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According to Lighthill (1995), Prandtl’s (1904) boundary layer has had the same
transforming effect on fluid dynamics as Einstein’s 1905 discoveries had on other
parts of physics, which, by the way, were celebrated in 2005 as the World Year of
Physics. That the boundary layer becomes turbulent was formally known to
Blasius (1908), though, of course, the origin of turbulence in a pipe was studied
earlier by Reynolds (1883). The problem of the turbulent boundary layer has
since been a paradigm in the field of turbulence. Its practical importance in flows
over air and water vehicles as well as in geophysical fluid dynamics has been
recognized for nearly a century now. Advances in our understanding of the
boundary-layer scaling and structure can be expected to shed further light on the
complex and multiscale flow dynamics, and also offer basic input to flow control
strategies for practically relevant problems such as reducing large vehicle drag
(and hence, by implication, emission levels).

The first systematic account of turbulent boundary layer was given probably
by Prandtl (1942), followed by Schlichting (1956) and a more modern version by
Monin & Yaglom (1971). Advances in the subject, particularly its scaling
properties, have been the subject of various classical reviews such as Clauser
(1956) and Coles & Hirst (1969). The importance of the flow structure was
highlighted, with different emphasis, by Townsend (1956, 1976) and Kline et al.
(1967), and it is fair to say that, in one form or the other, the interaction between
the flow structure and scaling properties of the turbulent boundary layer has
been the subject of major study since then. This interplay has been the subject of
reviews such as Cantwell (1981) and Sreenivasan (1989). The last major review
of structure and scaling in boundary layers, and in wall-bounded flows in general,
appeared approximately 10 years ago (Panton 1997). In the intervening period,
experimental attention has focused on the form of the boundary-layer scaling at
Reynolds numbers much higher than before. The debate on logarithmic versus
power-law scaling of the mean velocity (Barenblatt et al. 1997; Zagarola & Smits
1998) and on whether, in general, the flow close to a wall can be regarded as
universal—in the sense that the influence of the outer flow is negligible—have
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spurred serious high Reynolds number experiments and a re-examination of the
basis of asymptotic scaling relationships. Similarly, computational efforts have
nudged upwards in Reynolds numbers. This issue is a collection of selected
papers which encompass these new developments.

Generating well-controlled wall flows at very high Reynolds numbers has become
expensive and specialized, as is the task of making well-resolved measurements. It
has been recognized of late that a significant international collaboration will be
required in the field, in order to make new measurements at very high Reynolds
numbers and to consolidate the data for analysis by independent groups for the
purpose of addressing outstanding questions. This cooperation has been fostered, at
least in part of the community, through annual workshops on high Reynolds
number wall-bounded flows, initiated and organized in 2003 by Ivan Marusic
(University of Minnesota), Hassan Nagib (Illinois Institute of Technology),
Lex Smits (Princeton University) and Katepalli Sreenivasan (International Centre
for Theoretical Physics, Trieste). A group of researchers has met several times since
then to discuss the status of our understanding of wall flows. There have been frank
and constructively engaging discussions.

The idea for a new journal issue on high Reynolds number wall flows arose
from these discussions at which most (though not all) of the authors have been
attendees. As such, the papers in this issue describe views of one set of
researchers on the current status of the scaling and structure of incompressible
wall-bounded flows at high Reynolds numbers. Perhaps, there is room for other
views, which should be considered at another time. In this collection, the focus is
on the data arising from both experimental and numerical works, and on the
conclusions to which they lead. If, even within this collection, strikingly different
views of the correct form of scaling in wall flows (boundary layers in particular)
are advocated, and different notions of the boundary-layer structure are
proposed, this state of affairs should be put down to the great difficulties
accompanying the generation of wall flows at very high Reynolds numbers, and
the limitations on the accuracy of data for even the most carefully designed
experiments. And, of course, the analytical difficulties of the problem have not
diminished one bit since the days of Reynolds decomposition.

The papers in this issue fall into one of the following categories. Each paper
considers several aspects, so this classification is no more than a rough guide.

— Fundamental scaling relations for canonical flows and asymptotic approach to
infinite Reynolds number: Allen et al. (2007), George (2007), McKeon &
Morrison (2007), Nagib et al. (2007), Panton (2007), as well as others.

