with a single Dirac point close to the Fermi surface. Another
example is lightly doped graphene, where umklapp processes
only lead to a redistribution of particles in the vicinity of K and
K ′ points, but cannot relax the total quasimomentum, whereby
quasimomenta of quasiparticles are measured as the distance
of the wave vector k from the closer of the two Dirac points.

In what follows, we consider systems where umklapp
processes are negligible as compared to other scatterings
induced by e-e interactions. Under such circumstances, one
expects a finite conductance to survive in the limit L → ∞.

A. Model

We consider an impurity-free, conducting 2D sample of
infinite width W → ∞ and length L, connected to two leads
at x = ±L

2 as illustrated in Fig. 1. We assume the conductor to
form a Fermi liquid. Such 2D liquids arise, e.g., in the form of
a conducting sheet of a metal, such as a suspended graphene
sheet, or at a surface of a 3D topological insulator (with Dirac
spectrum). Time-reversal symmetry ensures that Ek = E−k
and thus v(k) = ∂Ek/∂k = −v(−k). To lowest order, we will
linearize the quasiparticle dispersion close to the Fermi energy,
Ek = h̄vF (k − kF ) [10], with Fermi velocity vF . For simplicity,
we assume a circularly symmetric Fermi surface and neglect
the energy and angle dependence of the velocity. To further
simplify our analysis, we will not consider additional quantum
numbers such as valley or spin index. It is straightforward to
generalize the present formalism to include them.

We consider the case where the two leads are maintained
at different chemical potentials μ(±L

2 ) = μ0 ∓ eV
2 and are

much wider than the suspended sample (extending in the third
dimension), realizing ideal reflection-free contacts, such that
the distribution of inflowing particles is entirely determined by
the distribution in the leads. Here, V is the applied bias voltage
and μ0 is the average chemical potential, which coincides
essentially with the Fermi energy εF at T � εF . We assume
a finite density of states at the Fermi level, excluding the case
where μ0 coincides with the Dirac point. We assume that at the
boundaries x = ±L

2 the reflection-free contacts with the leads
fixes the distribution of the quasiparticles inflowing from the

035421-3



A. UZAIR, K. SABEEH, AND MARKUS MÜLLER PHYSICAL REVIEW B 98, 035421 (2018)

left and right leads to be given by the equilibrium Fermi-Dirac
distribution:

f

(
k|vx≷0; x = ±L

2

)
= f0

(
k|vx≷0; μ= μ0∓eV

2

)
, (1)

where f0(k,μ) = 1/(e(Ek−μ)/T + 1). In the ballistic limit (no
interactions nor impurities), the distribution function of the
electrons is determined by the respective leads from which the
quasiparticles were injected [43,44]:

fball

(
k|vx≷0; x ≶ ±L

2

)
= f0

(
k|vx≷0; μ= μ0 ± eV

2

)
. (2)

In the presence of interactions, in sufficiently long samples,
the distribution function is expected to tend to a drifting
equilibrium [45], i.e.,

f (k ; L/2 − |x| � linel) = f0(k; μ = μeq; vd )

= 1

e
Ek−kx vd −μeq

T + 1
,

(3)

in the bulk of the sample, far away from the boundaries.
Within linear response the chemical potential will be given by
μeq = (μ−L/2 + μL/2)/2 = μ0, and the drift velocity vd will
be proportional to the bias voltage V . Below we will employ
Boltzmann kinetic theory to calculate vd and the conductance
of the 2D sheet as a function of temperature.

III. BOLTZMANN EQUATION

The quasiclassic Boltzmann kinetic theory can be used
to describe transport phenomena if the interactions are suf-
ficiently weak, while quantum interference effects are neg-
ligible. Here we are interested in describing the stationary
state which results from a competition between the drift of
quasiparticles and binary collisions due to electron-electron
interactions. These two terms compete as the system relaxes
to local equilibrium. The quasiclassical distribution function
in the stationary state obeys the equation

vx∂xf (k,x) = −
∫ ∫ ∫

d2k′

(2π )2

d2p′

(2π )2

d2p

(2π )2
W (k,k′; p,p′)

× [f (k,x)f (k′,x)[1 − f (p,x)][1 − f (p′,x)]

− f (p′,x)f (p,x)[1 − f (k,x)][1 − f (k′,x)]], (4)

where the left-hand side (LHS) describes the drift. The
right-hand side (RHS) is the collision integral for binary
collisions, where W (k,k′; p,p′) is the quantum mechanical
transition rate for the scattering process k,k′ → p,p′. Within
the Born approximation, the principle of micro-reversibility
[52] [W (k,k′; p,p′) = W (p,p′; k,k′)] holds for time-reversal-
invariant systems, as far as spin-orbit interactions can be
neglected [53]. The transition rate depends on the specific
interactions. If screening is strong enough, we can replace
the screened Coulomb potential by uδ(r − r′) with u char-
acterizing the strength of the short-range interactions. Within
the Born approximation, and for particles without additional
spinor structure, the rate W (p,p′; k,k′) is given by

W (p,p′; k,k′) = 4π

h̄
|u|2δ(k + k′ − p − p′)

×δ(Ek + Ek′ − Ep − Ep′). (5)

For weakly screened Coulomb interactions in graphene, a more
precise form of the transition rate has been worked out in detail
in Ref. [40].

A. Parametrization of the nonequilibrium distribution

We aim to solve the Boltzmann equation (4) in the weak
bias regime. For a small bias voltage V , the nonequilibrium
distribution function f (k,x) can be linearized around a static
equilibrium distribution as f (k,x) ≡ f0(k)+δf (k,x), where
the deviation can be conveniently parametrized as

δf (k,x) = eV

T
f0(k)[1−f0(k)]ψ(k,x). (6)

Here, we drop the dependence of f0 on the average chemical
potential μ0. For small deviations, this is essentially equivalent
to a distribution function

f (k; x) = 1

e
Ek−μ−eV ψ(k,x)

T + 1
. (7)

The boundary conditions (1) on the quasiparticles that flow in
from the leads are now conveniently expressed as

ψ(k|vx≷0 ; x = ∓ L/2) = ± 1 ≡ ψbd
± (k|vx≷0). (8)

B. Properties of the collision integral

The collision integral has some general properties, which do
not depend on the details of the interactions. When expressed
in terms of linearized deviation functions ψ(k,x), the collision
term in Eq. (4) can be thought of as a linear operator C acting
on ψ [52]:

(Cψ)(k,x) =
∫ ∫ ∫

d2k′

(2π )2

d2p

(2π )2

d2p′

(2π )2

×W (p,p′; k,k′)f0(k)f0(k′)[1 − f0(p)][1 − f0(p′)]

× [ψ(k,x) + ψ(k′,x) − ψ(p,x) − ψ(p′,x)], (9)

where we have employed the principle of detailed balance in
equilibrium,

f0(k)f0(k′)[1 − f0(p)][1 − f0(p′)]

= f0(p)f0(p′)[1 − f0(k)][1 − f0(k′)]. (10)

The operator C is a positive semidefinite Hermitian operator
acting on the space of functions ψ(k) that are square integrable
with respect to the natural inner product

〈ψ(k)|ψ(k)〉≡
∫

d2k

(2π )2
ψ∗(k)ψ(k). (11)

This follows immediately from rewriting the matrix elements
of the collision operator in the manifestly positive form

〈ψ(k)|Cψ(k)〉 ≡ 1

4

∫ ∫ ∫ ∫
d2k

(2π )2

d2k′

(2π )2

d2p

(2π )2

d2p′

(2π )2

×W (p,p′; k,k′)[ψ(k)+ψ(k′) − ψ(p)−ψ(p′)]2

× f0(k)f0(k′)[1 − f0(p)][1 − f0(p′)], (12)

where the microreversibility has been used again. For normal-
ized eigenfunctions of C, these matrix elements are naturally
interpreted as collision or relaxation rates associated with that
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deviation. A central element controlling the collision rate is
the squared quantity

δψ2
k,k′,q ≡ [ψ(k)+ψ(k′) − ψ(p) − ψ(p′)]2 (13)

which depends on k,k′ and the transferred momentum q =
p − k (or p′ − k). We will refer to it as the “scattering weight”
of the mode ψ for the process (k,k′) → (p,p′).

