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Abstract: An expression is derived for the mean velocity distribution in pipe and channel
flows near the position of the maximum Reynolds shear stress, . This
expression agrees well with measurements in a significant region on both sides
of ¥y, extending to the buffer region on the one hand and almost all the way to
the centerline of the flow on the other.
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i, INTRODUCTION

Close to the surface in wall-bounded flows such as pipes, channels and
boundary layers, the mean velocity varies linearly with wall-normal distance
[1]. Further away from the surface, the traditional understanding has been
that the variation is logarithmic [2]. Recent work on this same issue [3] has
proposed power law variation as more appropriate (though the suggestion of
an empirical power-law fit goes back to Prandtl and his students). Even
further out in the flow, the so-called wake function [4] is thought to codify
experimental data.

This article does not elucidate the work of Refs. [1-4] directly. We merely
use a simple tool to construct an explicit expression for the distribution of
the mean velocity near the position of maximum Reynolds shear stress, Y.
‘The key idea is the logarithmic power series expansion around Y. Such an
_expansion is usually suitable when there is some long-range interaction in
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the problem, as seems to be true for turbulent flows in general—wall-
bounded flows in particular. The validity of the expression so derived
extends, on one side of y,,. to the so-called buffer region that exists between
the end of the linear region and the beginning of the log/power region. The
buffer region is of great importance because of its participation in the
turbulence generation mechanism, yet there exist no explicit expressions for
the velocity distribution in this region—especially those based on broadly
applicable physical principles. On the other side of y,,. the expression seems
to be valid almost all the way to the centerline of the flow.

2. ANALYSIS

Let us start from the exact equation valid for pipes and channels
—<uv>' =—-dU'/dy" +(1 -y'/R’), (h

in which we have used the standard notation: u and v are velocity
fluctuations in streamwise and wall-normal directions x and y respectively,
U(y) is the mean velocity in the direction x, R is the pipe radius or the
channel half-height, and the suffix + indicates normalization by wall
variables u, and v, which represent, respectively, the friction velocity and the
fluid viscosity. Elementary consideration show that the turbulent stress term
—<uv>' increases cubically with y very close to the wall; it changes rapidly
into a different form that has not been studied carefully so far before
attaining a maximum value in the flow; it subsequently drops off to zero as
the flow centreline is approached further outwards [5]. The position of the
maximum in the Reynolds shear stress, y,,, is empirically known [6] to obey

Yo = 1.87R'? (2)

where the Reynolds number R, = u.R/v. This fit has been proposed by others
as well [7]. Though the multiplicative constant is slightly different in cach
work, this ambiguity merely reflects the uncertainty associated with the
identification of y,, from measured data and is not fundamental. It should be
stressed that the distribution of —<uv>" has been obtained by numerically
differentiating the measured mean velocity distribution and using (1), and so
is not dependent on the inaccuracies that usually plague the Reynolds shear
stress measurements.

Let us expand —<uv> around y,, . We had undertaken this exercise
already in [6] but had not appreciated the importance of expanding —<uv>'
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in terms of the logarithm of the distance from y,, . It now seems to us that
this is the appropriate expansion to make, considering that the Reynolds
shear stress varies slowly in the region around its peak. In general,
expansions in logarithmic variables are appropriate whenever long-range
effects are present, as is the case in wall-bounded flows. We may then write

—cuv>' = c[1-a {In(y fyw )} + oo+ e tin(y fyw 3" +). (3)

Here, the unknown constants o ... o, are thought to be independent of the
Reynolds number, at least when it is high enough. The fit works very well
for all Reynolds numbers shown in figure 1, roughly for y > 10. This region
more or less borders the buffer region.

Substituting (3) in (1), and retaining only the first two terms in the
expansion (3), we obtain

U =const+yg(y)-(y 2R, (4)
where

gly)=ao+a [In(y /y)l, (5)
withag =1 —¢ +cay, a,=cay, ¥y = €Y - (6)

The expression (4) is technically not expected to be valid all the way to
the wall (see figure 1), but we can be somewhat rough and impose the no
slip condition U" =0 aty = 0 to obtain
U =y'[gy)-y2d] (7)

where d = 2R’. In order to compare the last equation directly with
experimental data, it is useful to rewrite it in the form

Uly +y/d =gly)=ac+a [In(y )] @)

If the present considerations are valid, the left hand side of (%) must show a
parabolic variation with respect to y " in logarithmic coordinates.
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Figure 1. Plots of the Reynolds shear stress from the direct numerical simulations of a
channel flow [8], for four different Reynolds numbers, Re, based on the bulk mean velocity
and the width of the channel. The data have been fitted by the two term expansion of (3). The
fit is very good fory > 10.

3. COMPARISON WITH MEASUREMENTS

We show in figures 2 and 3 the recent Princeton data [9] for two Reynolds
numbers. The solid parabolas are drawn in order to compare the data with
equation (8) in the semi-logarithmical scales. The agreement with the data 1s
excellent almost all the way to y  of the order 10 towards the wall, and to y
of the order 1000 or more outwards—in fact, almost all the way to the
centerline.

4. CONCLUSIONS

In the traditional picture, the Reynolds shear stress attains a constant valuc of
unity, this being the fundamental factor leading to the logarithmic law. That
one can identify a maximum value from the distribution of —<uv> 1s a
reflection that the expected constancy does not obtain at least up 1o the
Reynolds number for which (2) holds. It may be that the relation that holds
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Figure 2. Aplotof U /y +y /d againsty in semi-log scales (circles), for Re = 74,345,
where Re is based on the mean velocity and the pipe diameter. The data are from [9]. The
solid parabola indicates correspondence to equation (8).
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for “low™ Reynolds numbers—in which case the present considerations hold
only that range of Reynolds numbers. This possibility is equivalent to the
scenario in which y,, remains unchanged beyond a certain Reynolds
number. On the other hand. if a maximum can indeed be identified at all
Reynolds numbers, this feature has to be taken into account in some way.
Such considerations were the subject of [6].

We ourselves view equation (8) as a good fit to the mean velocity data in
the buffer region, possibly much further outwards. Whether the proposal is
fundamental depends on the status of the logarithmic expansion (3) that we
have used. At present, it is hard to resolve the question satisfactorily.

The analysis is strictly valid for only pipe and channel flows (because of
(1)). but we expect that it would be valid for constant-pressure boundary
layers as well.
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