— Large and very large scales in near-wall turbulence: Balakumar & Adrian
(2007), Hutchins & Marusic (2007), as well as others.

— The influence of roughness and finite Reynolds number effects: Allen et al.
(2007), McKeon & Morrison (2007), Nagib et al. (2007), as well as others.

— Comparisons between internal and external flows and the universality of the
near-wall region: George (2007), Morrison (2007), as well as others.

— Qualitative and quantitative models of the turbulent boundary layer: Jiménez &
Moser (2007), Klewicki et al. (2007), Nickels et al. (2007), as well as others.

— The neutrally stable atmospheric surface layer as a model for a canonical zero-
pressure-gradient boundary layer: Metzger et al. (2007), Narasimha et al. (2007),
as well as others.
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An experimental investigation into the behaviour of the flow at very high
Reynolds numbers is presented in the paper by Allen et al. (2007). The data
obtained at Princeton in the Superpipe have not only set a record for the
Reynolds number, but have also underlined the difficulties in resolving the small-
scale motion. One of the controversies surrounding the earlier data has concerned
the smoothness of the pipe at the high end of the Reynolds number range
(see Barenblatt et al. 1997; Perry et al. 2001). To address this issue, the present
authors study the effects of roughness in a honed pipe; honing is chosen because it
is the most common machining process used commercially.

One of the inferences of the authors is that their earlier pipe was
hydrodynamically smooth except for the highest Reynolds numbers, as originally
claimed by Zagarola & Smits (1998). The primary interest of Allen et al. (2007)
here is, however, the study of transitional and fully rough cases in pipes. The
roughness geometry considered by the authors is similar to that characteristic of
the nominally smooth wall, though, of course, the amplitudes are larger. The
authors summarize earlier results and present new ones on the mean velocity,
streamwise spectra and friction factor. These results broadly support Townsend’s
outer-layer similarity hypothesis for rough wall flows (i.e. they collapse on the
same scaling as for smooth pipes), confirming that the effects of roughness are
confined to the inner region—at least for the small roughness height to pipe
diameter ratios of these experiments.

Perhaps, the more far-reaching conclusion of the authors is that their friction
factor data are significantly different from those indicated on the classical, and
widely used, Moody diagram. The data display inflectional behaviour observed
for the sand-grain surface roughness by Nikuradse (1933), in contrast to the
monotonic interpolations used by Colebrook for natural and commercial rough
surfaces. Is the time ripe now for a revision of the Moody diagram on which
generations of engineering students have grown up (Shockling et al. 2006)7

A new observation in recent years concerns the existence of the so-called very-
large-scale motions (VLSMs), which are long streamwise scales of the order of
tens of pipe radius (or boundary-layer thickness) and larger. This is the subject of
Balakumar & Adrian (2007). Kim & Adrian (1999) had already observed that
these scales contain a significant fraction of the streamwise energy, and that this
fraction increased with increasing Reynolds numbers. Subsequently, at much
higher Reynolds numbers than those of Kim & Adrian (1999), Morrison et al.
(2004) observed that the VLSM contains more than half the energy of streamwise
fluctuations.

This journal issue also contains several further treatments of the VLSM in
different wall-bounded flows. Following the earlier work of Hutchins & Marusic
(2007), in which they identified the footprint of the VLSM on streamwise
energy spectrum all the way through the wall layer, these same authors now
demonstrate the importance of the VLSM as a modulating factor on the near-
wall turbulence cycle, previously considered to be autonomous. The large-scale
motions parallel to the wall are identified as being responsible for some degree
of organization of the smaller scales and the amplification of energy fluctuations
at the corresponding scale. VLSM has an important bearing on the
interpretation of the frequency results obtained from a velocity record by
standard Fourier techniques, because the latter mask the effect of a low-
frequency amplitude modulation. Balakumar & Adrian (2007) provide evidence
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of the seemingly universal influence of VLSM in both channel and boundary-
layer flows, but the VLSM is found to be shorter in these cases than in the pipe,
which was the object of the earlier study by Guala et al. (2006); however, the
common feature shared by all these flows is that VLSM contains a large share
of the kinetic energy.

