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Abstract We capture the decay of a quantized vortex ring in superfluid helium-4
by imaging particles trapped on the vortex core. The ring shrinks in time, providing
direct evidence for the dissipation of energy in the superfluid. The ring with trapped
particles collapses more slowly than predicted by an available theory, but the collapse
rate can be predicted correctly if the trapping of the particles on the core is taken
into account. We theoretically explore the conditions under which particles may be
considered passive tracers of quantized vortices and estimate, in particular, that their
dynamics on the large-scale is largely unaffected by the burden of trapped particles
if the latter are spaced by more than ten particle diameters along the vortex core, at
temperatures between 1.5 K and 2.1 K.

Keywords Superfluid helium · Quantized vortex

1 Introduction

One way of studying fluid dynamics is to follow the motions of particles suspended
in the fluid. In classical fluids, the equations governing the particle motion are de-
scribed in [1]. The technique is subject to several additional constraints in superfluid
helium [2]. This paper, which considers the decay of quantized vortex rings, is a
contribution to the understanding of particle motion in superfluid helium-4.

The interpretation of the motion of particles suspended in superfluid helium is in
general complicated because the fluid itself has a complex nature [2, 3]. However,
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particles can be trapped on the cores of quantized vortices, according to the mecha-
nism described by Parks and Donnelly [4]. When that happens, the particles make it
possible to identify individual quantized vortices [5]. Furthermore, so long as a par-
ticle is trapped on the vortex core, its velocity normal to the tangent to the vortex is
equal to the local velocity of the vortex itself. Bewley et al. [6] exploit this property
to study the dynamics of quantized vortices undergoing reconnection; see also [7]. In
this paper, we use particles to observe the decay of a quantized vortex ring and, more
generally, explore the effect of the trapped particles on vortex dynamics.

We discuss our observations in the context of the two-fluid model of interpene-
trating fluids [8], consisting of the superfluid which contains the quantized vortices
and the normal fluid which is viscous. The mean velocity of one fluid is opposite that
of the other in a counterflow. Turbulent kinetic energy in the superfluid is borne by
quantized vortices, and at temperatures near Tλ, dissipation occurs when energy is
transferred, by the so-called mutual friction, from the superfluid to the normal fluid,
where the energy is dissipated through the familiar viscous mechanism.

Quantized vortex rings were detected in superfluid helium more than 40 years ago
by Rayfield and Reif [9] and Careri, Cunsolo, and Mazzoldi [10]. These experimen-
talists studied the time of flight of ions through a sample of superfluid helium, under
the influence of an electric field, and determined that the ions must be trapped on
quantized vortex rings moving through the fluid. Their work helped to establish the
diameter of a quantized vortex core, and the mutual friction parameters [11]. Recent
work using numerical models has established that quantized vortex rings probably
travel through liquid helium with companion vortex rings in the normal fluid [12].

The paper is in three parts. In the first part, we report the observation of a vortex
ring and measure its decay. The ring decays with a different time dependence than
is predicted by existing models. In the second part, we incorporate in the dynamics
the hydrogen particles trapped on the vortex core and show that the model accurately
reproduces the observed lifetime. In the last part, we extend the arguments to explore
theoretically the circumstances under which particles can be regarded as passive trac-
ers of vortex dynamics.

2 Experimental Observations

We observe the ring in a sample of superfluid helium containing a suspension of
particles, prepared as in Bewley [13]. The particles, made of solid hydrogen, are
of the order of 1 μm in diameter. Some particles become trapped on the cores of
quantized vortices [5] and make the motions of the cores traceable. We observe the
particles by shining in the fluid a light sheet of about 100 μm thickness, and imaging
the sheet with a digital movie camera having a resolution of 16 μm per pixel. We cool
the fluid steadily at a rate of 10 mK/min causing a thermal counterflow in the fluid,
but there is no reason to think that the counterflow directly affects the dynamics of
quantized vortices, as discussed in Bewley et al. [6].

