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Statistical Dependence of Inertial Range Properties on Large Scales
in a High-Reynolds-Number Shear Flow
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For turbulent velocity data measured in high-Reynolds-number atmospheric surface layer, we show
that the observed dependence of the inertial range statistics on large scale fluctuations is a manifestation
of the mixed averaging of regions of different local Reynolds number. This dependence can be
subsumed by the Obukhov conditional averaging and the second refined similarity hypothesis of
Kolmogorov. We identify a subset of velocity increments which seem to possess no large-scale
dependence. [S0031-9007(96)00767-3]

PACS numbers: 47.27.Ak, 47.27.Jv

Fully turbulent flows at high Reynolds numbers consistof the energy dissipation rate, as envisaged in the second
of a wide range of scales which are classified, somewhatfined similarity hypothesis (RSH) of Kolmogorov [6].
loosely, into “large” and “small” scales. The small For present purposes, RSH can be stated as follows:
scales include the dissipative range responsible for moftrovided the local Reynolds number is high enoutle,
of the energy dissipation and the intermediate inertial-quantity that is universal in the inertial rangenst the
range scales that bridge the large scales, on the oneslocity incrementAu, but the nondimensional variable
hand, and dissipative scales, on the other hand. Th¥ given by
phenomenology of turbulence rests principally on the V = Au,/(re,)'3, (1)
premise that, at high Reynolds numbers, the small scaI%here
are statistically independent of the large scales. While
there is ample evidence that this is approximately so, it _ 1 ]x+r NN,

) . . . &r e(x") dx’'. 2
has been appreciated that the picture is not correct in r Jx
detail [1-4] and that the small-scale properties depend tblere, (x) is the energy dissipation rate at the position
some degree on the large scale. Despite much work, one and the integral in Eq. (2) is taken over the distance
does not understand the precise nature of this dependence.for r much smaller than the large scdle ¢, is the
The intent of the Letter is to improve this understandinglocally averaged dissipation rate. The local Reynolds
by examining conditional statistics of inertial scales innumber is defined a®e, = r(re,)!/?/v, v being the
the framework of Obukhov's pure ensemble [5] andkinematic viscosity coefficient. Obukhov [5] presumed
Kolmogorov's refined similarity hypotheses [6]. that Kolmogorov’s [10] original theory holds exactly in

Specifically, we were motivated by the measurementshe so-called “pure regimes,” or regions of the flow where
of Praskovskyet al.[7] which showed that the inertial- the energy dissipation assumes some fixed value. The
range scales are statistically correlated with the large scalaverages over regions with variabke can be termed,
Consider the so-called longitudinal velocity incrementsfollowing Obukhov, as “mixed averages.” Because of
Au, = u(x + r) — u(x), whereu andr, respectively, are the strong intermittency of the energy dissipation, the
the velocity component and the separation distance in thiecal Reynolds number will vary from one pure regime
directionx. If risinthe inertial range, the moments®dfi,  to another. Thus, mixed averages correspond to regions
are presumed to be purely inertial-range properties, andith varied values of the local Reynolds number.
so one would expect them to be statistically independent We shall now consider tests that shed some light on
of the large-scale velocity. By conditioning the momentsthe issue of whether the observed statistical dependence
of Au, on various values of (a suitable choice of) theis subsumed by the RSH and Obukhov’s mixed averages.
large-scale velocity, it was shown in Ref. [7] that statisticalWe do this by analyzing the turbulent velocity data in
independence holds at best for small magnitudes of ththe atmospheric surface layer measured at a few meters
large-scale velocity; for magnitudes in excess of, say, &eight above the ground, at a Taylor microscale Reynolds
standard deviation of its variation, the momentsfaf,  number of about 2000. These data have been analyzed
showed a strong dependence on the large-scale velocitfor various purposes in Refs. [11,12], where more details
This coupling between the large scale and the inertiatan be found. The data consisted of a contiguous record
scales could come about by the explicit appearance of thef approximately2.5 X 10° 5, wheren = (v /(e))'/* is
large-scale velocity as a scaling factor [8,9], but it is alsathe Kolmogorov length scale, obtained under steady wind
likely that it may come about because of the intermittencyconditions with a mean velocity 67 ms™!. The inertial
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range, as judged from the linear behavior of the third-order &
structure function [13], can be said to extend from about 3
407 to about8007. (The scaling range from the power =<
s
EE:

spectrum is more extensive). We have used Taylor's

40 .
frozen flow hypothesis, and replaced the energy dissipation

by the componentiu/dx)>. Even though the nature of N<:1r -

these approximations is not clear, there are indications ~ 00 0 20 00 20 40 60

[14] that they are reasonably benign for present purposes.
With one exception, all the following figures have been B . .
presented for fixed inertial-range separation distances FIG. 1. The conditional expectation dfu; for a given uy,