C. Modes of the Boltzmann equation

We can recast the Boltzmann equation as a linear operator
equation,

vx(k)f0(k)[1−f0(k)]∂xψ(k,x) ≡ Vx∂xψ(k,x)

= −(Cψ)(k,x), (14)

where the operator Vx just acts by multiplication with
vx(k)f0(k)[1−f0(k)]. Formally one can multiply from the left
with V −1

x and observe that the operator V −1
x C on the RHS

acts on k space only while the derivative acts on x only. This
suggests to look for special solutions with separated variables,
ψm(k,x) ∝ 
m(k)�m(x), satisfying [54]

∂x�
m(x) = −αm�m(x), (15)

V −1
x C
m(k) = αm
m(k). (16)

Equation (15) yields �m(x) ∝ exp[−αmx], i.e., a mode decay-
ing exponentially with distance from one of the leads. We might
then attempt to seek the general solution of the Boltzmann
equation as a superposition of such solutions. However, this
approach is a bit too simple-minded. The reason is that
the collision operator is not invertible, because it possesses
hydrodynamic zero modes. This property does not allow us
to use a simple similarity transform with C−1/2 to convert the
non-Hermitian eigenvalue equation into a Hermitian problem
for which the above approach could then be used; instead, we
have to take proper care of the hydrodynamic modes first.

1. Hydrodynamic modes

The collision operator possesses zero modes because all
scattering processes conserve the total energy and the particle
number. If additionally scatterings other than e-e interactions
are subdominant and weak, and if umklapp processes can be
neglected, the interactions also preserve the total quasimomen-
tum. Each of these collision invariants imply the existence of a
zero mode of the collision operator C [30], since a deviation of
the distribution function describing a change of the conjugate
equilibrium parameter cannot decay. The modes corresponding
to number (N ) and energy (E) conservation are

ϕN (k) = 1, (17)

ϕE(k) = εk − εF . (18)

Note that, as a function of the distance to the Fermi energy, ϕN

is even, whereas ϕE is odd.
Quasimomentum conservation (in x direction) in the ab-

sence of umklapp scattering furnishes the additional zero mode

ϕPx
(k) = kx, (19)

while the zero mode ϕPy
(k) = ky is irrelevant for our setup,

since we assume invariance under inversion of they coordinate.
These zero modes lead to nondecaying modes (with α = 0) of
the Boltzmann equation (16). They span the three- or two-
dimensional null space H0 of C, depending on the presence or
absence of quasimomentum conservation.

2. General solution of the Boltzmann equation

The general solution of the Boltzmann equation can be
constructed by decomposing the k sector of ψ(k,x) into
the null space H0 and its orthogonal complement H⊥. After
some algebra, one finds that the most general x-dependent
solution of the Boltzmann equation takes the form

ψ(k,x) = ψ0(k) + (x − C−1Vx)ψ1(k)

+
∑
m

wme−αmx

(
C−1/2 + P0V

−1
x C1/2

αm

)

m(k),

(20)

with ψ0(k) ∈ H0 and ψ1(k) ∈ U ≡ H0 ∩ V −1
x H⊥, and P0

being the orthogonal projector onto H0. The 
m(k) ∈ H⊥ are
the eigenvectors with nonvanishing eigenvalues αm �= 0 of the
Hermitian operator

A ≡ C1/2V −1
x C1/2, (21)

which acts solely on the subspace H⊥, i.e.,

C1/2V −1
x C1/2
m(k) = αm
m(k). (22)

Note that the operator A has a null space in H⊥. It is
given by C−1/2VxU ⊂ H⊥. Together with the orthonormal
set of functions 
m, this null space C−1/2VxU spans all
of H⊥.

The coefficients wm and the functions ψ0,ψ1 in (20) must
be determined from the boundary conditions (8).

3. Weak umklapp scattering

Note that in the presence of umklapp processes, ϕPx
(θ ) is

not an exact zero mode anymore, since a drifting equilibrium
will eventually decay due to umklapp processes. Nevertheless,
if the collisions that conserve quasimomentum are much
stronger than the umklapp processes, there will be a slow
“umklapp eigenmode” of C, which strongly resembles the
drifting equilibrium mode, ϕu ≈ ϕPx

. It then has an eigenvalue
cu far smaller than the next smallest eigenvalue of C, which is
dominated by much faster momentum-conserving relaxation
processes. We will discuss further below how this affects the
solution of the boundary value problem.

4. Current density

The total current density carried by an off-equilibrium
quasiparticle distribution described by ψ(k,x) is given by

Jx = e

∫
vx(k)δf (k)

d2k

(2π )2
= e

eV

T

∫
Vxψ(k)

d2k

(2π )2

= e
eV

T

∫
Vx[ψ0(k) − C−1Vxψ1(k)]

d2k

(2π )2
. (23)

Here we have used that the spatially growing or decaying
modes of the solution (20) do not contribute to current, since
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with (22) one can show that

∫
Vx

(
C−1/2 + P0V

−1
x C1/2

αm

)

m d2k

(2π )2

= 1

αm

∫
Vx

(
(1 − P0)V −1

x C1/2 + P0V
−1
x C1/2

)

m d2k

(2π )2

= 1

αm

〈ϕN |C1/2
m〉 = 1

αm

〈C1/2ϕN |
m〉 = 0,

using that the zero mode (17) is annihilated by the collision
operator,C1/2ϕN = 0. Similarly one shows that the termxψ1 in
ψ does not contribute to the current density. The current density
(23) is explicitly independent of x, as it has to be in a steady
state, where the continuity equation requires dJx/dx = 0. In
our setup, the conductance per unit sample width (W ) is simply
the current density divided by the applied bias,

G

W
= Jx

V
= e2

T

∫
Vx[ψ0(k) − C−1Vxψ1(k)]

d2k
(2π )2

. (24)

The problem of computing the conductance thus boils down
to finding the weight of the vectors ψ0 ∈ H0 and ψ1 ∈ U from
the boundary conditions.

IV. INVERSION SYMMETRY OF THE
COLLISION OPERATOR

Under rather general conditions, the collision operator C is
invariant under the inversion of all momenta, k → −k. Such
an inversion symmetry follows from the principle of microre-
versibility in the presence of some additional symmetries. At
the level of the Born approximation, the inversion symmetry of
the collision operator is already ensured by time-reversal sym-
metry if spin-orbit interactions can be neglected [53] (such that
quasiparticles are well characterized by their quasimomentum
k only). Beyond the Born approximation, one also needs to
invoke space-inversion symmetry of the Hamiltonian to obtain
an inversion-symmetric collision operator [55].