Figure 1 shows photographs of a ring whose diameter decays over time, while it
remains nearly aligned with the illuminating light sheet. The temperature is 2.06 K.
To measure the diameter of the ring, we refer to the diagram in Fig. 2, and provide the
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Fig. 1 The photos are taken 1 s apart, as a ring vortex ring passes through the sheet of illuminating light.
The vortex is made visible by a collection of hydrogen particles that are trapped on its core. The width of
each photo is 2 mm

Fig. 2 In the early stages of the evolution of the ring shown in Fig. 1, the plane of the ring is inclined
with respect to that of the illuminating light sheet. The plane of the ring shown is in the page, and the
illuminating light sheet as it intersects the ring is shown in perspective. The portions of the ring that pass
through the light sheet appear brighter and thicker because of blooming on the sensor. The portions of
the ring that lie outside of the illuminating light sheet are also visible, but less brightly because they are
illuminated by diffuse light scattered off other particles and surfaces inside the cryostat

following commentary. The camera projects the ring onto the image plane, which is
the same as the plane of the light sheet. The ring is tilted with respect to the plane of
the light sheet, and some part of the ring intersects the light sheet. The ring is brighter
where it intersects the light sheet, and we mark this part of the ring in Fig. 2 with
a thicker line. As can be seen in the figure, a circular ring could appear eccentric in
the projection on the image plane, if it were rotated relative to the image plane. The
pattern of illumination of the ring in Fig. 1 suggests that this is the case, and that the
ring is rotated predominantly about the vertical axis, with respect to the image plane.
Because of this, the projection of the ring onto the image plane only distorts the
horizontal dimension, or the width, of the ring. Its height in the image is not modified
by the projection and is, in fact, the diameter of the ring.

The measurements shown in Fig. 3 correspond to the distance between the centers
of the thicknesses of the ring at the top and bottom of the ring image. The ring decays
into a particle aggregate in about 6 seconds, with nearly linear decay over time.

If there is no counterflow in the helium, the lifetime of a vortex ring is approxi-
mately

τt = 2πR2
0

αβ0κ
, (1)

where R0 is the initial radius of the ring, α is a mutual friction coefficient, and β0 =
ln(

8R0
a

) − 1
2 [8]. Equation (1) predicts that a vortex ring with the same initial radius

as the one observed would decay in about 2 seconds, or three times faster than the
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Fig. 3 The radius of the ring measured along its major axis. The error in measurement of the diameter is
about 16 μm. The image of the ring closes after about 6 s. When the relative velocity between the normal
fluid and superfluid, vns , is zero, theory predicts that the ring would decay in about 2 s. A counterflow
velocity of vns = 250 μm/s causes a vortex ring to have the same lifetime as the one observed, but with a
time dependence of the ring radius that does not agree with measurements. The present model, described
in the text, reproduces the flattening of the decay of the radius, and accurately predicts the lifetime of the
vortex ring

observed decay time. Furthermore, it would do so with nearly quadratic dependence
of the lifetime on the ring radius, as can be seen in Fig. 3.

The large-scale relative motion between the superfluid and the normal fluid causes
a quantized vortex ring to either become larger or smaller over time, depending on the
relative velocity between the fluids, and the initial diameter of the vortex ring [8]. Ac-
cording to the theory, a counterflow of 250 μm/s opposing the vortex ring causes it to
decay in about 6 seconds, equal to the lifetime of the observed vortex ring. However,
we shall now show that the counterflow cannot account for the observations.

While we cannot state with certainty the magnitude or direction of the local coun-
terflow in the experiment, we can estimate it by measuring the heat removed evap-
oratively from the helium bath. Heat flows into the helium through the imperfect
insulation of the cryostat, steadily heating it up when the cooling is switched off.
From the rate of temperature rise of the helium, we estimate the total heat load on the
helium is of the order of 100 mW. That amount of heat flux produces a counterflow
of about 500 μm/s; in fact, this magnitude is comparable to the observed velocities
of the particles. The heat flux enters the helium bath from the entire surface area, but
leaves essentially from the free surface of the bath. Therefore, we should expect to see
significant heat flux only at the free surface, where it is likely to be oriented perpen-
dicular to the latter; this direction is in the plane of the vortex ring. This orientation of
the heat flux leaves the evolution of the ring radius unaffected. More importantly, as
shown in Fig. 3, the functional form of the ring decay predicted by this hypothesis is
quite different from the data. Therefore, we seek another explanation for the retarded
decay of the observed ring.
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3 A Model for the Ring Decay

