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In this paper we present some results of an extensive campaign of direct
numerical simulations of Rayleigh-Bénard convection at high Prandt] numbers
(10° < Pr < 10*) and moderate Rayleigh numbers (10° < Ra < 10°). In
particular, we examine the Nusselt and the Reynolds oumber dependences
on Ra and Pr. A short discussion on the characteristic flow velocity is also
presented.

1 Introduction

The paradigm of thermal convection is the flow between infinitely eonduct-
ing parallel plates heated from below and cooled from above. This model,
called the Rayleigh-Bénard convection, is governed by two non-dimensional
parameters: the Rayleigh number Ha = gaATh"/{wx) and the Prandt] num-
ber Pr = v/x, where g is the acceleration of gravity, & is the fluid layer depth,
AT is the temperature difference and the fluid properties a, » and x are, re-
spectively, the thermal expansion coefficient, kinematic viscosity and thermal
diffusivity, The Rayleigh-Bénard model is generally based on the Boussinesq
approximation, in which the Huid properties are assumed o be constant de-
apite the temperature gradient across the fluid depth, and the only effect of
the temperature in the momentum equation is to modify the buoyaney term.

The influence of the Prandtl number on thermal convection dynamics
is difficult to investigate experimentally, because Pr can be substantially
changed only by changing the fluid. Examples of studies following this ap-
proach can be found in [1] and [2]. A different strategy for varving Pr was
adopted in [3], [4] and [5]. It consists of working close to the critical point of
compressed gas. This technigue enables the exploration of the influence of Pr
variations at quite high Ra numbers. However, in both strategies complica-
tions arise from the great difficulty of maintaining constant properties across
the Auid depth, with consequent violation of the Boussinesq approximation,
especially at high Pr numbers.
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Numerical simulations can completely overcome these issues, even if they
face other kinds of difficulties such as adequate spatial resolution and the
integration of long enough time evolutions. Some numerical studies deal with
varying Pr numbers ([6], [7], [8], [9], [10]). Only few of them (I7], [10]) mimic a
set-up similar to experiments, thus allowing a proper comparison of the resulis.
A smaller number of studies concerns very high-Pr regimes. On the other
hand, in [10] the discussion is mainly focused at lower Pr regimes (2.2x10~2 <
Pr < 15). In [7] & wider range of Pr numbers is explored (10-% < Py < 10%),
but only at fixed Ra = 10

We propose a numerical study of thermal convection at high-Pr regimes
and moderate Ra numbers for a wide range of Pr and Ra (see figure 1{a)).
Numerical simulations at high Pr are very challenging. They require highly
refined grids to solve the smaller temperature scales of the flow and large
time windows 1o attain the steady state for mean quantities and to correctly
represent the statistics of the slow dyvnamics of the fow.
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Flg. 1. (a) Map of the performed simulations in s cylindrieal vell af aspect ratio [ = 1/2
The lignnd shows the corrmaponding number of grid points ia the asimuthal, rdial and vertical
dashed line represonts the threshold Ra Lo pass from stasdy to unstendy flow, (b) Batchelor seale
ik [u.ruuln Y pe=irae a function of Pr. Squares: Ra = 10", upright trisngles: Ka = 107,
filledl mymbols: gg /h based an (), (nverage in space and thmely andilled symbole gp /b based
on mer (e, (svorage only in time); wortieal soli and dushod lines: mewpectively minimum and

maximum grid wee A = [2erAbAr A for the biggest grid (388x81x321). It is worth nasking
that the Batchelo scale is quite independent of Pr.

2 Physical and numerical setup

The flow considered here develops in a cylindrical cell of aspect ratio (diameter
to cell height) I"' = 1 /2. Cold and hot temperatures are imposed, respectively,
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on the top and bottom plates. The sidewall is adinbatic and all the boundaries
satisfy the no-slip condition.

The flow is solved by numerically mtegrating the three-dimensional un-
steady Navier-Stokes equations with the Boussinesq approximation. To solve
these equations a code ([12]) based on second-order accurate finite-difference
schemes on & staggered mesh in cylindrical coordinates and an optimized
fractional-step method have been used.

The grid size has been chosen to solve the Batchelor scale ([13]) in the bulk
(see fig. 1(b) as an example) and 7 — 15 points have been placed inside the
thermal boundary layers. Refinement analysis has been extensively applied
(see fig. 1{a)) in order to assess the grid independence of the solutions. In
particular, it has been checked that all the quantities considered in this paper,
when computed on most refined grids, differed from those of coarser grids by
less than 4%% Where possible, the results from the most refined grids have
been used.

The simulations have been run for long enough time windows to obtain
statistically converged quantities; in particular, after the initial transient was
exhausted each simulation was continued for further 1500 time units based
on the large-scale low. This time unit ¢ is defined as the time that a fluid
particle needs to cross the cell depth with a typical velocity U, of the large
scale structures: . = h/U.. The precise definition of U, as well as some
discussion of it, will be given in subsection 3.2.

3 Results
3.1 Nusselt number

The Nusselts number (Nu) is the non-dimensional measure of the heat flux
crossing the layer of fluid and is one of the most important quantities to
calculate. Figure 2a shows Nu divided by Ra® as a function of Ra at Pr = 10°.
The exponent o = 1/3 corresponds to the best power-law fit in the interval
Ra = [10° — 10°]. This exponent, however, appears to be over-estimated as
Ra increases. Including a provisional result at Ra = 10 and excluding the
simulation at Ra = 10%, the best exponent is equal to 0.307. The exponent
a = 2/T corresponds to the best fit in the interval Ra = [2.10° - 107]. It s
worth noting that for all the three exponents, the data depart at most by about
115 with respect to perfect straight lines, except for a = 2/7 and Ra = 10°
where the departure exceeds 20%. This scatter is quite small compared to the
data usually available in literature. However it is larger than the error bars
which are less than 3.5%(hidden by symbols in both the plots of fig. 2).