Here we further assume that the Hamiltonian is symmetric
under the inversion of the x component of the momentum only,
k = (kx,ky) → (−kx,ky), an operation we denote by I . This
symmetry is of particular interest since the spatial setup of
the driven 2D system is symmetric under the inversion x →
−x. Together with inversion symmetry, this also implies the
symmetry of the Hamiltonian under the reflection ky → −ky

in momentum space [corresponding to k → −I (k)]. Together
with the symmetry of the spatial setup under the reflection
y → −y we conclude that the deviation function must satisfy
ψ(k,x) = ψ(−I (k),x).

The above symmetry assumptions imply that the collision
operator is invariant under the reflection I , ICI = C. The
eigenfunctions of C can thus be chosen to have definite parity
under I . Note also that the velocity operator vx , and thus the
operator Vx , are odd under inversion, IvxI = −vx , IVxI =
−Vx . From this, and the oddness of the boundary conditions (8)
under I , it follows that the solution to the Boltzmann equation
must satisfy

ψ(k,x) = − ψ(I (k),−x). (25)

A. Solution of the Boltzmann equation in the
presence of inversion symmetry

In the presence of the symmetry I , the exact zero modes
ϕN,ϕE are even under I . In contrast, the zero mode ϕPx

, or,
in the presence of umklapp processes, its slowly decaying
remnant ϕu, are odd eigenmodes of C.

In the absence of umklapp processes, the null space H0

is three dimensional. The requirement that the solution (20)
obey the symmetry relation (25) implies, however, that the
nondecaying part must be odd under I and thus proportional
to ψ0 ∝ ϕPx

. The space U is one dimensional and spanned by
the (suitably normalized) linear combination of zero modes,

ϕ̃E = aNϕN + aEϕE, (26)

such that

〈ϕPx
|Vx |ϕ̃E〉 = 0. (27)

We suggestively denote this mode by ϕ̃E , because at low
temperatures, one finds aN ≈ 0. Indeed, there the spectrum
around εF can be linearized, and the mode ϕPx

= k cos(θ ) ≈
kF cos(θ ), as well as the operator Vx , are essentially even as
functions of εk − εF . Since, in contrast, ϕE is odd in this sense,
while ϕN is even, we see that the orthogonality condition (27)
essentially selects the mode ϕ̃E ≈ ϕE to span U .

The solution of the Boltzmann equation thus takes the form

ψ(k,x) = wPx
ϕPx

(k) + wE(x − C−1Vx)ϕ̃E(k)

+
∑
m

wme−αmx

(
C−1/2+P0V

−1
x C1/2

αm

)

m(k).

(28)

The conductance is then given by the expression (24)

G

W
= e2

T
wPx

∫
VxϕPx

(k)
d2k

(2π )2

− e2

T
wE

∫
VxC

−1Vxϕ̃E(k)
d2k

(2π )2
. (29)

As we will discuss later, at low temperatures only the first
term will have a substantial amplitude. Our task will thus be
to determine the coefficient wPx

.

V. CROSSOVER TO OHMIC REGIME WITH WEAK
UMKLAPP SCATTERING

It is useful to see how the solution (28) arises in the limit
of vanishing umklapp scattering from the solution with finite
umklapp scattering. If the latter is finite but weak, H0 is only
spanned by the modes ϕN,ϕE , which are even under I , and thus
there is no nondecaying part in the solution, i.e., ψ0 = 0. The
space U instead is now two-dimensional and coincides with
H0.

The solution of the Boltzmann equation now reads

ψ(k,x) = wN (x − C−1Vx)ϕN (k) + wE(x − C−1Vx)ϕ̃E(k)

+
∑
m

wme−αmx

(
C−1/2 + P0V

−1
x C1/2

αm

)

m(k).

Note that the sum over decaying modes remains essentially
unchanged. Indeed, in both cases, the 
m span the orthogonal
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complement of the four-dimensional space H0 + VxU , which
remains essentially unaffected by turning on weak umklapp
scattering. In the limit of weak umklapp scattering, we further
have

wN (x − C−1Vx)ϕN ≈ wNxϕN − wNϕu

〈ϕu|Vx |ϕN 〉
cu

, (30)

with the umklapp scattering rate

cu ≈ 〈ϕu|C|ϕu〉. (31)

In the limit cu → 0 and for finite samples smaller than the
(diverging) crossover length,

L∗ = vF

cu

, (32)

wN is proportional to cu, so that essentially only the second
term in (30) survives. In this limit, the conductance G(L) ≈ G0

will be nearly independent of L, as we will calculate below. For
L � L∗, however, the first term in (30) dominates (with the
coefficient wN saturating at wN ∼ 1/L) and establishes Ohm’s
law with a conductance that decays as G(L) ∼ G0L∗/L =
G0vF /cu/L, corresponding to a finite, umklapp-dominated
conductivity σ = G0vF /cu.

VI. REDUCTION TO ANGULAR VARIABLES

So far we have dealt with the conductance problem in full
generality, retaining all modes of the Boltzmann equation.
However, it turns out that at low temperature many modes
will have a negligible weight in the actual solution. It is
thus convenient to identify a smaller set of modes of the
Boltzmann equation which nevertheless suffices to describe
the transport problem accurately. To this end, we recall that in
D = 2 dimensions forward scattering with small transferred
momentum (q → 0) is logarithmically enhanced, as compared
to angular relaxation [56]. The fast small angle scattering
thus rapidly establishes energy relaxation among quasiparticles
that move collinearly [56]. If the dispersion is linear (like in
graphene), such that all quasiparticles have the same velocity,
the logarithmic enhancement is present at any temperature and
the logarithmic divergence in the collinear scattering cross
section is only cut off by interaction effects [40]. In a Fermi
liquid with quadratic or more generic nonlinear dispersion, the
logarithmic enhancement is limited by the nonlinearity. In that
case, the logarithmic enhancement only shows at sufficiently
low temperatures, T � εF [57].

Assuming fast energy relaxation at fixed angles, we concen-
trate on the remaining angular dependence of ψ(k) [56,58,59]
and seek slow modes of the collision operator in the form

ψ(k) = ψ(θ ), (33)

which are constant as a function of |k|, and where θ denotes
the angle between the wave vector k and the x axis, along
which the voltage bias is applied. To make this more precise, we
observe that since the collision operator has a small expectation
value on all functions that are constant as a function of
|k| − kF within the thermal window ||k| − kF | � T/h̄vF , this
guarantees that there is a family of slowly relaxing eigenmodes
of the collision operator, which are essentially only functions
of θ in the thermally relevant regime ||k| − kF | � T/h̄vF . The

high-energy tails of those modes are likely to deviate from these
constants, but we nevertheless parametrize the modes with the
function ψ(θ ) describing their core and restrict the solution of
the Boltzmann equation to these modes.

Note that there is actually a further family of modes that
is not subject to logarithmically enhanced forward scattering,
namely,

ψ ′(k) = ψ ′(θ )(εk − εF ), (34)

which describes an angle-dependent temperature, while the
modes (33) can be regarded as describing angle-dependent
chemical potentials. In both cases, collinearly moving particles
are mutually in equilibrium and thus the logarithmic enhance-
ment of the forward scattering rate is suppressed. However,
the modes (34) are odd with respect to the Fermi wave vector
kF (θ ), whereas the boundary conditions are even in that sense.
Moreover, both operators Vx and C approximately preserve
this even or odd character at low temperatures, where only
the vicinity of the Fermi level is relevant. We therefore expect
that the energy-odd modes (34) play a negligible role in the
solution of our conductance problem and we will neglect them
henceforth.