3.1 The Governing Equation

We review the derivation of the equation governing the evolution of the vortex ring,
and add to it the effect of particles decorating the core. Following Barenghi et al. [11],
we balance the Magnus force on an element of the ring against the external forces on
the element, so that

fM + fv = 0. (2)

We assume that the vortex core has a much smaller radius than the ring, and that
the normal fluid is quiescent, as is the superfluid far from the ring. Furthermore, we
neglect the influence of sound generation by pressure fluctuations, which is thought
to be negligible at the temperature of the experiment, and at the observed scales [14].

The interaction between the circulation of the vortex and its movement through
the fluid creates the Magnus force,

fM = ρsκs × (vL − vi ), (3)

where ρs and κ are the density and circulation of the quantized vortex, respectively,
s is a unit vector tangent to the ring, vL is the velocity of an element of the ring, and
vi is the self-induced fluid velocity of the ring.

The self-induced velocity, vi , is the flow induced at any point on the ring by the
rest of the ring. The vortex ring acts on itself because it is curved on itself, resulting
in its motion through the fluid. In the absence of other forces, a vortex ring moves
with the induced velocity

vi = κ

4πR

(
ln

8R

a
− 1

2

)
, (4)

where R is the ring radius and a that of the core. The induced velocity depends
strongly on the ring radius but only logarithmically on the core size.

Forces on the vortex core, fv , can be written generally as

fv = −DDvL − DLs × vL. (5)

This equation includes a drag term, DD , and a lift term, DL (both of which are ex-
pressed in units of force per unit length per unit velocity). We do not include a com-
ponent of the force parallel to the vortex core because there is no motion along it. In
the case of a quantized vortex without particles, the coefficients, DD and DL are the
temperature-dependent mutual friction parameters, γ0 and γ ′

0, respectively.
Using s = (0,1,0), vL = (Ṙ,0, vz), and vi = (0,0, vi) in polar coordinates, such

that the unit vectors are (R̂, θ̂ , ẑ), with ẑ as the axis of symmetry of the ring, (2) to (5)
combine to form two scalar equations. The variable vz can be eliminated to yield the
governing equation for the ring radius as

Ṙ = dR

dt
= −βP

κ

4πR
. (6)
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The rate at which the ring collapses is controlled by the parameters

β = ln
8R

a
− 1

2
, (7)

P = ρsκDD

D2
D + (DL − ρsκ)2

; (8)

the larger the values of β and P , the more quickly does the ring decay. The parameter
β contains the influence of the vortex core radius on the self-induced velocity of the
vortex. The parameter P measures the influence of the drag and lift forces on the
vortex core. The parameter P has a maximum as a function of the drag force, DD , so
the ring decays slowly when the drag is both large and small.

3.2 The Effect of Particles

To model the observed decay, we consider the viscous drag on the particles decorating
the vortex ring and the fact that the particles impede circulating superfluid. The two
phenomena affect the values of P and β , respectively. We shall see that the primary
effect of the particles in determining the decay of the ring appears through β .

First, the particles add viscous drag to the term DD . However, there is no reason
to think that the particles contribute to the lift, DL; they would do so only if they
were rotating, but we know of nothing that produces a torque on the particles. To
find the viscous drag, we treat the hydrogen particles on the core of the vortex as
forming a circular cylinder, which is itself formed into a circular ring. This may be
valid when the hydrogen particles are so small, and so closely collected, that the
core behaves like a uniformly malleable aggregate in the shape of a cylinder. Where
the rings are intersected by the light sheet, the images do indeed appear uniformly
bright. Furthermore, as the vortex ring shrinks, the radius of the ring of particles does
not shrink below a certain value, in order to respect the constancy of the volume of
particles. Note that we ignore shear stresses in the core so that it takes no work to
reshape it.