In the case of the dependence of Nu on Pr at fixed values of Ra (fig. 2b),
the deviations from constant values are also around 109, even if for Pr > 100

1 The mme rewult hins bewn obtained also for second order moments of tempersture and velocitios
fields (avorage in space and Lime),
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F‘II- 2. (a) The Nusselt nuwmber, Nu, divided by Ha™ versus Ra st Pr = 107 whede a ms-
siines diffetent values, The rosults st Mo = 10" wre provislonal, (b) Nu number versus Pr a
Ra = 2. 10 feircle), Ra = 107 {equnre) and fa = mr{upm.nm} The error bars arm smaller
than the symhbols sise. The orror bar corresponds to the maximum difference of tha valios o=
tained somputing the Nu number through its relstlonships witl the viseois and the temperature
dissipation rate, and aversging the pon-dimensional heat flus st each horisontal section of the
eell and in the whale volume ([6]).

they fall below about 2%. At Ra = 2-10° and Ra = 107 we find a trend that
decreases slightly with Pr, while at fta = 10® the behavior is more scattered.
The decreasing behavior is in line with the presence of an overshoot in the
Nu versus Pr trend, while passing from low to high Pr regimes ([15]). This
trend is confirmed from a running simulation at Ra = 107 and Pr = 10-1,
The scattered behavior at Ha = 10* was not expected. However, a possible
explanation lies in differences of the lnrgescale flow structures found in our
simulations. This work is in progress and the results nre encouraging.

3.2 Characteristic velocity and Reynolds number

In addition to the Nusselt number, the Reynolds number is an output of the
problem reflecting the strength of the fow. For Pr of the order of unity, the
typical large-scale velocities of the flow are scaled well by the free fall velocity
U = /gadTh which results from the balance between the inertial term and
the buovancy term of the momentum equation. At high Prandt] numbers,
however, the momentum tends to be very diffusive and inertial forces become
small; accordingly, the present simulations at high Pr showed that U/ does
not represent the typical velocity of the large scale structures, which is much
smaller. By scaling the results from several simulations we have found that the
large-scale characteristic velocity is U = U/v/Pr (note that U and U, coincide
for Pr = O(1)) which vields the estimate of the Reynolds number to be
Re = Uh/v = Ra/Pr. As a consequence, the Péclet number becomes Pe =
Uch/x = Ra independent of Pr. To verify the reliability of this estimates we
show the results from two velocities that can be assumed as typical of large
scale structures, One is the maximum value of the root-mean-square {rms) of
the honzontal velocity profile Uym, = mu:l:[{l:f,hﬂ'”, averaged in time and
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Fig. 3. Filled symbols show fie and Pe based on the rma horfsontal velocity Uy, and unfilled
wyinibola Re and Pe are basd on maximum vertical welocty W, Diamonds represent trends
at fieed Pr= 107, circles those at faed Ro = 2. 10", sguares those st flosd Re = 107 and upright
trimngles thoss fixed Ra = 100

over horizontal surfaces. The other is the time-averaged peak vertical velocity
Wnar = (mazx(u.]),.

Figure 3a shows the behavior of Re with respect to Ra at Pr = 10°
The power-law exponent significantly differs for the two velocities and both of
them are different from 1/2. However, it is pessible that the exponents closer
may be to 1/2 after the transition from the so-called soft to hard turbulence,
as shown in [1]. In the ringe of Ra numbers explored up to now, no transition
is visible. A simulation at higher ia is presently running.

Figure 3b shows the behavior of Re with respect to Pr at different values
of Ra. The Reynolds number is divided by Pr=! to better show the trends.
For all Rayleigh numbers and for both choices of typical velocities, the data
tend Lo approach constant values as Pr increases. At Pr > 10* the deviation
[rom a constant value is less than 3.6%. At lower Pr the deviations can exceed
30%, strongly depending from Ra and on the kind of velocity considered.

Finally, figs. 3¢ and 3d show the behaviar of thermal (§1) and viscous (&)
boundary laver thickness, respectively, as functions of Pe and of Re Both of
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them are obtained considering the distance from the wall corresponding to
the maximum values of rms profiles (of temperature for & and of horizon-
tal velocity for 4). The boundary layers have lnminar-like behavior, and the
viscous boundary layer saturates to a constant value ns Re decreases.

4 Conclusions

In the convective regimes considered here, the Nusselt number seems to follow
a power-law of the kind Nu ~ Ra'®Pr", However, a lower value exponent
for Ra dependency better represents the data trend at higher Ra numbers,
Instead, the tendency of Nu to become independent of Pr for large Pr seems
to be unambiguous.

As a main result, we have found a 1/vPr correction to apply to the free
fall velocity, obtaining a more appropriate representation of the large scale
velocity at high Pr. Using this new characteristic velocity, it is possible to
derive a new non-dimensional form of the Boussinesq equations and a rough
estimation of the Re and Pe numbers that are more suitable at high-Pr
analysis than those which derive from the characteristic velocities eommenly
used to make the equations non-dimensional.

Considering Nu ~ Ra'/*Pr® and the mean peak vertical velocity Wi.s
as the characteristic velocity, the results qualitatively agree with aspects of
the Grossmann-Lohse theory ([15]) concerning very high-Pr regimes (1112
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