To reduce to angular variables, we inject the ansatz (33)
into the Boltzmann equation, multiply the equation from the
left with a mode (33) and integrate out the radial variable k,
which results in the equation

Bvx(θ )∂xψ(θ,x) = −
∫

dθ ′C(θ,θ ′)ψ(θ ′,x), (35)

where

B =
∫

f0(k)[1−f0(k)]kdk (36)

and

C(θ,θ ′) =
∫

kdk

∫
k′dk′C(k,k′). (37)

Projected onto the slowly relaxing space of modes (33), the
collision operator has become a linear operator in the space
of angle-dependent functions and can thus be described by a
kernel C(θ,θ ′). The operator Vx acts by multiplying a function
by vx(θ ), evaluated at the Fermi surface. For a spherical Fermi
surface one has vx(θ ) = vF cos(θ ). The scalar product (11)
turns into the standard inner product of functions on the circle
[0,2π ].

Once we project onto angular variables, the reflection I

translates into the mapping of angles θ → I (θ ) ≡ π − θ . It
follows from (25) that the solution of the Boltzmann equation
satisfies

ψ(θ,x) = −ψ(I (θ ),−x) = −ψ(π − θ,−x). (38)

Moreover, the symmetry ky → −ky restricts the solution space
to even functions under θ → −θ ,

ψ(θ,x) = ψ(−θ,x). (39)

A. Zero modes in angular projection

Upon projection to the angular variables, the zero mode
corresponding to particle conservation is a constant, angle-
independent deviation,

ϕN (θ ) = const., (40)
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while the mode related to energy conservation is odd in energy
and will thus be neglected.

The zero mode corresponding to the conservation of quasi-
momentum in the x direction (in the absence of umklapp
processes) is given by

ϕPx
(k) = kx, (41)

or after projection to angular variables,

ϕPx
(θ ) = cos(θ ). (42)

It describes an equilibrium state with a finite drift velocity.
In a system that conserves total quasimomentum, this mode
is anticipated to have a finite amplitude in the middle of a
long sample, while all other deviations from equilibrium have
decayed.

As the projection preserves the behavior under inversion,
ϕN is again even under the inversion I , while ϕPx

is odd. We
already know from the full solution (28) that in the absence
of umklapp scattering ϕN does not enter the solution of our
boundary problem.

VII. CONDUCTANCE OF SYSTEMS WITH INVERSION
SYMMETRIC SCATTERING

In this section, we calculate temperature corrections to the
conductance of 2D systems which obey reflection symmetry
and have negligible umklapp scattering. To match the boundary
boundary conditions and find the corresponding expansion
coefficients for the Boltzmann modes, we need to analyze the
decaying modes in more detail.

A. Decaying modes of the Boltzmann equation

Considering that the collision operator C is invariant (even)
under the reflection I , while the velocity operator Vx is odd,
it is useful to split the modes 
m into their I -even and I -odd
components,


m = 
m
e + 
m

o . (43)

The components obey the equations

A
m
o = C1/2

e V −1
x C1/2

o 
m
o ≡ Aeo


m
o = −αm
m

e , (44)

A
m
e = C1/2

o V −1
x C1/2

e 
m
e ≡ Aoe


m
e = −αm
m

o . (45)

Here, we have defined the restrictions of the collision operator
onto the I -even and I -odd parity sectors of H⊥, respectively,
C = Co + Ce, and the operators

Aeo = C1/2
e V −1

x C1/2
o = A†

oe. (46)

As we will discuss in Sec. VII B below, the eigenvalues of
Ce,o scale parametrically differently with temperature in the
two sectors, the even modes relaxing much faster than the
odd ones; cf. Eq. (54) below. This will allow us to derive
general properties of the Boltzmann modes and the solution
to our transport problem without the need to specify further
microscopic details of the collision operator.

Combining Eqs. (44) and (45), we obtain the eigenvalue
equation

AoeAeo

m
o = A†

eoAeo

m
o = α2

m
m
o . (47)

As we already mentioned, the subspace VxU spans the (odd)
zero modes of this equation. On its orthogonal complement in
H⊥, we expect the operator A

†
eoAeo to act as a positive definite

operator. Let us label its eigenmodes with a new index n.
Note that the full modes 
m come in pairs: Every eigen-

mode 
n
o of (47) with positive eigenvalue αn gives rise to two

inversion-related modes,


n
± = 
n

o ∓ 1

αn

Aeo

n
o ≡ 
n

o ± 
n
e , (48)

which differ in the relative sign of the even and odd compo-
nents. We adopt the convention that αn > 0 from now on. Note
that αn is the spatial rate of decay of the modes 
n

± away from
the leads. The smallest positive eigenvalue can thus be related
to an inelastic relaxation length scale,

�inel = 1

minn(αn)
. (49)

Note that the positive eigenvalues αn scale like
√

coce where
co,e are typical eigenvalues of the collision operator in the odd
and even sectors, respectively.

The symmetry under inversion I implies that the solution
(28) of the Boltzmann equation is constrained to take the form

ψ(k,x) = wPx
ϕPx

(k) + wE(x − C−1Vx)ϕ̃E(k)

+
∑

n

wne
− αnL

2

{
2 cosh(αnx)

[
C−1/2

o 
n
o (k)

+ P0V
−1
x C

1/2
e

αn


n
e (k)

]
− 2 sinh(αnx)

×
[
C−1/2

e 
n
e (k) + P0V

−1
x C

1/2
o

αn


n
o (k)

]}
, (50)

where the weights wPx
,wE,wn are to be determined from the

boundary conditions (8).
The even and odd components of 
n

± are generically of
comparable norm. However, in the solution (50) they enter as
C

−1/2
o,e 
n

o,e. Since typical eigenvalues of Ce are parametrically
bigger than those of Co, the odd components dominate in the
mode expansion, while the even components are suppressed by
a factor O((co/ce)1/2) � 1, where co,e are typical eigenvalues
of C in the odd and even sectors, respectively. We will make
use of this feature below to solve for the boundary conditions.

Before doing so, we briefly discuss the collision rates and
the nature of the dominant processes involved in the even and
odd sectors, respectively.

B. Relaxation rates from collisions

The relaxation rate of an eigenmode �m of the collision
operator is simply given by its eigenvalue, which one can
express as

cm = 〈�m(k)|C�m(k)〉
〈�m(k)|�m(k)〉 , (51)

and the expression (12) can be used to evaluate the numerator.
The dependence on temperature can be estimated as the product
of two factors: (i) the phase space of a certain type of kinetically
allowed scattering processes and (ii) the associated scattering
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weight δψ2
k,k′,q, cf. (13). This analysis is carried out in detail

in the Appendix. It turns out that for the relevant slow modes
that have essentially only an angular dependence, head-on
collisions are the most efficient channel for relaxation. They
come with a phase-space volume that scales like T 2. However,
modes that are odd or even in momentum space, respectively,
behave very differently with respect to the scattering weight.
In even modes, the contributions to the scattering weight
from counterpropagating quasiparticles add up, while they
essentially cancel in odd modes. The latter suppresses the
relaxation rate of odd modes by an additional factor of T 2

(up to a logarithmic enhancement) as compared to that of the
much faster relaxing even modes [50]. In summary, we find
the relaxation rates

ce ∼
(

T

εF

)2

, (52)

co ∼
(

T

εF

)4

log
εF

T
, (53)

as long as head-on collisions are the dominant relaxation
channel. The logarithmic enhancement in the relaxation rate
for odd modes co is due to singular small-angle scattering in
2D [55,60–63]. Gurzhi et al. reported similar rates in Ref. [42],
however, without pointing out the logarithmic factor in co. The
ratio of collision rates in the odd and even sectors thus provides
a small parameter

co

ce

∼
(

T

εF

)2

log
εF

T
, (54)

while the inelastic length scale (49) grows as

�inel(T ) ∼ 1

kF

(
εF

T

)3(
log

εF

T

)−1/2

(55)

with decreasing temperature.

