
NATURE | VOL 404 | 20 APRIL 2000 | www.nature.com 837

articles

Turbulent convection at very high
Rayleigh numbers
J. J. Niemela*, L. Skrbek*, K. R. Sreenivasan*² & R. J. Donnelly*

* Cryogenic Helium Turbulence Laboratory, Department of Physics, University of Oregon, Eugene, Oregon 97403, USA
² Mason Laboratory, Yale University, New Haven, Connecticut 06520-8286, USA
............................................................................................................................................................................................................................................................................

Turbulent convection occurs when the Rayleigh number (Ra)Ðwhich quanti®es the relative magnitude of thermal driving to
dissipative forces in the ¯uid motionÐbecomes suf®ciently high. Although many theoretical and experimental studies of turbulent
convection exist, the basic properties of heat transport remain unclear. One important question concerns the existence of an
asymptotic regime that is supposed to occur at very high Ra. Theory predicts that in such a state the Nusselt number (Nu),
representing the global heat transport, should scale as Nu ~ Rab with b = 1/2. Here we investigate thermal transport over eleven
orders of magnitude of the Rayleigh number (106 # Ra # 107), using cryogenic helium gas as the working ¯uid. Our data, over the
entire range of Ra, can be described to the lowest order by a single power-law with scaling exponent b close to 0.31. In particular,
we ®nd no evidence for a transition to the Ra1/2 regime. We also study the variation of internal temperature ¯uctuations with Ra,
and probe velocity statistics indirectly.

Turbulent thermal convection is ubiquitous1,2 in nature and tech-
nology, and serves important and diverse purposes. For instance, it
augments radiative heat transport in stars, accomplishes the warm-
ing of the atmosphere and the mixing of the oceans, and enhances
heat transport in solar heaters and electronic assemblies. A para-
digm of convection is the unstable motion of a ¯uid layer con®ned
between two horizontal ¯at plates, the bottom plate being hotter
than the top. For a Newtonian ¯uid, the dynamical state of
convection is governed by the Rayleigh number Ra ; gaDTL3nk
and the Prandtl number Pr ; n/k. Here g is the acceleration due to
gravity, DT is the vertical temperature difference across the ¯uid
layer of height L, and a, n and k are, respectively, the thermal
expansion coef®cient, kinematic viscosity and thermal diffusivity of
the ¯uid. In a ®nite system with a lateral size D, the aspect ratio, ¡ ;
D/L, could also be a relevant parameter. Turbulent convection sets
in at large Ra. The Rayleigh number is of the order of 1020 in the
ocean and 1023 in the outer part of the Sun.

Here we examine the basic properties of heat transport by
performing measurements over a very large range of Ra (106 #
Ra # 1017). We determine the Rayleigh number scaling with far less
ambiguity than before and comment on recent claims about the
`asymptotic' state of convection; we also report basic data on the
statistics of temperature and velocity ¯uctuations.

A few basic questions
To understand the importance of experiments over a large Rayleigh
number range, consider the Nusselt number, Nu, which is the non-
dimensional ratio of the measured heat ¯ux to the conductive heat
¯ux allowed for the same temperature difference between top and
bottom plates. Simple scaling arguments and increasingly accurate
experiments have suggested that Nu ~ Rab. Dimensional reasoning3

and marginal stability arguments4 yield b = 1/3. Early experiments
were indeed consistent with this expectation. It is now thought that
the exponent in those experiments could not have been determined
with adequate accuracy because the Rayleigh number range was
modest by today's standards. In fact, the highest Ra attainable in an
apparatus of a given size is usually quite limited for a ¯uid such as
water. A particular limitation is that the allowable temperature
difference between the top and bottom plates is constrainedÐif
experiments have to make contact with the theoryÐby the require-
ment that the ¯uid properties at the two plates must not be very
different; this is the so-called Boussinesq approximation. A more
extensive range of Ra was obtained5 by exploiting the properties of

cryogenic helium gas near its critical point, T < 5.2 K and p <
2.23 bar. Some researchers6±9 have taken advantage of this ¯uid, and
obtained Rayleigh numbers up to 1014. Other experiments10±14 have
emphasized several different aspects of the problem.