. g . I = / I
5607, but we have verified that the results are essentiallp'oied as a function Ofup. uo = u/u’, where u is the
h for half that separation distance turbulent velocity fluctuation (see text) at the midpoint of the
the same p : interval (x,x + ). Crosses and the continuous line correspond

Before proceeding further, it is necessary to choose & the average over the entire domain; circles to the range
guantity that serves as an appropriate surrogate of th&= Re, < 2800; squares t®2800 = Re, < 5600; rhomboids

large-scale velocityu;. The first consideration in this 105600 = Re, < 9300; triangles toRe, = 9300.
respect is that the very largest scale velocity fluctuations
(containing, say, about 20% of the kinetic energy) are
flow dependent. However, if we filter out those largestbe roughly independent af This result is in agreement
scales we free ourselves from flow dependent effects. Theith that of Ref. [7]. We note that a different definition
results to be presented below use velocity data in whiclef u, as the average ofi(x) and u(x + r), or as the
the signal below 1 Hz has been filtered out; we treat thisntegrated average velocity over the intervalx + r),
filtered signal as our velocity(x). The effects of this would not alter this behavior. We also note that the
filtering will be discussed below briefly. Two natural unfiltered data yield essentially the same results except that
choices for the large scale (with the caveat mentionediltering restores greater symmetry to the curves of Fig. 1.
above) areu; = u(x) andu;, = u(x + r/2). The first Further, the removal of the very largest scales makes
choice is suggested by Kolmogorov's definition of localthe results of Fig. 1 both qualitatively and quantitatively
homogeneity [10] (see also [1], Sec. 21.2), according taimilar for a variety of flows (which otherwise show some
which, for a fixed value ofi(x, 7p) = u*, the probability  differences). The figure suggests that local sweeping,
density function ofu(xy + r, 7)) — u™ is dependent ofy,  unless it is small, makes inertial-range quantities depend
X0, andu®. The second choice, namely, = u(x + r/2), on large-scales. As we showed above, this dependence
is appealing because of the symmetry with respect to thevould vanish for Gaussian fields.
interval (x,x + r), as well as for a deeper reason. To see We have so far not paid attention to whether or not the
this latter, consider the equivalent effect for a stationarnjocal Reynolds number is high. Figure 1 also shows the
Gaussian random functiog(r) (assumed without loss of conditional variance ofAu, for several ranges of local
generality to have zero mean). It is well known that theReynolds numbers. Narrower windows on the Reynolds
statistics of such functions are completely determined bypumber—which is to say, narrower windows en—
the correlation functiop (1) = (g(t + 7)g(¢))/o?,where  would have been desirable, but convergence difficulties
o? = (g?). For this class of random functions, it can be due to finite data record prevented this refinement. The
shown that windows are chosen such that convergence errors do not
’ mask data trends. The results, shown in Fig. 1, lead to
{g(t + ) = gOFlgt + 70)) two conclusions. First, when the local Reynolds number
o B B B B ) is large, say, greater than about 5600, the dependence on
= o 201 = p(M] = [p(r = 70) = p(70)I} uo of the conditional variance vanishes entirely. Thus,
) 5 the dependence apparent from the continuous curve seems
+lp(r = 70) = p(1)l7g(t + 70" () g pe the result of ignoring the requirement that the local
Equation (3) shows that there is a strong statistical deReynolds be sufficiently high. A second conclusion from
pendence between(r + 7) — g(¢) andg(r + 7o) when the lower Reynolds number ranges—namely,-R&800,
10 = 0, but that this dependence vanishes whgr= 7/2. and 2800 = Re = 5600—is that, even for these cases,
This result, which can be called “kinematical,” suggeststhere is less dependence ap than for the continuous
that the interaction between small and large scales is bestirve. This may seem counterintuitive because these two
studied by conditioning on the velocity at the center of thelocal Reynolds numbers are lower than that for the entire
interval, rather than on that at its edges. data. Note, however, that each data set corresponds, in a
The continuous curve in Fig. 1 shows the conditionalrough sense, to Obukhov's pure regimes, whereas averag-
variance ofAu, for fixed uy as a function ofuy, where ing over the entire data corresponds to the mixed regime.
up = u/u’; u = u(x + r/2)istaken as the representation Therefore, the data suggest that statistical independence
large-scale velocity;;. The curve is roughly parabolic, holds better in pure regimes (as approximated by the re-
and only when|ug| is small may one consideAu, to  striction to a band of local Reynolds numbers) than in
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FIG. 2. The conditional expectation ¢fe,)*3. Symbols as FiG. 4. Same quantities as in Fig. 2, except thats now