C. Conductance

The general symmetry-obeying solution (50) of the Boltz-
mann equation must match the boundary condition ψ(k,x =
−L/2) = ψbd

+ (k) = 1, for all kx > 0 (where for definiteness
we now assume kx and vx to have the same sign); cf. Eq. (8).
This condition concerns only inflowing wave vectors, i.e., only
half of all k space, which renders the matching nontrivial.
Explicitly, we have

ψbd
+ (k|kx > 0) = wPx

ϕPx
(k)

+
∑

n

wn(1+e−αnL)

[
C−1/2

o 
n
o (k) + P0V

−1
x C

1/2
e

αn


n
e (k)

]

+
∑

n

wn(1−e−αnL)

[
C−1/2

e 
n
e (k) + P0V

−1
x C

1/2
o

αn


n
o (k)

]
.

(56)

Here we have dropped the contribution ∝ wE , since it is
associated with modes that are essentially odd as a function
of εk − εF . Since the boundary condition and the dominating
modes are basically even in εk − εF , we expect that wE

is at most O(T/εF ) and thus contributes corrections to the

conductance that are smaller than the leading ones we derive
below. We therefore drop those terms from now on.

We can make progress by observing that the RHS of Eq. (56)
is nearly an odd function of k, the even components being
smaller by a suppression factor O((co/ce)1/2). We can make
use of this fact to find the coefficients wn and wPx

in the form
of an expansion in (co/ce)1/2.

For a function g(k) defined only on the half space kx > 0,
let us define the odd (under inversion I ) function (for all k)

g(k) := g(k)�(kx) − g(I (k))�(−kx), (57)

where � is the Heaviside function.
Let us now apply this operation to both sides of (56),

observing that odd functions are unchanged under the above
operation, 
n

o = 
n
o for all k,

ψbd+ (k) − λ
∑

n

wn(1 − e−αnL)

(
ce

co

)1/2

×
[
C

−1/2
e 
n

e + P0V
−1
x C

1/2
o

αn


n
o (k)

]
,

= wPx
ϕPx

(k) +
∑

n

wn(1 + e−αnL)

×
[
C−1/2

o 
n
o (k) + P0V

−1
x C

1/2
e

αn


n
e (k)

]
. (58)

We have moved the parametrically small contribution of the
even part to LHS and multiplied the terms under its sum by a
factor (ce/co)1/2, to make them of the same order as the odd
terms on RHS. This is compensated for by the prefactor λ,
which is eventually to be set to

λ =
(

co

ce

)1/2

, (59)

but now serves us as a small expansion parameter. For def-
initeness, we define the rates co,e as the smallest positive
eigenvalues of Co,e, respectively.

We now expand the coefficients in (56) as a formal power
series in λ,

wPx
=

∞∑
�=0

w
(�)
Px

λ�, (60)

wn = c1/2
o

∞∑
�=0

w(�)
n λ�. (61)

The successive steps in perturbation theory amount to solving
equations of the form

w
(�)
Px

ϕPx
+

∑
n

w(�)
n (1 + e−αnL)c1/2

o

×
[
C−1/2

o 
n
o (k) + P0V

−1
x C

1/2
e

αn


n
e (k)

]
= g(�), (62)

with

g(�=0) = ψbd+ , (63)
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g(�>0) = −
∑

n

w(�−1)
n (1 − e−αnL)c1/2

e

×
[
C

−1/2
e 
n

e + P0V
−1
x C

1/2
o

αn


n
o (k)

]
. (64)

Equation (62) is an equation in the space of odd functions.
We can solve for the expansion coefficients by exploiting the
orthogonality properties of the Boltzmann modes. We assume
that the eigenvalue problem (47) has been solved, i.e., that all
modes and decay rates αn of the Boltzmann equation have been
determined.

Acting with c
−1/2
o C

1/2
o on both sides of (62), one obtains,∑

n

w(�)
n (1 + e−αnL)
n

o = c−1/2
o C1/2

o g(�). (65)

Now one can use the orthonormality of the 
n
o [which are

eigenfunctions of the Hermitian operator (47)] to find

w(�)
n = 1

(1 + e−αnL)

〈

n

o

∣∣c−1/2
o C1/2

o g(�)〉. (66)

To determine wPx
, we multiply (62) by the velocity operator Vx

and integrate over all k. Since this operation applied to the total
deviation function ψ actually computes the current density, it
projects out all decaying or increasing modes. We thus find

wPx

∫
VxϕPx

d2k
(2π )2

=
∞∑

�=0

(
co

ce

)�/2 ∫
Vxg

(�) d2k
(2π )2

. (67)

Comparing with (29), the LHS of (67) (up to neglected
subleading contributions ∼wE due to the zero mode that is
odd in energy) is seen to yield G/W (T/e2), that is, the sought
conductance. The first term on the RHS of (67) can be shown to
yield, up to simple prefactors, the ballistic Landauer-Büttiker
conductance [2,41,64],∫

Vxg
(0)(k)

d2k
(2π )2

=
∫

Vxψ
bd+ (k)

d2k
(2π )2

= −
∫

kx>0
vx

df

dεk

d2k
(2π )2

+
∫

kx<0
vx

df

dεk

d2k
(2π )2

= T

e2

Gball

W
. (68)

Naturally, the ballistic conductance should result in the limit of
very short samples (L � �inel) where scattering is irrelevant.
Indeed, we see from (64) that the corrections g(�>0) tend to zero
in this limit, and we thus correctly capture the noninteracting,
ballistic limit from the leading term � = 0.

Much less trivial, however, is the statement we obtain in
the opposite limit of samples of length L � �inel (but still
much smaller than the scale where umklapp becomes relevant,
L � L∗). Namely, we find that collisions lead to nontrivial
corrections of the conductance which scale as

G − Gball

W
= e2

T

∞∑
�=1

(
co

ce

)�/2 ∫
Vxg

(�) d2k
(2π )2

= O

((
co

ce

)1/2
)

= O

(
T

εF

[log(εF /T )]1/2

)
. (69)

FIG. 2. The upper row illustrates the distribution of quasiparticles
flowing in from two leads. Close to the leads, the incoming particles
retain the distribution of the leads, and the full distribution resembles
the one observed in noninteracting ballistic transport, as shown in the
bottom row for comparison. However, within a distance �inel from
the leads, inelastic e-e scattering relaxes the distribution to a drifting
equilibrium, i.e., a displaced Fermi sphere. Despite the substantial
difference in the quasiparticle distribution, the conductances in the
two cases only differ by a term scaling as T/εF [log(εF /T )]1/2 at low
temperature.

The surprising aspect of this result is that, in the limit L � �inel,
many collisions take place as the current traverses the sample,
and thus there is a priori no reason to expect a conductance
close to the noninteracting, ballistic value. Nevertheless, we
find here that in the presence of inversion symmetry, the
corrections to the ballistic result are small and tend to zero
with T → 0, even if the sample length is kept much larger than
the (diverging) inelastic relaxation scale �inel. The reason for
this rather unexpected behavior is not simply the inefficiency
of collisions at low T in absolute terms, but rather the para-
metrically large difference in the relaxation rates of even and
odd modes of quasiparticle excitations. The basic mechanism
behind this phenomenon is the following: A spatial gradient
in an odd distortion mode in momentum space generates an
even component due to the drift of the quasiparticles. However,
this even part relaxes very quickly under head-on collisions,
before further drift could develop a substantial odd component
that would diminish the current carrying and nondecaying odd
mode. Under these circumstances, the quasiparticle distribu-
tion remains very close to being odd in momentum space, and
the amplitude of the current-carrying mode remains close to
its weight in the noninteracting limit. Nevertheless, there is a
finite, if small, amount of backscattering due to e-e collisions,
which is the correction term we have computed above. It is
natural to expect that in general the correction on the RHS of
Eq. (69) is negative.