The Libchaber experiments at larger aspect ratio found b < 2/7
instead of 1/3, and encouraged the development of alternative
scaling theories8,15,16; however, the latest experiments13,14 are not
inconsistent with 1/3. Further, even at the highest Ra, the experi-
ments of refs 7,13 and 14 show no tendency towards the so-called
asymptotic regime17, presumed to be valid for very high Ra (see refs
18 and 19 for upper-bound theories). The asymptotic regime is
presumed to occur when the small-scale turbulence generated by
the large-eddy shear penetrates even the thinnest conductive layers
near the wall, and corresponds to b = 1/2 (perhaps with non-trivial
logarithmic corrections).

Recently, convection experiments7 were repeated9 using cryogenic
helium gas in a smaller cell (L = 20 cm) for the same aspect ratio as
ref. 7, and reported a continual increase in b beyond Ra < 1011,
reaching about 0.4 at Ra < 1014. Chavanne et al.9 interpreted this
change as the transition to the asymptotic regime. The Rayleigh
number in their experiment was no higher than in refs 7,13 and 14,
and so the difference is remarkable. To complicate matters further,
others12 found no tendency towards this asymptotic state in their

Figure 1 A schematic view of the experimental apparatus. The working ¯uid is contained

in a cylindrical volume, 1 m high and 0.5 m in diameter.
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mercury experiments. Finally, a recent theoretical study2 has sug-
gested that the Nu±Ra relation does not follow a strict power-law. At
least three questions arise: (1) Does a power law exist? (2) If so, what
is the value of b? (3) Does the asymptotic state exist? Similar
questions of fundamental importance can be raised about the
properties of ¯uctuating quantities as well1.

Extending the dynamic range
To address these and other questions, experiments with the highest
possible Rayleigh number and the largest possible dynamic range
are needed. Here, we report data from such an experiment: heat
transport and interior temperature ¯uctuations are measured in a
one-metre Rayleigh±Benard cell over 11 decades of the Rayleigh
number between 106 and 1017. We retained the aspect ratio at 1/2 in
order to compare directly with experiments mentioned earlier. The
working ¯uid was cryogenic helium gas in the temperature and
pressure ranges of 4.3 K , T , 6 K and 0.1 mbar , P , 3 bar. Given
the relatively large height of our cell (large L), we could substantially
surpass previous Rayleigh numbers without relying on the diver-
gence of the ¯uid properties near the critical point, and avoid non-
Boussinesq effects.

The apparatus is sketched in Fig. 1. The helium gas was contained
between two copper plates, 0.5 m in diameter and 0.038 m in
thickness, separated by a thin-wall stainless steel cylinder. The
copper was OFHC (oxygen free high conductivity) annealed and
had a thermal conductivity of about 2 kWm-1K-1 at a temperature
of 5 K. The surface ®nish was better than 10 mm. Specially designed
thin metal ®lm heaters were attached to the back side of each copper
plate by dilute varnish (GE 7031) and `sandwiched' by an additional
thin copper plate of 0.16 cm thickness. The space just above the top
plate of the cell was ®lled with helium gas and served as an adjustable
and distributed thermal link between the experiment and the cold

helium reservoir. Three radiation shields surrounded the experi-
mental chamber. A constant heat ¯ux occurred at the bottom plate
(and allowed it to attain constant temperature in the steady state),
while the top plate was held at a constant temperature by means of a
resistance bridge and servo. The standard deviation of the averaged
top-plate temperature was typically 0.01 mK.

Calibrated germanium resistance thermometers (Lake Shore
Cryotronics, Inc.) measured the average temperature of the plates
and were embedded at a distance one-half the radius from the centre
at several azimuthal positions. Thirteen small semiconductor
probes were placed in the cell interior to measure temperature
¯uctuations. These were small neutron-transmutation-doped ger-
manium crystal cubes (TRI, Inc.) of side 0.025 cm, with brass leads
of diameter 0.0025 cm attached, and had nearly identical tempera-
ture sensitivities. Five of them were placed along orthogonal axes in
the geometric centre of the cell with a minimum spacing of 3 mm;
the remainder were placed in pairs near the sidewall (10±25 mm
distance from the wall) at the half-height of the cell with vertical
separations of either 3 mm or 25 mm.