It appears now that the VLSMs do exist in velocity signals, but were not
recognized previously, perhaps, owing to the way the velocity signals were
measured and processed. It is thus useful to speculate about the origin of the
VLSM. A mechanism that is conjectured by Balakumar & Adrian (2007) relates
to the autogeneration and alignment of hairpin-vortex packets. This view must
be reconciled with the fact that VLSM is sometimes deduced to be of the order of
the length of the apparatus itself (Ganapathisubramani et al. 2006).

Further speculations are varied. One suggestion has been that the VLSM may
be related to large-scale pressure fluctuations in experimental facilities. If so, it
would not be as interesting as one might now imagine. Another suggestion is that
it arises from the statistical merger of many wall-layer streaks beyond a certain
Reynolds number, much like the percolation structures that span the entire size
of a percolating medium as soon as the probability of occurrence of site
percolation exceeds a threshold value. It must also be said that the detection of
VLSM has relied heavily on the use of Taylor’s hypothesis. For instance, even in
PIV measurements, two-dimensional data frames of finite streamwise extent are
tagged together using Taylor’s hypothesis, a practice whose reliability for the
purpose needs critical examination.

If VLSM is indeed real, what is its significance? If a considerable fraction of the
energy in the overlap region is associated with VLSM, and if this fraction is
different for different flows as claimed by Balakumar & Adrian (2007), it is clear
that VLSM has an important bearing on the so-called universal scaling in the
overlap region. The seminal ideas of Townsend (1956), concerning ‘active’ and
‘inactive’ motions, or the distinction between motions that contribute to the
production of turbulent energy via the shear stress and those that can be
regarded as quasi-inviscid and responsible for local ‘sloshing’ (i.e. the slow
modulation of the local streamwise velocity), are relevant here.

Indeed, several papers in this collection discuss the nature of active and
inactive motions. Morrison’s (2007) paper is one. Expanding the ideas of
Townsend (1956), Morrison (2007) demonstrates that a naive theory of inactive
motion relates a linear approximation to the slow modulation by the wall of the
shear-stress-bearing motion. In this description, the active and inactive motions
are essentially decoupled. In reality, as shown by the failure of the inner scaling
to collapse experimental data (for example, the scaling of the root-mean-square
velocity in the streamwise direction, see also later), this decoupling is most
probably questionable, and the interaction between the inner and outer vorticity
fields should be considered to be nonlinearly coupled.

The contribution of numerical simulations to the understanding of the near-
wall region of wall flows is reviewed by Jiménez & Moser (2007). That the
experiments and simulations are complementary is underscored by the wealth of
simulation data available, especially in the region very close to the wall where it
is hard to obtain experimental data with full resolution. If the universality of the
near-wall region, when normalized by wall variables, were to be rigorously true,
the simulations at low or moderate Reynolds numbers would be an adequate,
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though pragmatic, way of addressing all issues of interest. Unfortunately, as
several papers in this issue make clear, the near-wall flow is much more
complex—this being an aspect with which analytical theories have yet to come
terms—and the moderate Reynolds numbers of simulations will therefore have
their intrinsic limitations. However, the Reynolds numbers of simulations have
been inching up and, as stated by Jiménez & Moser (2007), ‘The cascade of
momentum across the range of scales in the logarithmic layer is probably the first
three-dimensional self-similar cascade that will be accessible to computational
experiments.” In the present paper, the authors show that about half of the
energy in the viscous and buffer layers is traceable to a family of well-defined
structures and surmise that the rest comes from bursting (see also the later
discussion in the paper by Narasimha et al. (2007)).

