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Abstract. – The two-point correlation function of the energy dissipation, obtained from a
one-point time record of an atmospheric boundary layer, reveals a rigorous power law scaling
with intermittency exponent µ ≈ 0.20 over almost the entire inertial range of scales. However,
for the related integral moment, the power law scaling is restricted to the upper part of the
inertial range only. This observation is explained in terms of the operational surrogacy of the
construction of energy dissipation, which influences the behaviour of the correlation function
for small separation distances.

Time records of turbulent velocity at a single point in space, obtained using a hot-wire
or a laser Doppler anemometer, are usually interpreted, via Taylor’s frozen-flow hypothesis,
as one-dimensional spatial cuts through the flow. Velocity structure functions can then be
obtained readily from such observables. In addition to the velocity, other quantities of interest
include enstrophy and energy dissipation. These quantities cannot be constructed in full from
the measured one-point velocity time series (of one or two components of velocity) and so are
replaced for further analysis by the so-called surrogate fields. These surrogate fields usually
take the form of a single component of a many-component field. In this letter we concentrate
on the surrogacy issue of energy dissipation and discuss its impact on the extraction of the
intermittency exponent.

To illustrate the issue, we choose turbulence measurements in an atmospheric boundary
layer, made under nominally steady and nearly neutral conditions, in which a hot-wire probe
mounted on top of a tower recorded time-series of both streamwise and vertical velocity
components; for details of the experimental setup, see ref. [1]. The frozen-flow hypothesis has
c© EDP Sciences
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Fig. 1 – Normalized two-point correlation function of the surrogate energy dissipation field (2) ob-
tained via the streamwise velocity component in the atmosphere. The dashed line has a logarithmic
slope µ = 0.2 and its extent indicates the scaling range. Inset: logarithmic local slope of the two-point
correlation function.

Fig. 2 – Second-order integral moment (3) based on the surrogate energy dissipation fields (2) (full
line), and (7) (dotted line). The dashed straight line has a logarithmic slope µ = 0.2. The inset shows
the logarithmic local slope.

been applied to convert the time series into spatial cuts. Upon using the method of ref. [2], the
Reynolds number Rλ =

√〈u2〉λ/ν, based on the Taylor microscale λ =
√〈u2〉/〈(∂u/∂x)2〉,

was determined to be 9000. The angular brackets denote a temporal average throughout the
paper. The estimated ratio between integral length L, defined through the integral of the two-
point correlation of the component velocity fluctuation in the streamwise direction, and the
dissipation scale η = (ν3/〈ε〉)1/4, is 5× 104. In units of L the record length of the time series
is Lrecord/L = 1000. The inertial range of scales is determined by examining the scaling of
the third-order structure function; within the inertial range so determined, the power spectra
show a well-defined slope close to −5/3. Because of instrument and cable noise, the spectral
density has some amount of noise contamination towards the smallest scales. In order to
ensure a proper construction of the derivatives ∂vi/∂x = (vi(x + ∆x) − vi(x))/∆x, the noise
part has been removed from the velocity signal by using a Wiener filter.

The true energy dissipation rate

ε(�x) =
ν

2

∑
i,j

(
∂ivj + ∂jvi

)2
, (1)

where the indices i and j represent the coordinate axes, cannot be constructed from the
recorded time series. This is so because only the longitudinal and transverse components vx

and vy of the velocity, along the streamwise direction x and the normal direction y, respec-
tively, are accessible. Hence, the true energy dissipation is replaced by a surrogate proposal.
One possibility is

εsurr1(x) = 15ν
(
∂xvx(x)

)2
, (2)

which, upon assuming isotropy, equals true dissipation on the average.
For the extraction of the intermittency exponent, the two-point correlation function based

on the energy dissipation field has been proposed earlier [3]. Figure 1 shows the normalized
two-point correlator 〈εsurr1(x + d)εsurr1(x)〉/〈εsurr1(x)〉2. It reveals a good scaling ∼ d−µ with
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constant intermittency exponent, µ = 0.20, over the extended scaling range 15η ≤ d ≤ 0.3L,
covering most of the inertial range. This result is in full agreement with older findings on
turbulent jet and atmospheric boundary layer flows [4, 5], which have also observed a clear
and extended scaling range behaviour for the two-point correlator with about the same value
for the intermittency exponent.