Note that thermal corrections to the zero-temperature con-
ductance arise also from the thermal smearing of the Fermi
surface. This effect is already present in the Landauer-Büttiker
conductance. However, it is usually weak and scales as T 2.

In the upper row of Fig. 2, we illustrate how the steady-
state quasiparticle distribution varies in space. After a distance
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of the order of �inel from the leads, the drifting equilibrium
state is reached, with a displaced Fermi surface. This is to
be compared to the noninteracting ballistic case, where the
quasiparticle distribution consists of two half Fermi surfaces
for left and right movers, respectively, which remains constant
throughout the sample.

VIII. ROTATIONALLY INVARIANT CASE

Let us now consider the simple case in which the Fermi
surface and the collision operator C are rotationally invariant.
In this case, we can follow through the above procedure
in a quantitative manner, since it allows us to have explicit
expressions for the modes, the relaxation rates of the col-
lision operator, and eventually a numerical value for the
conductance. To have a concrete system in mind, one may
think of a lightly doped graphene sheet with a spherically
symmetric Fermi surface, whereby we restrict scattering to
a single Dirac cone. In reality this is often a good approxi-
mation, since e-e scattering between the two Dirac cones is
comparatively weak. For the interactions, we will, how-
ever, consider the simplest possible short-range interaction,
characterized by a momentum-independent transition rate
W (k,k′; p,p′) → u2, where u characterizes the strength of the
interaction. This crude approximation neglects effects due to
the pseudospinor structure in the collision kernel. Nevertheless,
this approximate modeling gives us reasonable estimates of the
inelastic length, and the conductance corrections, which would
be interesting to confront with experiments on interaction-
dominated (and viscous) flow reported recently in this type
of system [28,30,31,35–37].

For a rotationally invariant collision operator, the angular
dependence of its eigenmodes �� is simply an angular har-
monic, cos(n�θ ) (due to the symmetry under y → −y, we can
restrict to even functions of θ ),

��(k) = ϕ�(k) cos(n�θ ). (70)

For a given angular harmonic n, most modes will relax fast
due to logarithmically enhanced forward scattering. Only two
eigenmodes are expected to remain logarithmically slower.
Those will behave as ϕ�(k) ∼ const. or ∼k − kF within the
thermal window |k − kF | � T/h̄vF , so as to suppress the for-
ward scattering divergence. As argued previously, at low T we
may restrict ourselves to the first kind of mode, which is even in
k − kF and thus most relevant to solve our boundary problem.
We hence work within a restricted space of eigenfunctions of
C which we label solely by the angular harmonic n,

�n(k) = ϕn(k) cos(nθ ),

with ϕn(k) = 1 for|k − kF | � T/h̄vF . (71)

In what follows, we will approximate ϕn(k) = 1 for all k,
since the contributions to integrals over ϕn(k) from outside the
thermal window are small anyway.

Injecting the ansatz ψ(θ,x) = ∑
n an(x)�n(θ ) into the

Boltzmann equation (36) and projecting it onto the mode
�m(k) = �m(θ ) = cos(mθ ), we find the projected Boltzmann

equation

B

∫
dθ cos(mθ )vF cos(θ )

∑
n

∂xan(x) cos(nθ ) (72)

= −c̃mam(x). (73)

where B was defined in (36) and

c̃m = 〈�m(k)|C�m(k)〉, (74)

are the eigenvalues of the collision operator, which are ex-
plicitly given by Eq. (12). The zero modes of the collision
operator are represented by the lowest two angular harmonics,
n = 0,1, associated with charge and momentum conservation,
respectively, and thus c̃0 = c̃1 = 0. The components of the
projected equation then read

∂xa1(x) = 0, (75)

∂xam+1(x) + ∂xam−1(x) = −c′
mam(x), (76)

where

c′
m = 2c̃m

πBvF

, (77)

is the inverse of the relaxation length scale.

A. Conductance of a graphene sheet

For a short-range interaction as described above, we have
calculated these “rates” c′

m, as outlined in the Appendix. The
result is

c′
n>1,odd = 0.55(uρ)2n4 εF

h̄

(
T

εF

)4

log
εF

T
, (78)

c′
n>1,even = 0.20(uρ)2 εF

h̄

(
T

εF

)2

, (79)

where uρ is the dimensionless interaction constant, ρ being
the density of states at the Fermi level. It reflects explicitly the
scaling (52) anticipated earlier.

The projected Boltzmann equation can be solved for de-
caying and/or increasing Boltzmann modes by truncating the
above equations and restricting the modes of the collision
operator to angular harmonics m below some cutoff N . After
determining all Boltzmann modes, we solved the boundary
value problem and evaluated the conductance as described in
previous sections.

The dimensionless conductance is given by Sharvin’s for-
mula (Sharvin contact resistance) for graphene [31]

Gball

e2/h̄
= 4kF

2π
(80)

with kF = 2
√

πn, n being the carrier density. We have not
incorporated spin and valley degeneracy which would simply
result in multiplication by a factor of 4.

In the presence of interactions, the conductance per unit
width is reduced to

G = Gball

[
1 − 1.19

T

εF

√
log

(
εF

T

)]
, (81)
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where the second term describes the finite-temperature cor-
rection due to inelastic e-e scattering. The logarithmic tail
at low temperatures is an inherent hallmark of 2D electron
transport and originates from the concurrent effects of a planar
geometry and conservation laws [55,60–63]. We point out that
this correction has stronger temperature dependence than the
analytic correction ∼T 2 found in 1D [46], because there are
fewer restrictions on the allowed scattering processes in 2D.

B. Experimental perspective

These results call for an experimental verification as there is
hardly any measurements yet which unveil the effect of inter-
actions on the conductance of 2D systems. The main hindrance
to explore this phenomenology is the momentum dissipation
by impurities, phonons, and umklapp scattering. Of course,
these are inevitable in any real system. However, a pragmatic
requirement for the applicability of our analysis to a given
system is that the momentum-conserving scattering processes
be faster than all other scattering mechanisms, which opens a
window to observe purely collision-dominated transport.

The pioneering work in this direction was done by Jong and
Molenkamp [34,65] on (Al,Ga)As in 1995 where they used a
dc current to induce a desired increase in the e-e scattering rate
at T ∼ 2K and investigated the Gurzhi effect. With the advent
of graphene and the possibility of making very clean samples, a
new arena has opened for studying collision-dominated trans-
port. References [1–3] have reported mobilities of the order
of 200 000 cm2/(Vs) in suspended graphene of micron size
nearly a decade ago. Most recent experiments performed on
freestanding pristine graphene samples [36,37] with mobilities
of the order of 105 cm2/(Vs) have exhibited signatures of
viscous flow. In these samples, the measured mean free path
at large doping reaches a few microns while the inelastic
scattering length decreases to 100–300 nm at temperatures
T � 150K. References [31] and [38] reported the signatures
of viscous flow at room temperature in samples of a graphene
sheet sandwiched between hexagonal boron nitride (hBN)
slabs where the inelastic mean free path is shorter than 400 nm
in a wide range of densities and temperatures T � 150K. These
recent experiments in graphene all focus on anomalous effects
of viscosity on transport in restricted geometries, which are
beyond the scope of the present article. However, they have
unambiguously demonstrated that there is a wide parameter
regime in which electrons in graphene behave as a viscous hy-
drodynamic fluid [27,28,30,31,35–37]; hence, this provides a
remarkable opportunity for the experimental verification of our
results.