Perhaps, one general comment should be made about computational efforts,
which have deservedly assumed an important role. The target of simulations is to
resolve at most the viscous length-scale, but not smaller. The expectation is that
there are no smaller scales that are dynamically significant. It is however
probable, as the Reynolds number grows, that the smallest dynamically
important scales of wall turbulence become an increasingly smaller fraction of
the viscous length. It is now certainly understood that the smallest scale in
homogeneous turbulence becomes an increasingly smaller fraction of the
Kolmogorov scale (Yakhot & Sreenivasan 2005). If an analogy with wall
turbulence can be made, then the need to resolve scales becomes increasingly
more stringent with increasing Reynolds number, and the promise of how high a
Reynolds number one can achieve for a given computer power becomes
somewhat more pessimistic than now. Nevertheless, there is no doubt that
numerical simulations have an important role to play. As Jiménez has
emphasized elsewhere, an important and unique role of computations is their
ability to switch off one mechanism at a time to decide upon the relative
importance for a given physical phenomenon.

The paper by Panton (2007) provides a review of the method of composite
asymptotic expansions for wall turbulence. The first half of the article is a review
and summary of the conventional wisdom (Millikan 1938). Complete descriptions
of the profiles of Reynolds shear stress and mean velocity in channel flow are laid
out in the framework of matched asymptotic expansions, claiming good
agreement with both DNS and experimental data. This part is followed by a
critique of various modifications suggested, though the article does not discuss
the incomplete similarity due to Barenblatt, which, as mentioned earlier, leads to
power laws for the mean velocity. In the remainder of the article, Panton (2007)
examines a three-layer expansion of the streamwise Reynolds stress to account
for the inactive motion of Townsend, employing different scales from those
characterizing the active motion. It is the author’s opinion that concepts like the
mesolayer or the critical layer (Long & Chen 1981; Sreenivasan 1987) are not
required. In particular, the comment applies to the multilayer models proposed
in the paper by Klewicki et al. (2007). However, the critical layer may be
important, as we shall describe below, if only because it determines the lower
bound of the log law. At the least, it suggests that some new physics is required
to cover the region between the wall layer and the seat of the critical layer (i.e.
the peak position of the Reynolds shear stress). This feature comes through in the
paper by McKeon & Morrison (2007), who claim that the structure of the mean
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velocity in just this region of the boundary layer is substantially richer than has
been thought to be the case. This may well be one of the major lessons from the
recent work.

The next few papers consider scaling at very high Reynolds numbers,
specifically in boundary layers and pipes. Nagib et al. (2007) focus on the skin
friction and mean velocity in turbulent boundary layers, with a view to
ascertaining the asymptotic behaviour. These authors make two points of general
importance. First, the skin friction has to be measured directly and accurately in
order to draw useful conclusions on the scaling of the boundary-layer properties.
The required accuracy according to them is something of the order of 0.1%,
hardly ever attained in existing measurements. The authors claim that this
accuracy is attained in their oil film measurements. It is clear that attempts to
infer scaling properties of turbulent wall flows without an independent means of
skin-friction measurement are not useful, and the limitation of something like the
Clauser chart ought to be particularly kept in mind.

The general second point of Nagib et al. (2007) concerns the support of recent
hot-wire data at high Reynolds numbers, such as those acquired at Kungliga
Tekniska Hogskolan (KTH) and in the National Diagnostic Facility (NDF) at
the Illinois Institute of Technology (Osterlund et al. 2000), for classical
conclusions concerning mean-velocity scaling and integral parameters. One of
their important inferences is that the log law with a Karman constant of 0.384 is
the correct velocity distribution in the overlap region. Their Kdrméan constant is
smaller than the accepted value of ca 0.4, which itself is smaller than the value of
0.42 advocated by researchers working with the Superpipe. It is heartening that
one can, these days, have enough confidence in measurements to claim that 0.38
and 0.42 are, in fact, different without rounding them both off to a ‘universal’
value of 0.4. If further assessments support these claims, it is apparent, at the
least, that the log law, if it exists, is not universal.

Another point of emphasis placed in this paper is the excessive slowness with
which the normalized properties of the boundary layer, such as the shape factor
and the skin-friction coefficient, decay with the Reynolds number. This aspect is,
of course, evident from the many empirical correlations in vogue, but to see
several of them plotted on a single graph paper is quite revealing. It is
particularly interesting to note that, while several existing empirical correlations
agree with each other, as well as with the existing data, over the available span
(R€9<104, say), they diverge significantly from one another beyond this realm.
One does not therefore have a good guidance as to which, if any, of the several
existing correlations provides a trustworthy extrapolation in the limit; so much
for the help rendered to a ship designer by laboratory data! It is worth drawing
attention to a similar conclusion drawn from the considerable effort spent on this
same issue a few years ago at NASA Langley.

