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We study temperature structure functions of second, fourth, and sixth orders at heights of up to 2 m
above the ground in moderately heated atmosphere. Most of the data come from measurements over
salt flats of the Utah desert, with well-defined wind direction and uniform temperature boundary
conditions. As in high-Rayleigh-number convection in a closed container, a thermal boundary layer
develops near the ground, its thickness here being of the order of 50 cm. We demonstrate the
coexistence of two scaling ranges, one of which corresponds to the classical inertial range and the
other to the buoyant range influenced by thermal convection. The determination of scaling
exponents in the two ranges is facilitated by the use of a scaling function. We present the variations
with height of scaling exponents in both ranges, as well as the crossover scales from one range to
another. ©2002 American Institute of Physic§DOI: 10.1063/1.1485079

I. INTRODUCTION studied the scaling properties of temperature structure func-
o o ) tions. These authors have measuggdor conditions under
Multipoint statistics in turbulent flows are of interest be- ; yich temperature can be treated essentially as a passive
cause they provide useful geometric information about thgcajar. However, temperature is intrinsically a dynamical
spatial structurésee, e.g., Ref.)LIf, for reasons of simplic- \arjaple and there always exists a range of scales in which
ity, the consideration is restricted to two-point statistics, thea influence of buoyancy is felt. Buoyancy manifests itself
objects studied most are the so-called structure funcﬁonsin a number of ways, e.g., in the premature truncation of the
These are the moments of increments of a field variable, S”Cuhpper end of the inertial range, and in a direct influence on
as turbulent velocity and temperature, measured over a spgyge scales. Studies of structure functions in the presence of
tial separatlon.der.\oted.by For a scalard, the nth order ¢ pstantial buoyancy have been made, among others, by
structure function is defined as Brandenburd, Benzi et al,'° Cioni et al,** Celani et al,?
S(1) = ((B0x+1)— 00))™, (1) and Zhou and Xi&® In much of this work, the difficulties
associated with the small extent of the scaling range have
wheren is an integer and is the position vector. For large prevented the direct determination of the scaling parameters.
Reynolds numbers, it is traditionally postulated that thereTo overcome this problem, some of the authors cited previ-
exists an inertial range of scales defined #%r=|r|<L,  ously have employed the extended self-similafi#$9 tech-
where 7 is the Kolmogorov scale and a large scale of the nique of Benziet al!* This technique consists of plotting
flow, in which the scaling exponents are independent otructure functions of different orders against a structure
large-scale forcing and fluid viscosity. Thus, one is expectedunction of a chosen order and obtaining a relative scaling
to have exponent. Thus, we have
= n
B P s @
where the scaling exponents are universal andd,, may
depend, at most, on the length and velocity scales of forcind\n advantage of ESS is that a reasonably convincing scaling
(see Ref. 3 for a general discussion and Ref. 4 for the specifiaf the form (3) can be found even when structure functions
point on the impact of the velocity scaleln the inertial themselves obey no scaling of the fof&). We should have
range, Antonia etal,® Meneveau et al.® Antonia and {nm=1{nlm if there is true scaling, but this cannot be as-
Smalley’ and Moisyet al® are among the authors who have serted in general. In addition to this ambiguity of interpreta-
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tion, it is not yet clear, despite several interesting efftts® 10
as to why ESS vyields a seemingly extensive scaling even at
low Reynolds numbers. 0.8F §

Here, we shall study the structure functions in turbulent
flow over a desert that is flat for some miles, with local 5 0.6 i
smoothness on scales of the order of millimetérhe o
ground was significantly warmer than the flow above the 2
ground, and the turbulence near the ground was driven by a” 04r0 |
combination of shear and buoyant thermal convection. TheciD 2
convection layer depth was estimated from measurements oi®. 0.2f &
optical refractive index to be of the order of 100 m. The %% %

temperature and velocity distributions near the ground have or S @O CEXP @ o

the same character as those in the temperature and velocity o

boundary layers in a thermal convection flow in a closed _;, . ‘ .