IX. ROLE OF SPATIAL DIMENSION

In the previous section, we have presented the leading-
order correction to conductance due to e-e interactions at low
temperature; see Eq. (81). We emphasize that this result is
valid only in 2D, as any lower or higher dimensional system
has drastically different relaxation dynamics. In 2D systems,
energy relaxation occurs by logarithmically enhanced forward
scattering whereas relaxation of the angular quasiparticle
distribution proceeds mainly by head-on collisions. In this
situation, the relaxation of odd angular modes is suppressed
with a higher power of T

εF
in comparison with even angular

modes (see Sec. VII B), which in turn are logarithmically
suppressed as compared to energy relaxation [42,56,59].

In contrast, in 1D Galilean invariant systems [45,46,66],
equilibration to leading order involves three-particle scattering,
as opposed to the prevalent two-particle scattering mechanisms
(head-on or forward scattering) in 2D. The three-particle scat-
tering changes the number of right-going particles NR , which
in turn relaxes their energy ER , in addition to momentum,
according to the relation dER/dt = −μdNR/dt [45]. Another
essential aspect that distinguishes the 1D current relaxation
mechanism from the 2D case is the fact that the transfer of
right movers to left movers requires the intermediate creation
of a hole at the bottom of the band, which is backscattered when
electrons near εF shift from right to left movers [46,67]. As the
probability of such a high-energy hole is exponentially small
at low temperatures, the corresponding equilibration length
is exponentially large ∼eεF /T , as discussed in Refs. [45] and
[66]. This contrasts with the much milder power law growth
of the relaxation length in 2D [see Eq. (55)]. Hence, we infer
that as spatial dimensions are increased from 1D to 2D, the
current relaxation is enhanced, which results in a stronger T

dependence of the correction to the conductance.
In 1D, the crossover from ballistic to collision-dominated

conductance has been worked out in Ref. [45]. Our formalism
allows us to extract an analogous crossover in 2D, by solving
the boundary value problem at finite length.

In 3D, one can equally well ask the question about collision-
induced corrections to the conductance. However, unlike in 2D,
in a collision, initial and final momenta do not have to lie in
the same plane, even when the quasiparticles are forced to the
vicinity of the Fermi surface at low temperature. Indeed, for
a fixed momentum transfer q, there is a one-dimenional con-
tinuous manifold of kinetically allowed scattering processes
[55]. The scattering weight δψ2 associated to these scattering
processes will generically be of order O(1), independently of
the inversion parity of the considered modes. Therefore, the
relaxation of odd and even modes will be comparatively fast,
unlike in 2D, where they differ parametrically. Since we expect
the correction to the conductance to scale as the square root
of the ratio of the relaxation rates of odd and even modes,
we should expect a correction of order O(1) in 3D, and thus
a deviation from the ballistic conductance in long samples,
even at very low temperatures. This is indeed the natural
expectation one might have. The fact that in 1D and 2D the
collision-dominated conductance of long samples nevertheless
tends to the ballistic value instead hinges on the peculiarities
of low-dimensional scattering and transport.

We also note that in 3D, the energy relaxation will not
occur at a faster rate than the (angular) momentum relaxation
because only 2D systems are sensitive to enhanced forward
scattering, and thus the assumption that deviations of the
quasiparticle distribution is essentially angular in nature might
not be parametrically justified beyond 2D.

X. CONCLUSIONS

For a time-reversal invariant system with no spin-orbit
coupling, the scattering rates (and hence the collision operator
in the Boltzmann equation) enjoy an inversion symmetry in
momentum space. This symmetry allows us to classify devia-
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tions of the distribution function from its equilibrium according
to their parity under inversion. In 2D, the even and odd modes
relax at vastly different rates—provided that head-on collisions
are the dominant mechanism of relaxation, which holds for
simply connected and convex but otherwise arbitrary 2D Fermi
surfaces. In this case, there are only two kinetically allowed
channels for collisions: forward scattering, which relaxes
the energy distribution of quasiparticles at a logarithmically
enhanced rate, and head-on collisions, which relax the angular
distribution of quasiparticles, although less efficiently than
the former. Odd-parity modes have a suppressed relaxation
as compared to even-parity modes, and thus they live longer.
This ensures that the quasiparticle distribution is very close to
being odd under parity, despite being off equilibrium. This
in turn guarantees that the weight of the current-carrying
mode is essentially the same (up to a correction vanishing as
T
εF

√
log εF

T
at low temperature) as in a ballistic, noninteracting

setting. This result is valid as long as momentum-conserving
e-e scattering processes dominate, that is, for samples longer
than the inelastic relaxation length but shorter than the length
scale on which subdominant scattering processes start relaxing
the momentum of the electron fluid.

XI. OUTLOOK

Our work can be extended to cases where the collisions
are not inversion symmetric anymore. This situation may arise
due to spin orbit coupling in time-reversal invariant systems,
or by explicitly breaking the time-reversal symmetry of the
system. The simplest way to break time-reversal symmetry is
by applying a perpendicular magnetic field [68]. As long as
the cyclotron frequency is smaller than a pertinent inelastic
rate, it should only have a perturbative effect, which might
nevertheless modify the T dependence of the correction to the
conductance in a significant way. It would be interesting to con-
trast low-temperature conductance measurements of systems
that do or do not obey inversion or time-reversal symmetry.

Note added in proof. Recently, we have learnt about a
closely related study [69], where very similar conclusions
were reached by using a relaxation time approximation for
the decaying components in the even and odd sectors.
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APPENDIX: RELAXATION RATES
DUE TO COLLISIONS

1. Scattering weights

Here we identify the dominant scattering processes that
relax distortions of the distribution function. In particular, we
study the eigenmodes of the collision operator in the even and
odd sectors under the inversion I . Thereby, we concentrate on
low temperatures and thus restrict the discussion to modes that

only depend on the angle of k but not on its magnitude k,


(k) = 
(θ ). (A1)

At low temperature, kinematic constraints and Pauli blocking
allow essentially only for two channels of scattering of quasi-
particles with momenta close to the Fermi surface: (i) forward
scattering where (k,k′) → (k + q,k′ − q) with small |q| =
O(T/h̄vF ) and (ii) head-on collisions (k,k′) → (k + q,k′ −
q), where now k′ = −k + δk′ with small |δk′| = O(T/h̄vF ),
while q is only constrained by the requirement that k + q lie
close to the Fermi surface again, with, however, |q| = O(kF )
in general.

For these two types of processes, we analyze the “scattering
weight” δ
2

o,e [as defined in Eq. (13)] for even and odd
modes, respectively. Let us first consider the forward scattering
processes

δ
2
fwd = [
(k) + 
(k′) − 
(k + q) − 
(k′ − q)]2

� [q · (∇k
(k) − ∇k′
(k′)]2 (A2)

∼ |q|2 ∼ O

([
T

h̄vF

]2
)

, (A3)

whereby we used that the natural scale of variation for modes
(A1) with angular dependence only is kF (not kth = T/h̄vF )
and thus T independent. This forward scattering is suppressed
by the smallness of admissible momentum transfers q and
leads only to rather slow angular diffusion of the quasiparticle
distribution. We will see below that head-on collisions are more
effective in relaxing the modes, certainly so in the case of even
modes, but also for odd modes, where we will find a logarithmic
enhancement as compared to the forward scattering channel.