We assume that the drag per unit length on the circular ring of particles is the same
as that on a straight cylinder, and use Batchelor’s expression [15] for the latter,

fc = 4πμ

ln( 3.7ν
rcvL

)
vL, (9)

where μ and ν are the dynamic and kinematic viscosities of the fluid, rc is the radius
of the cylinder, and vL is the magnitude of vL. Equation (9) is applicable as long as
the ring radius is much larger than the diameter of the cylinder of particles embedded
on the vortex core; it is accurate for low Reynolds numbers, which we estimate to be
between 0.2 and 0.5 during the observed collapse of the ring. By equating fc and fv
in (5), we have

DD = 4πμ

ln( 3.7ν
rcvL

)
(10)

for the particle-decorated core.
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When the core is decorated with hydrogen particles, its radius, a in (7), is the
radius of the cylinder formed by the particles, rc . Note that the hollow-core model for
the vortex ring is justified since the hydrogen takes the place of the fluid. Furthermore,
the radius of the core must evolve with time, since the mass of hydrogen is conserved,
so that

r2
c = Vc

2π2R
, (11)

where Vc is the volume of the particle-laden core.
We estimate the volume of solid hydrogen in the core from the images early in the

evolution of the ring, and of the particle aggregate remaining after the ring collapses.
Both estimates give a value of Vc ≈ 2 × 10−6 cm3. Errors in the estimation of the
volume of hydrogen is the main contributor to the error in predicting the lifetime of
the modeled vortex ring but this contribution is still moderate: a factor of four in the
volume changes the lifetime only by about 25%.

By the coating of particles, the effective value of the radius a in (7) becomes larger.
This reduces the parameter β to a third of its value without particles, causing the
vortex ring to decay more slowly. On the other hand, the effect of particle loading on
the parameter P is smaller. This may seem strange because of the direct appearance
of the drag in P . The explanation appears to be that for each particle that sticks to
the vortex ring, there is a commensurate reduction in the induced velocity, making
the drag smaller. In this respect, there seems to be an approximate compensation of
the two effects due to particle loading: increased area exposed to the flow and the
decreased velocity of motion.

Another point worth making is that the values of P with or without mutual friction
are comparable. While we cannot say with certainty whether the existence of particles
on the core makes mutual friction irrelevant, this observation appears to point in that
direction.

3.3 Numerical Method

The model for the vortex ring can now be integrated numerically to obtain quantita-
tive answers. We make a first order approximation of the time derivative in (6), and
compute successive values of the radius of the ring, R, according to

R(t + �t) = R(t) − Pβ
κ

4πR
�t, (12)

where �t is the time increment.
A complication arises when the drag is given by (10). The speed, vL, appears in

the logarithmic term, and vL is itself a function of Ṙ. This means that (6) cannot be
solved analytically for Ṙ. However, according to (9), the primary variation in the drag
force, fc , is due to its linear dependence on vL, and the variation due to the log term
is comparatively small. On the basis of this observation, we solve (12) by using vL

from the previous iteration, at time t , to evaluate the logarithmic term in (10).
In order to test that the solution depends only weakly on the logarithmic term, we

also solve (12) under the assumption that the logarithmic term is constant. We choose
constant values that are a factor of two larger and smaller than those that result when
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the log term is evaluated using vL from the previous iteration. Solving (12) gives
lifetimes of the ring that are different by less than 10% from those that include the
log variation described above. We conclude that assuming slow variation of the log
term is quite reasonable.

In Fig. 3, we plot the result of solving (12), using a step size of �t = 1 ms. We
check the method by confirming that the work done by the drag force during the
collapse of the ring is equal to the energy lost. That is, �E = 2π

∑
Rfc · vL�t ,

where �E is given

�E = 1

2
ρκ2R0

(
ln

8R0

a
− 2

)
. (13)

The model accurately depicts the evolution of the ring.
The lifetime of the vortex ring can be defined as the time taken for the ring radius

to equal the core radius. Without particles, under the influence of only mutual friction,
this occurs after 2 s according to (1), or at about a third of the observed value. With
particles, the lifetime of the ring is 5.3 s, comparable to the observed time of about
6 s.

Although including such effects as the inertia of the particles, motion of the nor-
mal fluid, and counterflows in the fluid might produce a more accurate depiction of
the decay, the present model seems to be sufficient to demonstrate the influence of
particles. We have also neglected the mechanical strength of the hydrogen particles
in the core, and the close correspondence of the model and the observation suggests
that hydrogen particles do not make the quantized vortices rigid and immobilized.