container (for two experimental studies on this extensive 0 5 h}% 15 20
y

subject, see Refs. 20 and)21n such studies, one defines a
thermal boundary layer thickness by the distance from the
walls within which most of the temperature drop occ(gse
Sec. l). This layer is very thin in high-Rayleigh-number ex-
periments(of the order of tens of microns in the extreme
casey, and therefore mostly inaccessible to measurement. Iplatinum-10% rhodium alloy made by the Wollaston process,
the present atmospheric flow, as will be seen in Sec. Il, thisnd the etched part had a nominal diameter of @6 and
same measure of the thermal boundary layer thickness is ¢éngth of the order of 1 mm. After suitable amplification, the
the order of 50 cm, which therefore allows some detailedsignals were low-pass filtered at 1 kHz and sampled at 2
measurements to be made. kHz. The signals were digitized using a 12 bit analog-to-
The one aspect of this flow that we study here is thedigital converter. The record lengths varied from 20 min to 1
behavior of even-order temperature structure functions up tb in real time. For these few records in which the tempera-
the sixth. The structure functions have reasonable scaling iture was perceptibly nonstationary, a linear detrending of the
both inertial and buoyant convective regions, which allowstime series was performed.
the determination of the scaling parameters without the use Some measurements were also made on the East Haven
of ESS; indeed, as we shall demonstrate, the use of ESS céeach in Connecticut when the wind was steadily blowing
mask the existence of two separate scaling regions. Evefnom the water, but the ground conditions were not as smooth
where scaling is not immediately apparent, the use of and well-controlled as in the Utah desert. The instrumenta-
“scaling function,” by which is meant a functional relation tion was essentially the same. A larger share of the analysis
that fits structure functions of any order in their entire rangepresented here is for the desert data, but the two sets of
of scales, facilitates the determination of the scaling expomeasurements are quite consistent.
nents. In this way, we shall examine the nature of scaling for ~ Figure 1 shows the variations of the mean temperature
heights that extend through the thermal boundary layer andbove the ground when the ground is warmer than the air
somewhat beyond. above it. The distance from the ground is normalizechby
Section Il is a brief summary of the measurements, whilewhich is given by
Sec. Il demonstrates the existence of two ranges of scaling.

FIG. 1. The mean temperature kh; .

The scaling function approach is discussed in Sec. IV, and _Amax @)
the principal results are summarized in Sec. V. The conclud- "do
ing remarks are provided in Sec. VI. d_yh:"

whereA 0 . is @ nominal maximum of théime-averaged
temperature difference between the ground and the air out-
Most measurements were made in the boundary layeside the thermal boundary layer. The heighis convention-
above the salt flats of the Dugway Proving Ground in Utahally employed in most convection studies as a measure of the
at different heights above the grourld—-175 cm. The thickness of the thermal boundary layer, as mentioned in Sec.
ground was smooth for scales of the order of millimeters and. Another useful measure of that thicknesshis, defined
larger, and the homogeneous terrain extended for a numbeomewhat arbitrarily by the position at which® reaches
of miles® Temperature fluctuations were measured using &5% of A® ,..,.. These heights as well @80 ,,,, are listed in
cold wire mounted on standard TSI probes. The cold wireTable I.
was operated by constant current anemometer built in-house We also measured the velocity fluctuations by operating
on the basis of a design by PeaftfeThe operating current an X-wire on two DANTEC constant temperature anemom-
was 120uA. The low magnitude of the current meant that eters. From these data, the Reynolds shear stress was com-
the velocity contamination was minimal. The cold wires puted; the friction velocityu, was estimated by the square-
were made by etching the silver coating on a wire ofroot of the maximum value of the Reynolds shear stress. The

Il. MEASUREMENTS
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TABLE I. Flow parameters; an ellipsis--) denotes absence of reliable data. The Prandtl number is of the order of unity for all cases.

h A(")malx hl h2 U u, € n X —Lwo

Case (m) (°C) (m) (m) (m/9 (m/9) (m?s®) (mm) (°C¥s) R, (m)

1 0.01 1.9 0.083 0.32 5.6 0.67 0.82 0.27 0.064 2330 164.84

2 0.01 0.9 0.066 0.23 4.5 0.58 0.54 0.30 0.027 1712 528.94

3 0.035 4.0 0.10 1.00 2.2 0.27 1.0 0.26 0.76 507 25.73

4 0.095 7.0 0.10 0.81 2.0 0.27 0.23 0.37 0.87 1776 21.19

5 0.20 9.4 0.091 0.65 2.5 0.29 0.079 0.49 0.51 1997 23.80

6 0.32 9.2 0.090 0.64 2.6 0.24 0.071 0.50 0.29 3119 14.66

7 0.45 5.9 0.081 0.63 1.9 0.13 0.017 0.71 0.071 3735 4.34

8 1.40 2.25 0.0049 0.91 2900

9 1.75 0.72

mean velocityU was measured using a Pitot-tube and crosgourth- and sixth-order structure functions, obtained from the
checked against the hot-wire data. These velocities are alsame two sets of data, show scaling in the two regions, as
listed in Table I. displayed in Figs. 4 and 5.