The heat input to the bottom plate was measured by a four-wire
technique and had an accuracy of better than 100 p.p.m. The
pressure of the gas within the cell was measured using a Baratron
390 transducer, with an absolute accuracy of 0.1%, for pressures up
to 1 bar. A Texas Instruments Bourdon Tube Gauge was used for
pressures between 1 and 3 bar, using the Baratron gauge to monitor
the atmospheric reference pressure. These instruments agreed
within 0.3% at 1 bar. The adjustment of Ra was achieved through
changes in the gas density, operating temperature, and applied heat
¯ux. The operating temperature, or mean temperature Tm of the
cell, de®ned as the average of the top and bottom plate tempera-
tures, was used in evaluating all properties of the ¯uid. Its value was
close to that of either plate, as the temperature differences resulting
from the applied heat ¯ux to the lower plate were relatively small,
typically of the order of 100 mK. In fact, small changes in Ra were
made most conveniently by changing the power QÇ applied to the
bottom plate, while holding the top-plate temperature and gas
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Figure 2 Log±log plot of the Nusselt number (Nu) versus Rayleigh number (Ra). The line

through the data is the least-squares ®t over the entire Ra range, and represents Nu =

0.124 Ra0.309. Locally, the power-law exponent shows a modest change with Ra, but

these high-order effects are not considered here. Bottom right inset, the compensated

plot B represents Nu/Ra0.309 and con®rms this relation. The `mean ®eld theory' for optimal

heat transport for a single mode also ®ts the entire range of the data if the prefactor is

chosen to be 0.0587 (plot C). When Nu is normalized by the 2/7th power of Ra (plot A) or

by the 1/3rd power of Ra (plot D), the resulting plots are not constant in Ra, suggesting

that neither exponent is correct. Top left inset, the upper set of data (crosses) shows the

variation of the Prandtl number. The best ®t to the Nu±Ra data for Ra , 1013, where Pr is

a constant of 0.7, gives only a slightly different exponent of 0.308. The lower set of data

(circles) is aDT, this product being a measure of the non-Boussinesq effects. For all but

the last dozen or so of the data at the highest Ra, aDT , 0.2. This is considered to be

suf®ciently small.
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Figure 3 The probability density function (PDF) of the temperature ¯uctuations in the

centre of the cell measured at different Ra as indicated. At the lowest Ra, the PDF retains a

memory of the hot and cold temperatures. Bottom left inset, the PDF for Ra = 8.7 ´ 107 is

gaussian, where the log of the PDF is plotted against the squared temperature difference

from the mean. Top left inset, the PDF similarly plotted for Ra = 1.1 ´ 1015, where it takes

the form of a stretched exponential (with a stretching factor of 1.5). The temperature scale

ranges between -10-4 and +10-4 (top left inset) and between -0.01 and +0.01 (bottom

left inset). Top right inset, the ratio of the root-mean-square temperature ¯uctuation v9 to

the mean temperature difference DT across the bottom and top plates, as a function of

Ra. TM, mean temperature of the cell.

© 2000 Macmillan Magazines Ltd



density constant. The Rayleigh number could also be increased for a
given applied heat ¯ux and gas density by setting the (controlled)
top-plate temperature closer to the critical temperature of the gas.
This was done in a few instances. The diverging gas properties led to
higher Ra for nominally constant temperature differences. Coarse
control of Ra was achieved by changing the density of the sample
gas; this required transferring helium between the main helium
reservoir and the cell through a cryogenic valve and ®lter. The gas
density, determined from the measured pressure and mean tem-
perature, varied between 2 ´ 10-6 g cm-3 to 0.076 g cm-3 in these
experiments.

Over most of the range of Ra, the waiting times after a change in QÇ

were of the order of an hour; the more precise value depended on
the strength of the convective ¯ow and the total heat capacity of
enclosed gas. In practice, it was determined individually from the
continuous time record of the plate temperatures. From the
exponential approach to equilibrium in the bottom-plate tempera-
ture, a minimum of ®ve characteristic times was allowed to elapse
before data were taken. Each plate temperature was then averaged
several times for up to 30 minutes. The Nusselt number was
calculated from the measured temperature difference DT and the
applied power QÇ , taking into account corrections for heat conduc-
tion through the con®ning stainless steel walls of the cell and the
adiabatic temperature gradient, DTad � gaLTm=Cp, where Cp is the
heat capacity at constant pressure. Values of DTad were generally of
order 2±3 mK, and were subtracted from the measured temperature
difference before evaluating Ra and Nu.