4 Particles with Space Between Them

Although the above results show that a bare quantized vortex behaves differently from
that with continuous particle coating, there are circumstances in which it is possible
to treat particles as passive markers. To understand these circumstances, we consider
a vortex with regularly spaced particles, as in Fig. 4. Lets us denote the ratio of the
distance between particles, l, to the particle diameter, d , as

σ = l

d
. (14)

Fig. 4 For the observed ring, particles on the core form a malleable aggregate and modify the evolution
of the vortex. To explore the effect of the particles if they were spaced far apart along the core of the
quantized vortex, we model hydrogen particles as spheres with diameter d trapped at intervals l along the
core of a vortex whose radius of curvature is R
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In fact, in experiments on vortex lines, particles seem to be spaced sparsely along the
core [6] rather than continuously coating them as seen to be the case for vortex rings.
As described in Bewley [16], the mean spacing of particles under certain conditions is
about 130 μm, or of the order of 100 particle diameters. The distribution is essentially
Gaussian with a standard deviation of about 25 μm.

In the case of a vortex ring, the primary effect of particles on the lifetime of the ring
is due to the enlargement of the effective core radius, which lowers the self-induced
velocity, as reflected in the logarithmic term, β , in (7). In order for the dynamics of
the vortex to be similar with and without particles, the ratio

S1 =
(

ln
8R

re
− 1

2

)/(
ln

8R

a0
− 1

2

)
(15)

should be close to 1, where re is the effective radius of the core with particles on it,
and a0 is the radius of the core without particles.

To estimate the effect of the particles that are spaced apart along the core, as in
Fig. 4, we make the approximation that the effective core radius, re is equal to the
average core radius over a long length of line, re = π

8
d
σ

. This assumption may be
valid as long as the particle spacing, l, is much smaller than the radius of curvature
of the vortex, R. Equation (15) gives a value of re for which S1 is within agreeable
bounds. For an R of 100 μm, S1 < 1.1 when re < 1.5 × 10−3 μm. This, in turn,
specifies a minimum spacing of the particles, σ ,

σ

d
= π

8re
≈ 260 μm−1. (16)

In other words, 1 μm particles should be spaced by about 260 diameters along the
core of the vortex in order for the self-induced velocity to be within 10% of its value
with no particles. Note that smaller particles can be closer together than larger ones,
for the same effect on the self-induced velocity.

We remarked earlier that particle loading does not have large impact on the decay
rate through the parameter P . In other words, the viscous drag on particles does not
play a significant role in modifying the lifetime of the vortex ring of Fig. 1. However,
the drag does affect other aspects of vortex dynamics. To expand on this point, we
compare the mutual friction force, per unit length of vortex line, fm, to the drag force
on the particles, per unit length of line, fp . In doing so, we distribute continuously
over the vortex the forces applied locally by the particles. In effect, this assumes
that the vortex is stiff on scales smaller than l, which is probably not true, but the
assumption allows us to make a rough estimate of the influence of the particles. In
general, the mutual friction force can point in a direction that is different from that of
the drag, but it is instructive to compare their magnitudes,

S2 = |fm|
|fp| ≈ σ

ρsκ

3πμ
(α2 + α′2)1/2. (17)

Here, we use the drag on a spherical particle, 3πμdvL [15], and neglect the interac-
tion between particles, which makes the formula valid for σ � 1. The temperature
dependent parameters, α and α′, describe the strength of the mutual friction. The
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Fig. 5 The ratio of the
magnitude of the force on a
quantized vortex core due to
mutual friction to the drag
caused by particles trapped on
the core of the vortex. We
incorporate the factor σ , which
is the ratio of the particle
spacing to their diameter. As
described in the text, the particle
drag for σ = 1 is at least 5 times
larger than mutual friction. The
horizontal line separates the
region where viscous drag
dominates from that where
mutual friction dominates when
the particles are spaced by 10
diameters

magnitude of the geometric mean of their squares is of order one between 1.4 K
and 2.1 K. Note that the size of the particle plays no direct role in determining the
influence of the viscous drag.

