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Abstract. Fluid turbulence is of considerable importance both fundamentally, as a paradigm for all nonlinear systems with
many degrees of freedom, and in applications. In recent years there has been considerable effort to take advantage of some
unique properties of low temperature liquid and gaseous helium. In particular, studies of turbulent thermal convection in
conventional fluids have been aided by the use of low temperature helium which principally allows the limit of large Reynolds
and Rayleigh numbers to be attained under controlled conditions. We discuss some directions and recent progress in these

studies.
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INTRODUCTION

Fluid turbulence is an important consideration in the con-
text of industrial applications such as the dispersal of pol-
lutants, mass and heat transfer, and flows around ships
and aircraft. The problem is also a paradigm for strongly
nonlinear systems, distinguished by the interaction of a
large number of degrees of freedom. In either context
there remain many open questions, which are of conse-
quence to a number of closely related problems such as
interstellar energy transport [1], weather prediction and
planetary magnetic fields [2], and, more indirectly, per-
haps even market fluctuations [3]. Because of the inher-
ent complexity of these problems, progress depends on
a substantial input from experiment. This has led to a
search for optimal test fluids for laboratory work in fluid
turbulence, which has in turn pointed to the use of low
temperature helium. The adaptation of low temperature
technology to the study of classical turbulence is not,
however, without difficulty, but the benefits we believe
outweigh the limitations, which are mostly related to the
adaptation of measurement technology.

FLUID EQUATIONS

We briefly introduce here the fluid equations written for
a coordinate system fixed in space, and assuming the
applicability of continuum mechanics. Let us consider a
volume of fluid of density p and subject to a velocity u.
Conservation of mass takes the form

dp
Fay. =0 1
5 TV (pu)=0, ¢))
which, in the case of constant density, reduces to
V.ou=0. )

For a Newtonian fluid (having a linear relation between
stress and strain tensors), the momentum equation re-

duces to
Du

D 3)
in terms of the pressure p, kinematic viscosity v which is
the ratio of the shear viscosity u divided by the density p.
For convenience of notation we have used the convective
derivative 7[))7 = 597 + V -u. An unspecified external body
force term is represented by Feyt.

For thermally driven flows, we have the buoyancy
force of magnitude Fy = gaAT in the direction of the
gravitational acceleration g, where « is the coefficient of
thermal expansion and AT is the temperature difference
across a layer of fluid in the direction of gravity. With the
exception of variations in density that produce the buoy-
ancy force, a simplifying Boussinesq approximation as-
sumes that all other fluid property variations occurring as
aresult of the imposed thermal gradient can be neglected.
The equation for energy conservation in the Boussinesq
approximation is

1
= _EVP+ VV2H+Fexta

orT

ot

Here «x is the thermal diffusivity of the fluid at tempera-
ture 7. Additionally to these partial differential equations
we must also supply the appropriate initial and boundary
conditions; e.g., rigid or “stress-free" surfaces, conduct-
ing or insulating boundaries, rough or smooth surfaces,
etc.

To motivate the principal dynamical control parame-
ter for turbulent flows— the Reynolds number Re— we
briefly consider isothermal flows driven solely by pres-
sure gradients. Rescaling all velocities by some char-
acteristic velocity U, all lengths by some characteristic
length L, times by L/U and normalizing the pressure by

=KkV?T —u-VT. 4)
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a factor pU? the momentum equation (3) without the ex-
ternal force term can be re-written as

Ju _ 1w
797+u-Vu——Vp+ReV u, ©)

where the Reynolds number is identified with Re =
UL/v. It may be thought that when Re is very large (i.e.
for turbulent flow) the viscous term in the momentum
equation (the term vV2u in equation 3) becomes unim-
portant compared to the inertial term (the term u - Vu).
The Reynolds number can be defined of course on any
scale, not just the largest. If we consider that at some
scale the locally defined Re becomes of order unity, al-
lowing for the domination of viscosity, we can under-
stand conceptually the existence of a smallest scale in a
turbulent fiow.

It is evident from equation 5 that we do not have to
take into account particular dimensioned values of the
viscosities, lengths, velocities, etc. This is what allows
us to connect in a general way diverse phenomena rang-
ing from the flow of hydrogen and helium gas at astro-
physical scales to, say, the the flow of blood in tiny cap-
illaries. In the case where the geometrical factors are the
same, Re becomes a dynamical similarity parameter and
its equivalence between flows with otherwise different
length and velocity scales, or different viscosities, is the
principle behind wind-tunnel model testing.

In those flows where buoyancy derived from ther-
mal gradients plays a role—which evidently occurs in na-
ture more often than not, and in which we are mostly
interested here—another control parameter, namely the
Rayleigh number

Ra = gaATL* /v, ©®

emerges in the fluid equations. Physically, the Rayleigh
number measures the ratio of the rate of potential energy
release due to buoyancy with the rate of its dissipation
due to thermal and viscous diffusion. Additionally, a
parameter composed only of fluid properties, the Prandtl

number,
Pr=v/x, Q)

appears. Physically, Pr is a measure of the ratio of time

scales due to thermal diffusion (o = [? /) and momen-
tum diffusion (7, = L?/V).