The smooth-wall results from the Princeton Superpipe (Zagarola & Smits
1998; McKeon et al. 2004; Morrison et al. 2004) are drawn together in the paper
by McKeon & Morrison (2007), in which high Reynolds number scaling is
described in terms of the spectral separation of the energy-bearing and
dissipative scales, and a gradual approach to inertial scaling, in both physical
and spectral spaces. While this concept in itself is not new, by a simultaneous
consideration of spatial and spectral fluxes and the development of the overlap
layer as a spatial analogue of Kolmogorov’s (1941) inertial subrange, these
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authors show that distinct changes in the flow scaling, indicated by early
analyses of the Superpipe data, become consistent with traditional estimates for
scale separation as the Reynolds number increases. Thus, it is proposed that the
emergence of the logarithmic law for the mean-velocity scaling with the Karman
constant k=0.42 for y*>600, when R* >5000, corresponds to the emergence
of the inertial range, or at least self-similar, —5/3 scaling, in the turbulent
spectrum. This feature indicates that the emergence of a self-similar spectrum
and the approach to local isotropy of fluctuations in the overlap region may
go together.

An important comment should probably be made on the lower limit of the
logarithmic region. The traditional belief has been that this limit is fixed in terms
of y* (see Coles & Hirst 1969); a number that has been cited in various textbooks
is that it corresponds to a y* of ca 30. McKeon & Morrison’s (2007) analysis
(and those of several earlier Superpipe data analyses) shows that the logarithmic
region does not begin until a y* of 600 is reached, while most experimenters of
the past had inferred a logarithmic region well below 4" of 600!

One conspicuous point is that the Reynolds number in the Superpipe is much
larger than in any flow before. The importance of scale separation lies at the
heart of asymptotic arguments concerning the existence of any similarity law,
and it is perhaps the case that past inferences from lower Reynolds number pipe
flows were far from being definitive. This has been discussed, among others, by
Wosnik et al. (2000). Perhaps, one observes something of the scaling region only
in the more recent high Reynolds number experiments (summarized here by
Allen et al. (2007), McKeon & Morrison (2007) and Nagib et al. (2007)). The
possibility, then, is that the lower limit of the log region is itself Reynolds
number dependent, which, in turn, suggests that some additional physics is
called for in the region below the log layer. This is precisely where the critical
layer, discussed above, enters. Add to this claim of new physics the present
experimental finding that the log-law constant in the pipe is 0.421 (McKeon &
Morrison 2007) while that in the boundary layer is 0.384 (Nagib et al. 2007), and
the situation does not augur well for a universal log law.

In the present collection, George (2007) tackles the issue of universality from
the streamwise momentum equations for different turbulent wall-bounded flows.
By this means, he calls into question the log law (for the boundary layer). His
proposal is to replace the log law by a power law, with corresponding important
implications for the underlying asymptotic physics. This has been claimed also by
Barenblatt, Chorin and collaborators, though their arguments have little to do
with George’s (see also George & Castillo 1997). In Barenblatt et al. (1997), the
basic notion is that the viscous effects never disappear even outside the wall
region, perhaps because the finite cores of the ubiquitous hairpin vortices persist at
all Reynolds numbers. Whatever is the final word, the small-viscosity asymptotics
have remained a great challenge in turbulence theory and need some careful
thought. George (2007), in particular, has argued here that while logarithmic
scaling is justifiable from the equations of motion for pipes and channels, the
boundary-layer power law precludes universality (see Wosnik et al. 2000).