Temperature ¯uctuations were measured from the changing resis-
tance of the small germanium sensors in the ¯ow, which formed one
arm of an audio-frequency resistance bridge operated off-balance
with phase-sensitive detection. Each time series typically contained
219 data points, corresponding to about 5 hours of real time.

Heat transport scaling
Figure 2 shows Nu as a function of Ra in a log±log plot for 106 # Ra
# 1017. This extensive dynamic range allows us to draw several
useful conclusions. First, over the entire range of Rayleigh
numbers, a single power law ®ts the data well to the lowest
order, as shown by the solid line through the data. The ®t yields
Nu = 0.124 Ra0.309 6 0.0043. Plotting Nu - 1 instead of Nu, or plotting
Nu or Nu - 1 against Ra - Racr (where Racr is the critical Rayleigh

number), does not materially affect this conclusion. Second, it
appears that b values of 1/3 as well as 2/7 are ruled out, as
demonstrated by the compensated plots in the bottom right inset
to Fig. 2.

It is important to note, however, that the precise value of b
depends on the helium gas properties used to compute Ra and Nu.
A signi®cant part of the difference between the present value of b
and that of ref. 7 appears to be due to such differencesÐmost
notably in the thermal conductivity. The gas properties used here
were obtained from software (Cryodata Inc.) incorporating NIST-
12 Standard Reference Database code, adopted in 1992 as the
international standard for helium properties. This software was
especially modi®ed for increased accuracy near the critical point20.
The properties obtained from the NIST-12 code differ appreciably
from the older NBS values21 used by ref. 7. For comparison, we have
recomputed their data with the updated gas properties as well as
adiabatic corrections, and found the best ®t for Ra . 5 ´ 107 to be
Nu = 0.146Ra0.299. The exponent b in the SF6 measurements of ref.
13 is 0.3 6 0.03. Although that mean value is consistent with the
present result, the relatively larger uncertainty cannot rule out either
2/7 or 1/3.

There is no fully ¯edged theory that predicts the observed trend
correctly, but a `mean-®eld' result culled from the works of Howard,
Roberts, Stewartson, and Herring (see refs 22, 23 for a summary)
has the correct functional form. This result pertains to a single-
mode solution of the convection just past the critical Rayleigh
number in which the wavenumber of the weakly nonlinear
mode is determined by maximizing the heat transport. That result
gives Nu = 0.24(Ra3/2lnRa3/2)1/5, with additional log±log terms in the
next order. The inset shows that this expression with an empirically
adjusted prefactor of 0.0587 ®ts the entire range of Ra very well.
Whether this remarkable agreement is more than accidental
remains to be seen. An elementary one-dimensional theory (B.
Dubrulle, personal communication) also yields an exponent com-
patible with the present measurements.

There are slight departures from the power law in the last two or
so decades of Ra. Whether they are due to logarithmic corrections,
modest non-Boussinesq effects or Prandtl number variability is not
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Figure 4 The power spectral density (PSD) of the temperature ¯uctuations in the cell

measured at Ra = 6 ´ 1011. The PSD has a roll-off rate of 7/5 for low frequencies where

Bolgiano scaling seems appropriate, whereas for higher frequencies, the classical

Obukhov±Corrsin scaling appears to hold. Inset, the PSD compensated for the roll-off

exponents of 7/5 and 5/3. The crossover position is determined by the magnitude of the

Bolgiano length scale.
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Figure 5 A rough measure of the large-scale velocity in the cell. The method of obtaining

the data is described in the text. For Ra = 2.5 ´ 106, the velocity is unidirectional over the

duration of the experiment, and probably re¯ects a well-maintained large-scale

circulation. At higher Rayleigh numbers, the motion can be in both directions, but cannot

be represented simply by an oscillatory circulation. It may more accurately represent the

large-scale motion upon which small-scale ¯uctuations are superimposed.
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completely clear. The non-Boussinesq effects appear to be small
because the product aDT (circles in the left inset of Fig. 2) is less
than 0.2 for all but the last dozen or so data pointsÐthis being an
empirical criterion for validity of the Boussinesq approximation24.
The Prandtl number is a constant at least up to Ra < 1013 (crosses in
the left inset of Fig. 2), and the ®t to the Ra±Nu data in that region
yields a b that differs from 0.309 only in the third decimal place.
Thus, the Prandtl number effect on the Nu behaviour appears to be
small as well. If we attribute the slight droop of Nu below the power-
law ®t in the last three or so decades of Ra entirely to Prandtl
number effects, we can ®t that effect by Pr-1/7 (consistent with refs 13
and 15). (This is different in sign from the Prandtl number effects
for Pr = 0.1, for which available numerical and experimental data25

at Ra < 6 ´ 105 suggest that Nu ~ Pr0.14.)