WHY HELIUM?

Turbulent flows occur in the limit of large Re and Ra,
although there does not always exist any sharp bound-
ary beyond which a flow becomes turbulent as one of
these parameters is increased. Considering that Re or Ra
in fluid turbulence are measured on a logarithmic scale,

the attainment of the highest possible control parameter
values is a useful target for experimental research. If suit-
ably high Re or Ra were attainable using common flu-
ids such as air or water, there would be little motivation
for pursuing the difficult task of pushing low-temperature
technology. However, this does not appear to be the case.
The principal advantage of helium, as advertised numer-
ous times (see for example ref. [4]) is its very small kine-
matic viscosity, even in the gas phase, leading to large
Re without the need for large apparatus dimensions or
of large velocities. Of course, it can be made to have a
rather large viscosity as well in the gas phase (for very
tow densities). Similarly the ratio of fluid properties ap-
pearing in the Rayleigh number (see equation 6) can be
orders of magnitude larger in cryogenic helium than for
conventional fluids, and, conversely, can also be made
rather small (also in the gas phase for very low densi-
ties). We have emphasized the capacity of low tempera-
ture helium gas in particular to produce a wide variation
in the fluid properties (hence also Re, Ra) because we are
often seeking to accurately measure scaling relations of
some propetty of the turbulent flow, assumed invariant in
some asymptotic limit of high Re or Ra. For this we need
decades of the control parameter in the turbulent regime,
which are better obtained in a single apparatus having
consistent boundary conditions, protocol, etc.

RAYLEIGH-BENARD CONVECTION

Turning our attention now to buoyancy-driven flows, we
note at the outset that it is not realistic to suppose that
we can solve all real problems, which may have compli-
cated boundary conditions, multiple phases and chemical
species, magnetic fields, and so on. Consequently, most
work focuses on a simpler problem for which reasonable
progress can be made, but one that still contains the es-
sential physics of the real problem in which we are ulti-
mately interested. In the case of thermally-driven turbu-
lence, this is the so-called Rayleigh-Bénard convection
(RBC). In standard RBC, a thin, laterally infinite fluid
layer is contained between two surfaces (either rigid or
nstress-free™) held at constant temperature. Usually the
expansion coeflicient is positive and so, when the fluid is
heated from below (temperature decreasing from bottom
to top), a mechanically unstable density gradient forms.
The applied stress is measured in terms of the Rayleigh
number, Ra, defined above. With increasing Ra the dy-
namical state goes from a uniform and parallet roll pat-
tern at the onset of convection (Ra ~ 103) to turbulent
Aow at Ra ~ 107 — 108. For turbulent flows, the Prandtl
number Pr determines the nature and relative sizes of the
viscous and thermal boundary layers that are established
on the solid surfaces.
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Threlfall [6] is usually credited as being the first to rec-
ogmze_the advantages of using low temperature helium
gas to investigate the thermal turbulence problem in the
laboratory. Later low temperature work by Libchaber and
co-workers [7] considerably broadened the awareness of
the problem.

EXPERIMENTAL FEATURES

We briefly note some salient features of the low tem-
perature experiments, which do not vary in substantial
respec‘ts from one experiment to the next (the reader
is invited to look in the various original publications
[7, 8, 9, 10] for more detailed information). To approx-
1mate the constant temperature top and bottom bound-
aries, annealed OFHC copper is used (thermal conduc-
tivity near 1 kW/m-K at helium temperatures). Suitable
heaters are attached to both plates which vary in design
from experiment to experiment. On the bottom plate a
constant heat current is applied while the heater at the
top plgte (in contact with a helium bath) is used to reg-
ulate 1Fs temperature. Typically, small (nominally 200-
300 micrometer on a side) semiconductor crystals, either
doped germanium or silicon, are placed in the flow to
measure temperature fluctuations within the gas which is
confined laterally by thin wall stainless steel walls. The
sample cell is surrounded by thermal shields at various
graded temperatures.
In lgboratory experiments there is an additional length
scale }mposed by the need to laterally contain the fluid
Fhe width-to-height aspect ratio I' = D/H, where here D’
is the‘ diameter for the more typical case of cylindrical
containers. As the dynamics of thermal convection de-
pend explicitly on H, they are significantly affected only
in th'e limit in which the ratio of width to height is small.
Having both I" and Ra large, however, is difficult (note
that H appears in the numerator of one and the denomi-
nator of the other). For absolute heights large enough to
obtalr'l high Ra, making D much larger would involve a
technical and economic challenge. An exception is with
the use of cryogenic helium gas, where a diameter of
regsonable dimension can be coupled to a much smaller
helg,ht without sacrificing too much of the upper limit of
atta_mable Ra (recalling its /> dependence). Such an ex-
penment has recently been performed [11] in aspect ra-
tio 4. Note that while this does not represent any record
for large T, it does represent the first attempt to obtain
very high Ra in a moderately large T" experiment. We
.w111 briefly discuss some of the preliminary observations
in the context of turbulent heat transfer.
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HEAT TRANSFER AND SCALING

The_beneﬁts of low temperature experiments to obtain
scaling relations has been clearly evident in the context
of dimensionless heat transfer, represented by the Nus-
selt number Nu defined as

q qH
Ny = =
Geond AAT ’ (8)

where g is the total heat flux, g ong is the value the heat
flux would have in the absence of convection, and A is
the' thermal conductivity of the fluid. Nu represents the
ratio of the effective turbulent thermal conductivity of
the fluid to its molecular value and can reach values of
over 10 in helium experiments [8] thus demonstrating
the enormous enhancement of thermalization (one of the
motivations for Threlfall’s pioneering work in cryogenic
turbulent convection—see ref. [6]).