The other basic parameters listed in Table I, as a function We would like to demonstrate that the use of ESS in this
of the heighth above the ground, are the energy dissipationinstance—though otherwise very useful—could mask the
rate e and the scalar dissipation rajg both obtained by
assuming local isotropy, the Kolmogorov length and the
Monin—Obukhov length.,o . Local isotropy is not accurate 1
close to the ground but provides estimates that are better thar
other choicege.g., the application of the Kolmogorov's four- -
fifths law’). The Monin—Obukhov length is an indicator of
the stability of the atmosphere, and is computed here from its
standard definition using the friction velocitsee Ref. B (In
free convection studies, one often uses the Rayleigh numberes,
as an appropriate measure of buoyancy effectsLgtis a Y107
more suitable measure for present purposes. For the extreme
cases of convective motion considered here, Rayleigh num-
bers based on the estimated convection layer height reachec 4452
values as large as 10) Although our measurements
spanned both stable and unstable conditions of the atmo-
sphere, we shall consider only the unstable conditides,
Lyo<0) because we want to maintain a semblance of simi- 10
larity to thermal convection. The Taylor microscale Reynolds (a)
numbers listed in Table | are thought to be sufficiently high .
for the inertial range properties to have attained Reynolds- 10
number-independence.

For the analysis to follow, we use Taylor’s hypothesis to 10° L
convert time separatiarto spatial separationin the stream-
wise direction by usingJt=r. We avoid a discussion of its
limitations here, and refer for some details to Mi and A 10
Antonia®® T

0

10

lIl. THE TWO SCALING RANGES

The two scaling ranges are evident for the second-order
structure function in Fig. 2, and are shown by extended
dashed lines. The one toward the smaller scales is the clas: 4¢™ =
sical inertial range, while that for larger scales is the buoyant b 10 10
convective range. For the same two sets of data, we show in
Fig. 3 the local slopes in log—log coordinates and confirnFIG. 2. The second-order structure function for temperature fluctuations for
that there indeed are two scaling ranges. The scaling expd® or 1.75 m above the grounitah desert flags and(b) 1.4 m(Connecti-
nents are the same in the two cases for the inertial range, bﬁft beach Shown by vertlce_ll arrows on the absmssae_ is the integral scale

. . . or the temperature fluctuatioh,,, computed from the integral of the au-
are different for t_he buoyancy rang(:We_ W'I_l return in tocorrelation function and the use of Taylor's hypothesis. In all figures up to
Sec. V to a possible explanation for this differencéhe 5, as well as 7, the full line is the scaling function described in Sec. IV.

r/h
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FIG. 3. The local slopes for the second-order structure function, for theFIG. 4. The local slopes for the fourth-order structure function. The data
same data sets used in Figga)2and Zb). The horizontal line segments sets are the same as in Figéa)2zand 2b).
correspond to power-law fits for structure functions, and mark the extent of
scaling ascribable in the log—log plots.
underlying scaling can be discerned even when it may not be
evident from the primitive structure functions. The point is

fact that there exist two scaling regions. Figure 6 shows thé¢hat, even when the scaling is not obvious from the log—log
fourth-order structure function plotted against the second foplots of structure functions, these fits allow us to assign a
the same two data sets as in Fig. 4. Figure 6 gives the imscaling exponent and determine the cutoff scales. The under-
pression of a single slope through both regighsand B, lying belief is that the scaling behavior that exists is being
which are the two distinct scaling regions of Fig. 2. Theeroded on both sides of the scaling range—for example, by
reason for this is obviously that the ratios of the fourth-orderthe dissipation at the low end of scaling. This approach is
exponent to the second-order exponent in both regions amiscussed in the following.
not sufficiently different to show up as two separate lines in
t_he ES_S_ plot. While the da_ta_do not fall on perfect straightlv. SCALING EUNCTION APPROACH
lines, it is clear that two distinct slopes cannot be seen in
practice.(For stable conditions of the atmosphere, the two  The present approach is based on an extension of similar
cases appear distinct even in the ESS plots, but we shall nefforts for velocity structure functions in Refs. 7, 24, and 25.
consider them herg. Other relevant references of the past include Refs. 26—-28.

