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The inertial-range dynamics of fully developed turbulence is often character-
ized in terms of structure functions S,(Aw) = {Av]')} ~ 5+, The velocity
increment Av; = (v{x 4 1) —v{x))-1/] is either taken as the component paral-
lel (x) or perpendicular () to the mean flow direction. For scales p < | < L,
where n is the dissipation scale and L the integral scale, the structure func-
tions reveal power-laws with scaling exponents £,,. However, depending on the
Reynolds number and the flow geometry, these scaling laws are either only
approximate or come with a rather narrow scaling range.

A different way to extract scaling exponents is proposed by the Refined
Similarity Hypothesis (Av]') ~ {E‘?"IIE}I""'I ¥, which relates structure functions
to integral moments (') ~ 7™ of the energy dissipation and respective
exponents via §, = n/3 — 1,,3. The energy dissipation with viscosity v is

defined as
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and requires full knowledge about all three velocity components. Since in
experimental data only one, at most two components of the velocity field are
accessible, various surrogate forms are constructed:
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Upon assuming isotropy, all three constructions have the same mean value as
(1). Their coarse-grained amplitudes are determined via

z+1/2
alz) = 7 f e(z')de’ (5)

—1/2

Fig. 1 illustrates the second-order moment based on (2) for an atmospheric
boundary layer record [1]. Its Reynolds number based on the Taylor microscale
A=/ (v2)/{(8:v.)%) is Ry = 9000, its estimated ratio between integral length
and dissipation scale is L/n = 5x10* and it comes with a longitudinal as well
as a transverse velocity component. The logarithmie local slope of (¢7) turns
out to be constant only in the upper part of the inertial range, where it is
equal to 73 = 0.20. The same outcome holds for the other two surrogate forms
(3) and (4). For a turbulent flow with such a large Reynolds number this result
is to some degree surprising and for the moment leaves open the question as
to why the scaling range does not extend more into the intermediate inertial
scale range.
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Fig. 1. Second-order integral moment {7} based on the surrogate energy dissipation
(2) for an atmospheric boundary layer with Ry = 9000. The dashed straight line
has a logarithmic slope 72 = (.2, Inset shows the logarithmic local slope.

The second-order integral moment is closely related to the two-point cor-
relation function:

{E!E} = Ilg_[‘d-":l -[J'dxi {Eaur{II}Eaur{rZH . (6)

Fig. 2 compares the two-point correlator obtained from the surrogate forms
(2), (3) and (4). All three variants reveal a rigorous power-law scaling behavior
within the extended inertial range 15n < d < 0.3L and the corresponding
scaling exponents are within = = 0.20 £ 0.01, showing little differences. Only
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for small two-point distances d — 1 the two-point correlators begin to differ.
Whereas the variants based on (2) and (3) practically remain identical, the
two-point correlation based on (4) is weaker for d < 10%; see inset of Fig. 2.
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Fig. 2. Normalized two-point correlation function of the surrogate energy dissipation
(2) (full line), (3) (dotted line with circles), and (4) (dot-dashed line). The dashed
straight line has a logarithmic slope rp = 0.2. Inset magnifies the behavior for short
separation distances.

When compared to the true energy dissipation, the expression (4) appears
to be closer to (1) than the other two variants (2) and (3). This allows to
speculate that if one adds more terms from the full list of (1), the extra-
strong two-point correlations at small separation distances d < 157 reduce
further, perhaps even vanish once the surrogate field has converged to the
true field.

In numerical simulations the full velocity field is accessible. Therefore they
are particularly suitable for studying the difference between the true and sur-
rogate energy dissipation. For the analysis here a small data set from a shear
turbulence simulation [2] was available. Although the statistics are not very
high the result is convincing enough to stress the surrogacy issue. Fig. 3 com-
pares the two-point correlation of the dissipation obtained from the full field
(1) with the one obtained from the surrogate field (2). Although the Tay-
lor scale Reynolds number is only Ky = 99 one can identify an approximate
power law scaling range and both, the surrogate and true dissipation are iden-
tical in this range. Only for very small distances the two curves differ, where
the correlator ealculated from the surrogate field is showing the same extra-
strong correlations as in experimental data. Note, that the strong increase of
the correlation functions of the numerical data for the largest distances is an
artifact of the periodic boundary conditions used in the sitnulation. This find-
ing indicates the importance of the subtle surrogacy issue when interpreting
data. The surrogacy of the energy dissipation alters the small scale behavior
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Fig. 3. Two-point correlator obtained from a numerical simulation, For the line
with dots the true energy dissipation field (1) has been used and for the line with
the open circles the one-component surrogate (2) has been used,

of the two-point correlation; fortunately, this leaves the rigorous scaling over
the major part of the inertial range untouched.

In comparison with two-point correlations, the poor scaling of the integral
moments appears in a new light. The extra-strong small-distance behavior
of the two-point correlation can be roughly modeled with an additional 4-
function at d = n, i.e. {e(xr + d)e(x)) = a(n/d)™ + bi(d — n). Insertion into
(6) then leads to (=§} = a'(n/1)™ + ¥'(n/1), resulting in a slowly decreasing
correction to the scaling term. This explains qualitatively the observed scale-
dependence of the second-order integral moment: only in the upper part of
the inertial range does the scaling term with exponent m» dominate, whereas
for the lower part strong deviations set in due to the small-distance behavior
of the two-point correlation function, caused by the surrogacy effect.

More details on the observational impact of the surrogacy effect can be
found in Ref. [3]. More follow-up discussions on two-point statistics of the
turbulent energy cascade are given in Refs. [4, 5].
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