THE CLASSICAL RESULTS

Tq partially motivate the push to larger I it is useful to
briefly consider the expected scaling between Nu and Ra
The "classical" prediction (see, e.g., refs. [12, 13]) is z;
power law relation Nu ~ RaP with B = 1/3. This value
for the exponent can be easily motivated by considering
tha‘f the thermal gradients occur only in very thin dif-
fusive boundary layers near each horizontal heated sur-
face, and that the intervening fluid, being fully turbulent

acj[s more or less like a thermal short circuit (the readeli
might be convinced of this scaling by taking the general
power law relation above and assuming the physical heat
flux O appearing in Nu to have no implicit height de-
pendence). In the limit of infinite Pr at least, where the
problem becomes more tractable, the exponent § = 1/3

has recently been rigorously established [14]. The other
so-called "classical" relation is a power law (albeit with

logarithmic corrections) with § = 1/2, mostly due to the

work of Kraichnan [15]. A modern theory [16] presents a

Ra - {Dr phase portrait with different power law relations

in m?xghboring regions combining to influence Nu, in-
cluding separate relations with the two values of 3 g,iven
above.

SCALING RESULTS FROM
EXPERIMENTS

Experiments have in fact generally measured exponents
less thfm 1/3; for instance, Libchaber and co-workers
cha.mploned the exponent 2/7 and subsequent theory
which seemed to pin it down [7], although this is no
longer considered the correct asymptotic limit [16]. Oth-
ers have observed larger scaling exponents closer to 1/2



at high Ra [9], albeit for operating points quite close to
the critical point of the fluid. The highest Ra obtained
to date was in an experiment of Niemela ef a/. [8], in
which, to lowest order, an exponent of 0.31 was observed
over 10 decades of Ra up to Ra ~ 10!7. The main ex-
perimental results of each of these groups were obtained
in T = 1/2 containers, which more or less represents an
historically accepted minimum. However, I may play a
significant role, at least for small values of it, through the
action of a robust and organized “wind” which sweeps
through the entire container [17, 18, 19]. Low tempera-
ture experiments have subsequently been performed [10]
in a container of I' = 1 for Rayleigh numbers up to
Ra ~ 103, One of the interesting results at I" = 1 was
that at high enough Ra for the mean wind to have become
significantly disordered, but low enough for the Boussi-
nesq approximation to remain valid, roughly a decade of
power-law scaling with § = 1/3 emerged.

The furthest step in the direction of fully turbulent
RBC in a laterally extended system has only been done
recently [11], in which a I" = 4 container was used to
obtain Ra up to 10'3 (note that the highest Ra is sacri-
ficed with increase in aspect ratio as the latter is prac-
tically effected by lowering the height while maintain-
ing the diameter fixed). In this I" = 4 experiment a mean
wind also existed but was considerably less robust than
in the smaller aspect ratio containers. A scaling expo-
nent of approximately 0.31 was observed at low Ra (al-
beit in the turbulent regime) as in the case of Niemela
et al. [8], but was followed by a transition to almost 2
decades of scaling consistent with 3 = 1/3 over the ul-
timate range of Ra for which the Boussinesq approxi-
mation could be assumed valid. Corresponding to this
transition in scaling, the long-time correlation between
temperature probes separated by a diameter vanished.
Thus it appears as though the I = 4 experiments may
approach the kind of conditions postulated for observing
the § = 1/3 regime; namely, a more disordered bulk flow
that separates the action of the two thermal boundary lay-
ers. Presumably, the heat transfer is influenced less by
the mean wind, which otherwise sweeps more robustly
through the entire cell in small-I" containers, affecting Nu
by its coupling to gradients in the imperfectly insulating
sidewalls [20, 21, 10, 22]. It should also be mentioned
that the exponent 8 = 1/3 is consistent with the corre-
sponding region of the Ra — Pr phase space according to
ref. [16].

DISCUSSION

The I" = 4 experiment in turbulent convection discussed
above represents a different direction from that pursued
in the past for helium experiments; namely the simulta-
neous attainment of both large Ra and large I, thus ex-

202

amining more accurately the problem of turbulent RBC.
It should be possible to expand even further in this direc-
tion.

It is worth pointing out, however, that recent advances
in numerical modelling have enabled the effects of finite
I" to be properly accounted for at high Ra. We note that
there continues to be steady and substantial progress in
this direction (R. Verzicco, personal communication).
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