While the scaling ranges are generally clear in the twoOne of the principal uses of the scaling function has been the
sets of data just discussed, this is not so for every case comxtraction of the inertial range scaling exponents.
sidered here. For example, for the second-order structure One form of the scaling function incorporating both dis-
function shown in Fig. 7, the inertial and buoyant ranges areipative and inertial range of scales is given by
hardly distinguishable, and the plot of local slopes shows at

\ : : _ A,r?
best a glimmer of the two scaling regions néaandB. It is Sz=2—zpl- (5
therefore useful to find an empirical expression that fits the (1+ r )
structure functions in their entire range. From such fits, the 51
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FIG. 5. The local slopes for the sixth-order structure function. The data sets »
are the same as in Figgi@ and 2b). While the scaling function does not fit 10 '+
the dissipative range of scales well (i), it adequately fits the inertial and
buoyant convective regions, these being the objects of attention here.
1072
Here, A, is the mean-square temperature gradient 10
((9619x)?) (see Ref. 24 r, is the crossover scale for the
dissipative to the inertial range, agpd=(2—¢,)/2. To de- 2
scribe a second scaling range, we extend this form as 1.8
1.6
A,r? 1 4
S= r \2\P1 r\2\ Pz (6) e
1+ o 1+ — ) B 1.2
1 ra, g
O 1
[
The exponenp, is related to the second-order scaling expo- § 038
. . o]
nent in the buoyant conve_ct|on_ range amdrepresents the = 08
crossover scale between inertial and buoyancy ranges. Fi .
nally, we incorporate the property that the structure function :
asymptotes to a constant value for large scales, as follows: 0.2
0 —2 0 l 2 4
Ar2 r |2\ Prtpa-1 10 10 10 10
— 2 / 1+ r/’h
S;= 2\ py 2 Dz\ rs ’
1+ — ) 1+ ( — FIG. 7. The second-order structure function for temperature and its local
1 T2 slope as a function of the scale separation for the height of 3.5 cm from the

(@)

ground.
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Herers is the crossover scale from the buoyancy range to
where the structure functions become independent of the

separation distance.
It is easy to see that E@5) is equivalent for>r; to

Spr2tre), ®
while Eq. (6) is equivalent for>r; andr<r, to

Sy 121y, ©
Similarly, Eq. (6) is equivalent for>r, andr<r; to

S,~r217P1mP2), (10)
In addition, forr>r3, Eq.(7) yields

S,~constant, (11

Aivalis et al.

d(logS,) ) ( r )2 1
——=nN- -
dliogr) " Pl L>2
Mn
r\2 1
_2p2n I’_ r 2+2 P1nt Pon
2n
) (_
r2n
,. (16)

;>(J;)zj

I'3n

Full lines in Figs. 2—5 and 7 correspond to the fits just dis-
cussed. The curve fits follow the data more or less faithfully
(with the largest discrepancies arising only in the dissipation
range for the sixth ordérthus enabling a reasonably trust-

worthy determination of the scaling exponents and cutoff

which is consistent with the behavior in Fig. 7. In practice,scales for both scaling ranges. These results are presented
this constant region shows up only when the data records aignd discussed in the following. They are obtained by fitting

sufficiently extensive.
Formula(7) can be generalized for the&th order struc-
ture functionS,, as

A" 1

r 2\ P1n r 2\ P2n
[ 1+ —
Mn l'on

r )2) P1ntP2n—N/2

S.=
1+

X1+

fon (12

The local slopes of the structure functions in log—log plots,

based on model&)—(7), are given, respectively, by

d(logS,) ryz 1
d(logr) - _2p1(a N LZl (13)
r
ddogSy _, , (r)_1
d(logr) Hr, » Lz
r
2 1
—2p, P rars (14)
1+|—
)
d(log$S;) r\2 1
d(logr) _2_2'01(5 )
ry
r\z2 1
—2p, [ ﬁ+2(pl+p2_1)
1+|—
)
r\2 1
3
1+|—
3

For thenth order structure function formulél2), the local
slopes are

the structure functions themselves, but fitting the local slopes
does not produce very different results.

V. PRINCIPAL RESULTS

Figure 8 shows the variation of the scaling exponents,
for both ranges, as functions of the height from the ground.
There is an increasing trend with height foth,; <5 (say).