The two-point correlator of the surrogate energy dissipation is only one tool for the extrac-
tion of the intermittency exponent. Another approach that is natural from the perspective
of the multifractal picture of turbulence [6–8] employs the second-order moment 〈ε2

l 〉 of the
coarse-grained amplitude εl = l−1

∫
l
εsurr(x) dx. Figure 2 shows 〈ε2

l 〉 as a function of the aver-
aging scale l. The logarithmic local slope −d ln〈ε2

l 〉/d ln l reveals a scale-independent scaling
exponent, which coincides roughly with the previously found value µ = 0.20 for the inter-
mittency exponent. However, a peculiarity remains: the logarithmic local slope in fig. 2 is
constant (or nearly so) only in the upper part of the inertial range, and not over the full range,
as found for the two-point correlator. One purpose of this paper is to understand this puzzle.

To proceed, we note that the second-order moment and the two-point correlator are closely
related (see [3]) via 〈

ε2
l

〉
=

1
l2

∫
l

dx1

∫
l

dx2

〈
εsurr(x1)εsurr(x2)

〉
. (3)

The left-hand-side represents a box integral over the two-point correlator and may thus be
called an integral moment. To see when the integral moment shows the same scaling exponent
as the two-point correlator, and in what range of scales, we assume the simplified functional
form

〈
εsurr(x + d)εsurr(x)

〉
=




c (d < η′),

a(η′/d)µ (η′ ≤ d ≤ L′),

1 (d ≥ L′),

(4)

with 〈εsurr〉 = 1, where a(η′/L′)µ = 1 guarantees continuity at the decorrelation length d = L′;
the parameter c is left free for later purposes and η′ and L′ are representative small and large
length scale, respectively. Upon inserting (4) into (3) we arrive at

〈
ε2
l

〉
=

2a

(1 − µ)(2 − µ)

(
η′

l

)µ

+ 2
(

c − a

1 − µ

)(
η′

l

)
+

(
a

1 − µ/2
− c

)(
η′

l

)2

, (5)

valid for η′ ≤ l ≤ L′. The first term is the targeted scaling term. The last two terms represent
corrections to rigorous scaling. For increasing l � η′ they fall off faster than the scaling term.
If we were to fine-tune the leading-order correction to zero, then c = a/(1 − µ). Given that
µ = 0.20, the correction to the leading-order term also becomes very small. A closer look
at fig. 1 reveals that a constant c = a/(1 − µ) is too small to approximate the small-scale
behaviour of the two-point correlation. Consequently, the correction terms are pronounced
for small l and extend far into the inertial range before becoming negligible. This explains
qualitatively the observed scale-dependence of the second-order integral moment: only in the
upper part of the inertial range does the scaling term with exponent µ dominate, whereas
for the lower part strong deviations set in, due to the behaviour of the two-point correlation
function for very small scales.

Figure 1 reveals another apparent puzzle: as the two-point distance approaches η, the
two-point correlation increases stronger than is suggested by the extrapolation of scaling
behaviour. This is against intuition, since the onset of dissipation is expected to smooth out
the fine structure, instead of building it up. We now offer a tentative explanation, which
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Fig. 3 – Normalized two-point correlation function of the surrogate energy dissipation fields (2)
(full line), (6) (dotted line with circles), and (7) (dot-dashed line). The dashed straight line has a
logarithmic slope µ = 0.2. The inset magnifies the behaviour for short separation distances.

Fig. 4 – Normalized two-point correlations 〈(∂xvi(x + d))(∂xvi(x))〉/〈(∂xvi(x))
2〉 of the longitudinal

(full line, vi = vx) and transverse (dashed, vi = vy) velocity gradients.

reflects the delicate issue of the surrogacy of the energy dissipation field. The two-point
correlator shown in fig. 1 is based on the surrogate energy dissipation field (2) constructed
from the longitudinal velocity component. Other constructions, such as

εsurr2(x) =
15
2

ν
(
∂xvy(x)

)2
, (6)

εsurr3(x) =
15
4

ν
[
2
(
∂xvx(x)

)2 +
(
∂xvy(x)

)2
]
, (7)

are also possible. The former is based on the transverse velocity component alone, whereas
the latter combines longitudinal and transverse components. On average, both constructions
are equal in their mean value to the true energy dissipation field (1), assuming isotropy.