Let us now turn to head-on collisions. The scattering weight
for these processes is

δ
2
ho = [
(k) + 
(−k + δk′) − 
(k + q)

− 
(−k − q + δk′)]2.

For even modes, we have 
e(k) = 
e(−k), and the scattering
weight evaluates is finite in the limit T → 0,

δ
2
e,ho � [2
(k) − 2
(k + q)]2 = O(1). (A4)

For odd modes, however, we have 
o(k) = −
o(−k), and the
scattering weight is suppressed

δ
2
o,ho � {δk′ · [∇k
(k) − ∇k+q
(k + q)]}2

∼ |δk′|2 = O

([
T

h̄vF

]2
)

. (A5)

Odd modes thus relax substantially more slowly than even
modes [50].

2. Temperature dependence of relaxation rates

We are primarily interested in the temperature dependence
of the relaxation rates, and their scaling as powers of T . The
relaxation rate of an eigenmode �m(k) of the collision operator
is defined as the corresponding eigenvalue and can be written
as

cm = 〈�m(k)|C�m(k)〉
〈�m(k)|�m(k)〉 , (A6)

035421-13



A. UZAIR, K. SABEEH, AND MARKUS MÜLLER PHYSICAL REVIEW B 98, 035421 (2018)

where the matrix elements of C can be expressed as in
Eq. (12), containing the scattering weight δ
2. We recall
that we now restrict the discussion to slowly relaxing angular
modes, approximating �m(k) = �m(θ ) within the thermal
window, and exponentially falling off for ||k| − kF | > T/h̄vF ,
similarly as in (71). We choose the normalization condition
1
π

∫
dθ |�m(θ )|2 = 1. Inspecting (75) and (77), we see that

what really matters for our problem is not the relaxation rate
(A6) but rather the inverse relaxation length scale

c′
m = 2〈�m(k)|C�m(k)〉

vF Bπ
, (A7)

where B was defined in (36). However, since for normalized
modes 〈�m(k)|�m(k)〉 ∼ T ∼ B, c′

m and cm scale the same
way with T .

The scaling with T has two main sources, standard phase-
space restrictions and the scaling of the scattering weight with
T . Kinematic restrictions [55] for head-on collisions leave
a phase-space volume that scales as (T/εF )2, reflecting the
volume available to choose the two-dimensional vector δk′ of
modulus or order O(T/h̄vF ), while the remaining degree of
freedom, the scattering angle, is not restricted by temperature.
This phase-space volume is then multiplied by the scattering
weight δ
2 to yield the scaling of the relaxation rate of the
considered mode. For even modes, we thus find a scattering
rate

ce ∼ εF

h̄

(
T

εF

)2

. (A8)

Odd modes are instead suppressed by the scattering weight, as
we saw above. Naively, this suggests a scaling co ∼ T 4 [50].
However, a more careful analysis shows that

co ∼ εF

h̄

(
T

εF

)4

log
εF

T
. (A9)

The extra logarithmic factor is due to a logarithmic divergence
in the integral over the scattering angle ϕ enclosed by k and
p = k + q. Indeed, when the scattering angle becomes small,
the phase-space volume for choosing the tangential component
of δk′ scales as T/ϕ as long as ϕ is sufficiently bigger than
T/εF . The latter provides a regularizing cutoff. This effect
causes a logarithmic enhancement of the odd mode relaxation
rates, co, upon integration over ϕ. In contrast, for even modes,
small angle scattering is not beneficial because the decrease of
the scattering weight overcompensates the increase in phase
space. Therefore, the logarithmic enhancement only appears
in the relaxation rate of the odd modes.

3. Logarithmic enhancement of the relaxation
rate of odd modes, co

Let us analyze the relaxation rate of the modes as defined
in Eq. (A6). For simplicity, we assume a rotationally invariant
Fermi surface and illustrate the effect of enhanced scattering
for modes �n(k) = cos(nθ ) with integer n; however, the
logarithmic enhancement holds much more generally.

Let us write the momentum k as k = kF (1 +
δk)(cos θk, sin θk), where δk ∼ O( T

εF
) is a dimensionless

number, and analogously for k′,p,p′. In head-on collisions,
we have angular configurations where θk′ = θk + π − �,

θp = θk + ϕ, and θp′ = θp + π − δ, where θk is arbitrary and
the scattering angle ϕ is of order O(1), while the angular
deviations from anticollinearity of incoming and outgoing
particles are small, �,δ ∼ O( T

εF
).

The central element for evaluating a matrix element of the
form (12) in the numerator of (A6) is the integration of the
corresponding scattering weight δ�2 over the angles,∫

dθk

∫
dδ

∫
d�

∫
dϕδ(k + k′ − p − p′)δ�2

k,k′,p. (A10)

Defining a = δk − δk′ and b = δp − δp′, for T � εF , the
total in- and outflowing momenta can be expressed as k + k′ =
kF (a,�)T and

p + p′ = kF

(
cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

)(
b

δ

)
. (A11)

The momentum-conserving δ functions can then be expressed
as

δ(k + k′ − p − p′) = 1

k2
F | sin(ϕ)|δ

(
δ − b cos ϕ − a

sin ϕ

)

× δ

(
� − b − a cos ϕ

sin ϕ

)
, (A12)

which does not depend on θk. Integrating δ�2
k,k′,p =

[cos(nθk) + cos(nθk′) − cos(nθp) − cos(nθp′ )]2 over θk , we
find∫

dθkδ�
2
k,k′,p = 4π [1 + (−1)n](1 − cos nϕ)

+ 2πn[1 + (−1)n](� − δ) sin nϕ

+πn2[δ2 − 2δ� cos nϕ + �2]. (A13)

Note that for even modes (even n) the first line dominates,
while for odd ones only the last one survives, which contains
two extra small factors of δ,� = O(T/εF ).

Integrating over � and δ in (A10) and using (A12) and
(A13), we are left with the integral∫

dϕ

k2
F | sin(ϕ)| {4π [1 + (−1)n](1 − cos nϕ)

+ 2πn[1 + (−1)n](� − δ) sin nϕ

+πn2[δ2 − 2δ� cos nϕ + �2]}, (A14)

where δ and � have to be substituted with the functions of
(ϕ,a,b) imposed by (A12). With this substitution, all terms in
the parentheses behave regularly in the limit ϕ → 0. However,
the Jacobian factor 1/| sin(ϕ)| may cause a logarithmic diver-
gence. The dominant term for even modes is insensitive to the
diverging Jacobian, which is tamed by the term (1 − cos nϕ).
This leads to relaxation rates of order,

cn,even ∼ T 2, (A15)

independently of n, the factors of T being due to the integrals
over a,b which is restricted by Fermi functions to a,b,∼ T .
However, for odd modes, only the last line of the integral sur-
vives, with a finite limit of the factor δ2 − 2δ� cos nϕ + �2 →
n2(b − a)2 as ϕ → 0. With the above approximations, the
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integral thus diverges logarithmically. However, the divergence
is actually cut off at small angles ϕ ∼ T/εF , where the angular
fluctuations �,δ ∼ (a,b)/ sin(ϕ) become of order O(1) and
our approximation of small angles breaks down. We thus find

that in the low-temperature limit the odd modes relax with rates
scaling as

cn,odd ∼ n4T 4 log(εF /T ). (A16)
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