In Fig. 5, we evaluate S2/σ . When σ = 1, which approximately describes the
case for the vortex ring presented above, S2 is always less than unity and viscous
drag dominates over the mutual friction. When σ > 10, or the particles are spaced by
more than ten diameters, there is a range of temperatures between 1.5 K and 2.1 K
for which the mutual friction may play a dominant role in determining the evolution
of the quantized vortex. Note however, that we consider the action of the particles
as being averaged over long lengths of line, and that the particles could still have a
strong local effect. Instances of these effects are given in [16].

5 Conclusions

In summary, we have observed the decay of vortex rings by using solid hydrogen par-
ticles to mark them. The very occurrence of decay validates the phenomenology of
dissipation in quantized vortex turbulence through the exchange of energy between
the superfluid and the normal fluid. However, we observe that hydrogen particles
substantially modify the behavior of quantized vortices on which they are trapped
by effectively expanding the diameter of the vortex core. A model which treats the
core of the vortex as a cylinder passing through a viscous fluid accurately predicts
the lifetime of the observed vortex ring, including the flattening of the curve that the
data follow for long times. These considerations provide a warning about the effect
of particles on the behavior of quantized vortices. We extend the model to predict
theoretically when the vortex dynamics would remain unaffected by the particles. We
propose two parameters for gauging the effects of the particles, and find, as an exam-
ple, that the effects may be negligible for a vortex with a 100 μm radius of curvature
when 1 μm particles are spaced along it by more than 260 particle diameters. Between
1.5 K and 2.1 K, one can relax this condition and state that the trapped particles could
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experience smaller drag than the mutual friction force, in a global sense, when they
are spaced by more than ten diameters. Under these conditions, the particles could be
used as passive tracers of vortex dynamics.

Acknowledgements The data were acquired at the University of Maryland, as part of collaborative
research with D.P. Lathrop. We are grateful to Jürgen Vollmer for discussion.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. M.R. Maxey, J.J. Riley, Phys. Fluids 26(4), 883 (1983)
2. D.R. Poole, C.F. Barenghi, Y.A. Sergeev, W.F. Vinen, Phys. Rev. B 71(6), 64514 (2005)
3. Y.A. Sergeev, C.F. Barenghi, D. Kivotides, Phys. Rev. B 74(18), 184506 (2006)
4. P.E. Parks, R.J. Donnelly, Phys. Rev. Lett. 16(2), 45 (1966)
5. G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Nature 441(7093), 588 (2006)
6. G.P. Bewley, M.S. Paoletti, K.R. Sreenivasan, D.P. Lathrop, Proc. Nat. Acad. Sci. 105(37), 13707

(2008)
7. M.S. Paoletti, M.E. Fisher, K.R. Sreenivasan, D.P. Lathrop, Phys. Rev. Lett. 101(15), 154501 (2008)
8. R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)
9. G.W. Rayfield, F. Reif, Phys. Rev. 136(5A), A1194 (1964)

10. G. Careri, S. Cunsolo, P. Mazzoldi, Phys. Rev. 136(2A), 303 (1964)
11. C.F. Barenghi, R.J. Donnelly, W.F. Vinen, J. Low Temp. Phys. 52(3), 189 (1983)
12. D. Kivotides, C.F. Barenghi, D.C. Samuels, Science 290(5492), 777 (2000)
13. G.P. Bewley, Cryogenics (2008, in press). doi:10.1016/j.cryogenics.2008.10.018
14. W.F. Vinen, Phys. Rev. B 61(2), 1410 (2000)
15. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 2000)
16. G.P. Bewley, Using frozen hydrogen particles to observe rotating and quantized flows in liquid helium.

PhD thesis, Yale University (2006)

http://dx.doi.org/10.1016/j.cryogenics.2008.10.018

	The Decay of a Quantized Vortex Ring and the Influence of Tracer Particles
	Abstract
	Introduction
	Experimental Observations
	A Model for the Ring Decay
	The Governing Equation
	The Effect of Particles
	Numerical Method

	Particles with Space Between Them
	Conclusions
	Acknowledgements
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