Figure 3 compares the two-point correlator obtained from the surrogate quantities (2), (6)
and (7). All three variants reveal a rigorous power law scaling behaviour within the extended
inertial range 15η ≤ d ≤ 0.3L and the corresponding scaling exponents are within µ =
0.20± 0.01, showing little differences. Only for small two-point distances d → η the two-point
correlators begin to differ. Whereas the variants based on (2) and (6) practically remain
identical, the two-point correlations based on (7) are weaker for d ≤ 10η; see inset of fig. 3. In
view of the simplified description (4) this implies that the constant c is smaller for the two-point
correlator based on (7) than those based on (2) and (6). As a consequence, the leading-order
corrections in expression (5) for the integral moment also become smaller, so that the scaling
term should begin to dominate even at smaller length scales l. Figure 2 confirms this view:
the local slope of the integral moment based on the surrogate field (7) becomes constant at
smaller scales than for (2); the upper limit on the scaling range is the same for the two cases.

When compared to the true energy dissipation (1), the surrogate (7) appears to be closer
to (1) than the other two variants (2) and (6). We might model the amplitude of the surrogate
field in terms of the amplitude of the true field by the relationship

εsurr(x) = ε(x)
(
1 + f(x)

)
, (8)

where f(x) behaves as a noise with mean zero. From the defining equations (2), (6) and (7)
we get εsurr3 = (εsurr1 +εsurr2)/2 = ε[1+(f1 +f2)/2], so that in comparison with f1 and f2 the
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noise fluctuation f3 = (f1 +f2)/2 is reduced. Hence, this allows us to speculate that if we add
more terms from the full list of (1), the extra-strong two-point correlations at small separation
distances d ≤ 15η reduce further, perhaps even vanish once the surrogate field has converged to
the true field. A quick numerical investigation, using a shear turbulence code [9] for Rλ = 99,
reveals that the two-point correlation functions of the surrogate quantities are identical to that
of true energy dissipation, except for very small distances, where the surrogate field possesses
extra-strong correlations. While a more detailed investigation is called for, this finding indi-
cates the importance of the subtle surrogacy issue when interpreting data. It appears clear that
the surrogacy of the energy dissipation field restricts the rigorous scaling of the second-order
integral moment to the upper part of the inertial range; fortunately, this leaves the rigorous
scaling of the two-point correlation function untouched over that part of the inertial range.

Considering the behaviour of the surrogate correlators for small separation distances in
terms of the modeling relation (8), the noise field amplitudes cannot be expected to be uncor-
related, i.e. 〈f(x1)f(x2)〉 �= 〈f2〉δ(x1−x2), but should show correlations up to some separation
distance. Empirically, this seems to occur within the range |x1 − x2| ≈ 15η. For shorter dis-
tances, the extra-strong correlation sets in for the two-point correlators based on the surrogate
fields. A quantity related to the noise correlations is the two-point correlation of the velocity
gradient field. Figure 4 shows 〈(∂xvi(x+d))(∂xvi(x))〉 for the measured longitudinal (vi = vx)
and transverse (vi = vy) velocity components. All two-point correlations show correlations up
to d ≈ 30η and become zero for larger distances.

The main message of this simple view on the surrogacy issue of the energy dissipation
field is twofold: i) Two-point correlation functions of the surrogate energy dissipation field
reveal rigorous scaling that is identical to the two-point correlation function of the true energy
dissipation for two-point distances larger than about fifteen times the dissipation scale. ii) The
surrogacy of the energy dissipation modifies the two-point correlations for distances below
d ≈ 15η and is responsible for restricting the power law scaling behaviour of the integral
moment to the upper part of the inertial range. A direct consequence of statements i) and ii)
is that for the extraction of the intermittency exponent it is advantageous to use the two-point
correlator. In view of the extended scaling range 15η ≤ d ≤ 0.3L of the two-point correlator
of the energy dissipation, it appears that the intuitive, but phenomenological, picture of
the scale-invariant energy cascade contains more truth than generally anticipated. Without
further processing such as Extended Self Similarity [10] or SO(3) decomposition [11–13],
conventional velocity structure functions in shear flows do not show a rigorous power law
scaling behaviour. This assigns fields such as the energy dissipation a more fundamental role
than that of the velocity increments. As this inference is based on data analysis alone, it does
not offer any deep theoretical explanation but requires one.
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