To a keen experimentalist, the frustration has been the difficulty in deciding
unequivocally as to whether the data support the log law or the power law.
Serious people have differed on the outcome for the same data. It is astonishing
that seemingly elementary issues—such as whether a log law exists, and, if one
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exists, whether the log-law constant is the same for boundary layers and pipes—
have remained elusive even after many years of research. We suppose that it
underlines the difficulty of deciding the issue using the mean velocity alone, and
one needs to consider other quantities for which the different ways of doing
asymptotics yield zeroth-order differences: a log law and a power law with small
exponent can often be mistaken one for the other. It is possible to consider
fluctuations and high-order moments, as has been done in the examination of the
classical inertial scaling in spectral dynamics (or its equivalent) in homogeneous
turbulence, but the great regret presently is that the decreasing resolution of
measurements near the wall do not allow any definitive inferences to be drawn
from the measurements of mean squares and high-order moments. These
difficulties have led many practitioners to the conclusion that, within the current
experimental accuracy, a log law is an adequate description of the data. One
should no doubt accept the power of tradition in coming to this conclusion.

Physical models for wall-bounded flows are presented by Nickels et al. (2007),
and by Klewicki et al. (2007). In the former paper, the so-called ‘attached eddy
model’ of Townsend, extended by Perry & Chong (1982) for vortex loops, is
reviewed in the light of high Reynolds number experiments. Predictions based on
the implied underlying structure are found to yield a consistent picture of the
flow properties and Reynolds number variations, and illuminate possible reasons
for recent observations, both for and against, on the £~ ' (wavenumber) spectral
scaling. Klewicki et al. (2007) have proposed an alternative physical model based
on recent publications on a multiscale analysis of the Reynolds-averaged
momentum balance. The new multilayer structure contrasts with the classical
picture in spirit, but still yields logarithmic scaling of the mean velocity and
offers some insight into vorticity dynamics throughout the boundary layer.

The final two papers include data from the atmospheric surface layer (ASL)
under neutrally stable conditions. The near-neutral ASL has often been used to
extend the Reynolds number range of laboratory studies by many investigators.
The attraction is clearly that the Reynolds numbers are very high and even the
smallest scales in the flow can be resolved quite adequately. Yet, the extent of the
correspondence between the ASL and the canonical boundary layer remains to be
fully characterized due to the influences of fetch, roughness, constancy of
direction of the wind, stability of the flow and challenging operating conditions.

Some of the inherent challenges of using the ASL are addressed by Metzger
et al. (2007). For some time, a consistent effort has been made on the salt flats
in Utah, where, for certain times of the year and certain times of the day, the
fetch, the wind direction and the ground conditions are quite close to what one
might expect of a canonical boundary layer. The facility has gained the
acronym SLTEST, standing for Surface Layer Turbulence and Environmental
Science Test. The paper by Metzger et al. (2007) is an addition to the literature
concerning measurements at SLTEST. It carefully examines the short window
of near-neutrality and the non-stationary nature of the flow and time-scales
associated with synoptic weather that overlie the turbulence. It also considers
the balance between convergence considerations that dictate long record
lengths. Using a set of synchronous measurements obtained during a 2005
field campaign at the SLTEST Facility on the Utah salt flats, mean and
turbulent velocity characteristics over a range of wall-normal heights
encompassing the viscous sublayer up through the overlap region, and at the
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highest terrestrially available Reynolds number, are summarized. Even though
the wall is fully rough and there are intrinsic limitations on low-frequency
resolution due to flow non-stationarity, qualitative agreement is obtained with
the conclusions of Hutchins & Marusic (in press) concerning the broadband
‘footprint’ of the superstructures discussed earlier.

One of the conclusions from recent measurements and simulations is that the
peak root-mean-square value of the streamwise velocity fluctuation, when scaled
on the friction velocity, is an increasing function of the Reynolds number. This
increase is roughly logarithmic (or, perhaps, a weak power law). This is one of the
simplest manifestations of how the Reynolds number dependence appears in the
near-wall properties, and hence quite important. Our confidence in this
dependence comes in large measure from the SLTEST measurements, which
provides the one point at very high Reynolds number connecting a cluster of
points at laboratory Reynolds numbers. The strategic importance of this single
result suggests that additional measurements with the intention of establishing
Reynolds number dependence would be extremely valuable.