The exponents approach constant values far away from the
ground. These basic features for all orders are the same, even
though, perhaps not surprisingly, the scatter increases with
the order of the exponenfThe scatter may also reflect the
effects of other flow features not accounted for in this dis-
cussion) For comparison, the Kolmogorov exponents appro-
priate to the inertial range are 2/3, 4/3, and 2, respectively.
The measured exponents are substantially smaller, even far
away from the ground. The degree of anomalg., magni-
tude of the departure from the Kolmogorov valuegrees
with what is known from the literature, e.g., Refs. 5, 6, and
8. It is often thought(see, e.g., Ref. 1lthat the buoyant
convective range is governed by the considerations due to
Bolgiand® in stably stratified atmospherésee, also, Ref. 3

for a descriptioly indeed the second-order exponent away
from the ground is close to the predicted value of 0.4. But
the asymptotic exponents for fourth- and sixth-order struc-
ture functions are substantially smaller than the Bolgiano
values &0.2n, wheren is the order of the scaling expo-
nend. There is strong anomaly also in the convective regime.
At present, there is no theoretical understanding of this re-
sult.

It is now useful to return to a brief explanation of the
differences in the scaling exponent in the convective regions
in Figs. 2a) and Zb). We have shown in Fig.(8) that this
exponent depends on the distance from the ground when the
distance is smalli.e., h/h; less than about 5 or 100n this
basis, the data of Fig.(2) can be expected to correspond to
h/h, of 5 or larger, while Fig. &) to h/h; of about 3. The
sparse mean temperature data obtained at the two sites indi-
cate that this is likely to be the right explanation.

We now examine the variation of crossover scales as a
function ofh (Fig. 9. The scale ; varies nearly as a quarter
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FIG. 8. The scaling exponents for the two ranges for structure functions o

Temperature structure functions for air flow 2445
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FIG. 9. The variation of the crossover scalgs r,, andr; against the
height from the ground. The slope of the fitted line fgris 0.26 and forr 3
is 0.54.

above the mean line correspond to nearly neutral conditions,
suggesting perhaps that the stability of the atmosphere has
some bearing on the cutoff scale as well, but we do not
have extensive enough data to analyze this suggestion care-
fully. The cutoff scale ,, marking the boundary between the
two scaling regimes, seems to scalelgn The present un-
derstandingsee, e.g., Ref. 1dis that this cutoff scale might
correspond to the Bolgiano sc&&We cannot, however,
confirm this assertion. The cutoff scale marking the upper
end of the convective region increases with the height from
the ground. We have attempted to scejeby the integral
scale and the Monin—Obukhov length but cannot decide on
the proper scaling.

VI. CONCLUSIONS

We have explored the scaling character of temperature
fluctuations within about 2 m from the ground over a hot
desert. In many respects, the flow conditions here correspond
to the high-Rayleigh-number convective flow in a closed
container, with the difference that the thermal boundary layer
can be explored in detail. We have observed two scaling
ranges for the second-, fourth-, and sixth-order structure
functions of temperature fluctuations. Both ranges are ob-

order 2(a), order 4(b), and order Gc). The two pairs of values for the same served even close to the ground. High-order structure func-

height correspond to two different probes at the same elevatipimertial

range; circles, convective range.

tions could not be analyzed for reasons of inadequate con-
vergence. The classical inertial range seems to remain intact
(except perhaps for a slight modification of the inner cutoff

scale,r,), and the exponents approach values appropriate to

power of the distance above the ground, indicating that th¢he intermittent case of isotropic turbulence. The behavior
cutoff scale between the dissipative and the inertial ranges i®r the buoyant convective range is consistent with the ob-
a multiple of the Kolmogorov scaldThis is so because a servations of Zhou and X}a for the thermal convection in
log-region present in the atmosphere implies an inverseclosed containers. The exponents in this range are also
linear variation of the energy dissipation and a quarter-powestrongly anomalous.e., significantly smaller than plausible

variation of the Kolmogorov scaf®) The two points that lie

dimensional estimates would suggest

Downloaded 10 Mar 2008 to 140.105.16.64. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



2446 Phys. Fluids, Vol. 14, No. 7, July 2002 Aivalis et al.

We have also obtained the variation of the crossovets. Cioni, S. Ciliberto, and J. Sommeria, “Temperature structure functions
scales with the height from the ground. The saglewhich in turbulent convection at low Prandtl number,” Europhys. L8&, 413

marks the crossover from the dissipative to inertial range, (1999

12 . . M . .
seems to scale with the Kolmogorov scale, though the nu-~ C€lani: A Lanotte, A. Mazzino, and M. Vergassola, “Universality and
saturation of intermittency in passive scalar turbulence,” Phys. Rev. Lett.

merical value may depend on the strength of convection. Theg, 2385(2000.
scaler, scales withhy, while r3 increases witth, and ap- 135, zhou and K. Xia, “Scaling properties of the temperature field in con-

pears to be influenced by buoyancy in some undeterminedvective turbulence,” Phys. Rev. Le®7, 064501(2001).
manner. ¥R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, and S.
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