Temperature and velocity ¯uctuations
The apparent uniqueness of the power-law that characterizesÐat
least to ®rst orderÐthe Nu±Ra relation does not imply that the
dynamical behaviour of the heat transport is similarly unique. Even
the simplest statistics of the temperature ¯uctuation v, such as its
probability density function (PDF) and power spectral density
(PSD), undergo drastic changes with Rayleigh number, as has
already been noted by other workers (for example, see ref. 7). A
sample of these changes is shown in Fig. 3. At the centre of the cell,
the PDF of v is bimodal at Ra = 2.5 ´ 106, suggesting that the top-
and bottom-plate temperatures are not fully mixed. The mixing is
essentially complete by Ra = 8.7 ´ 107,where the PDF is almost
gaussian (see bottom left inset in Fig. 3, where PDFs are plotted
against the square of the temperature difference from the mean).
The PDFs at higher Rayleigh numbers, say Ra $ 1010, show a
stretched exponential behaviour (top left inset in Fig. 3). The
asymptotic state of the temperature PDF is thus not gaussian. The
inset on the right shows that the root-mean-square ¯uctuation v9 of
v follows the relation v9/DT = 0.37 Ra-0.145, quite close to the result
of ref. 7. The PDF at any off-centre position in the cell is much more
complex, and will not be discussed here.

Figure 4 shows one feature of the power spectral density of v. At
low frequencies, the roll-off rate is 7/5, consistent with Bolgiano's
theory26. At higher frequencies, one observes the classical Obu-
khov±Corrsin scaling with the 5/3 roll-off rate27. This is particularly
clear from the compensated spectra plotted in the inset. The cross-
over between the two power-laws occurs at the so-called Bolgiano
scale. We cannot reliably determine the Bolgiano scale as a function
of Ra, but the preliminary data at other Rayleigh numbers are
consistent with this picture.

We have not measured the velocity ¯uctuations in the cell directly.
However, following ref. 7, we have estimated the velocity by
correlating a temperature signal from one bolometer with that
from another situated a known distance away, the latter with a time
delay that maximizes the correlation. The ratio of the separation
distance to this delay time gives an estimate of the velocity along the
axis separating the two bolometers. The correlation is obtained by
averaging over an intermediate timescale t that is large compared to
the digital sampling interval but small compared to the large-scale
turnover in the cell. The velocity estimates so obtained are thus
coarse-grained averages over the duration t. If the ¯ow speed is
unidirectional, the delay time needed for maximizing the correla-
tion will be of one sign; otherwise, it will change sign at intervals.

For Rayleigh numbers of about 2.5 ´ 106, the estimated ¯ow speed
is shown in Fig. 5a. The most probable velocity, corresponding to
the peak in the histogram, is of the order 7 cm s-1; the spread
represents the ¯uctuations around this most probable value. The
mean velocity is unidirectional over the duration of the experiment
(about 6 hours of real time). Thus, a large-scale circulationÐalbeit
a wobbly oneÐappears to survive at Rayleigh numbers of this
order. At higher Rayleigh numbers of the order 6 ´ 1013, the velocity

histogram assumes a bimodal shape shown in Fig. 5b, suggesting
that the large-scale ¯ow is no longer unidirectional over the
experimental duration, but may change sign frequently. In reality,
even this bimodality is an artefact of the ®niteness of t; the use of a
smaller t ®lls the gap between the two modes of the histogram.

There has been considerable speculation on the effect of the large-
scale circulation on the experimentally observed Nu±Ra
scaling1,2,7±11,28. A reasonable approximation to a steady mean ¯ow
in the cell is observed only at the low end of the Rayleigh number
range. At higher Rayleigh numbers, the motion is at least as often in
one direction as another; it is more like a weak large-scale motion on
which are superimposed small-scale velocities. It is not clear how
this conclusion translates to convection cells of larger aspect ratio29.
Our future goals include the direct measurement of the velocity and
a better understanding of the effects of variable Prandtl number and
aspect ratio. M
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