Finally, we discuss the paper by Narasimha et al. (2007). One of the questions
in turbulence in general, and wall-bounded flows in particular, is whether the
statistical outlook ought to contain a strongly ‘episodic’ character, i.e. events of a
well-characterized structure repeatedly contribute significant amounts to
statistical properties such as mean fluxes. It was clear from the work of Kline
et al. (1967) and that of Rao et al. (1971) that the fluxes indeed have an episodic
character to them at low Reynolds numbers. But is this property preserved at
very high Reynolds numbers? This question is the principal drive for the paper,
wherein the authors describe the results of measurements made in a near-neutral
ASL within the overlap region. First, after a brief review of event-based
decomposition of the instantaneous turbulent momentum flux, the authors
introduce a new threshold method for the detection of shear stress events.
Second, by considering the signatures associated with productive and counter-
productive contributions to the flux, they show that their method permits a
compact, episodic flux description which looks similar to a Mexican hat (with
different signs for the productive and counter-productive parts). The lengthy
time-scales associated with event duration and separation recall, in spirit, the
outer scaling of events well within the wall-dominated layer, proposed now many
years ago by Rao et al. (1971).

From the authors’ data, the answer to the question posed just above should be
regarded as positive: indeed, even at very high Reynolds numbers, even well
outside the viscous-dominated wall region, there is an episodic character to the
turbulent fluxes. It is not yet clear how to build this feature into the statistical
description of fluxes, and the authors suggest that the productive part could be
related to coherent structures (perhaps, formally through wavelets of the
Mexican hat variety and, perhaps, physically through structures of the type
discussed by Jiménez & Moser 2007), while the passive parts might be amenable
to the usual Fourier description.

The final point of the paper is the correspondence of the productive and
counter-productive parts with the active and inactive motions of Townsend. It
would indeed be valuable if one could reduce the jargon in this subject where the
same physical process is often described through several different terms, mostly
because one is never sure as to what part of the process is central and what is
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peripheral. (Recall the parable of the elephant and the six blind men.) In the
authors’ terminology, both productive and counter-productive events would be
regarded as active in the Townsend sense, and they occur on time-scales much
larger than the characteristic wall unit; they regard the idle periods, or the low
flux parts, as the ‘passive’ motion.

In the distinguished and, as yet, untamed field that is turbulent flow, the
nature of turbulence close to a surface continues to yield its secrets piecewise and
slowly. The notion that, somehow, one single clever idea will produce a flood of
understanding is receding to the background. Or, is it that we are so burdened by
what we immediately observe that penetrating the fog to see the light is
becoming more difficult? To summarize the progress in a few sentences, however
inadequately, we believe that the influence of the large scales is becoming ever
clearer, in apparent contradiction to Townsend’s inactive motion ideas. The
concept of a universal inner layer that is independent of the outer flow seems to
be limited in value. The very nature of the large structure in wall-bounded flows
seems to be changing in our perception.

The study of non-canonical flows has offered additional insight into canonical
flows. For example, every bit of understanding of the polymer drag reduction
problem adds to the understanding of the canonical boundary layer itself; insight
into the effects of acceleration, rotation, free-stream turbulence and other such
auxiliary effects will also add to our understanding of canonical flows, but there is
no doubt that the canonical flows will continue to be of interest in their own
right. This has rightly been the subject of our attention here. This journal issue
has drawn together a picture of current research. While it offers neither an
exhaustive review nor detailed descriptions, we hope that recent progress and the
potential for future work have been highlighted to the reader.

The issue of scale separation, if such in fact exists in wall-bounded flows, is at
the heart of all scaling theories, and this likelihood increases with increasing
Reynolds numbers. New experimental facilities have permitted the study of ever
higher Reynolds numbers, and yet the measurement accuracy prevents us from
distinguishing between opposing hypotheses concerning even the mean-velocity
scaling. The greater urgency seems to be the ability to resolve all the scales, and
not simply move towards ever increasing Reynolds numbers. Recent massive
computations have augmented insight into the dynamics of the near-wall region,
and now approach Reynolds numbers where the overlap layer may be
simulated—but there is a long way to go before they approach experiments.
The academic challenges have thus remained, even as practical needs for better
understanding have mounted. This is the dichotomy of the field.

It remains to offer sincere thanks to all the authors for contributing the
exciting pieces of ‘Scaling and structure in high Reynolds number wall-bounded
flows’ and to the journal editor for agreeing to publish this thematic issue.
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