in Fig. 1. defined as the velocity at the positian The resulting graphs
are very similar to those of Fig. 2.

(=3
\d
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mixed ones. An explanation for this can again be that,
for inertial range scales, the statistics/of, for fixed e,  expectation shows non-negligible dependence on the large
is nearly Gaussian [11,12]. The dependence observed stale. As explained above, we attribute this to the finite-
small Re, can probably be ascribed to the fact that thesized windows on the conditioning variable. The picture
conditioning windows orRe, are a bit too wide. While is entirely consistent with RSH.
this width does not affect the higke , regimes, the depen-  From considerations already discussed, we may expect
dence ofV onRe, for smaller values oRe, makes a wide that the results would be different if the large-scale
window effectively a mixed regime [15]. The conjecture, velocity were identified with the velocity at the end of
then, is that the finer the conditioning, the less the largethe interval(x, x + r). The new conditional expectation
scale dependence in each pure regime, ev&ejfis not  of (r&)?/? (Fig. 4) shows no differences from Fig. 2 and
especially large. needs no further comment. Figures 5 and 6 correspond
Figure 2 shows similar conditional expectations ofto Au, and V, respectively. The common feature of
(re,)?/? for the same inertial-range distances in Fig. 1.  Figs. 2 and 5 is the statistical dependence for the mixed
The continuous curve for the mixed case is rather similacase—which, as already mentioned, seems to be a robust
to the mixed case of Fig. 1. It is also apparent, perhapgesult. It is, however, seen from Fig. 5 thii, possesses
with greater clarity than in Fig. 1, that the dependencenontrivial statistical dependence on the large scale no
vanishes nearly entirely when the averaging is restrictedhatter what the local Reynolds number (except, perhaps,
to pure regimes. for the lowest Reynolds number cases). This striking
Since the variances of bothu, and (re,)'/? in the  departure from Fig. 1 can be understood by recalling that
mixed regimes show similar dependencewugnit might an equivalent dependence persists even for a Gaussian
be surmised that the ratio = Au,/(r&,)'/> would show process, indicating that this effect is mainly kinematical
substantially smaller dependencemgn Recalling [11,12] in origin. This dependence is expected in general [16], as
that the quantityv for fixed Re, and inertial range is  can be seen by expanding the conditional expectatioh
nearly Gaussian (albeit skewed), one might expect that this terms ofuy,
near Gaussianity will restore the large-scale independence
to the inertial-range variabl¥. This is to be expected  {(u(x + r) — u(x)Plu(x))
because the ensemble of pure regimes coincides [15]

with the ensemble of an appropriate fractional Brownian = [(ulx + r)*lux)) — 2ulx + r)lux))u(x)
motion, which is a Gaussian process. Figure 3 bears out
this expectation. The significant aspect of this figure is + u(x)*] = u”? + u(x)?, ()]

that the variance of the variabM is independent ofi

not only for high local Reynolds numbers, but also for the

mixed case. Interestingly, in pure regimes where the local
Reynolds number is less than about 5600, the conditional
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U, for which statistical dependence seems to vanishufpK 0,
the conditional variance depends strongly w@nfor all cases.
FIG. 3. The conditional expectation df>. Symbols as in The thick grey line corresponds to Eq. (4), after appropriate
Fig. 1. normalization.
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Other interesting observations can also be made. For
example, it was suggested in Ref. [17] that one can
_ get better insight into the scaling properties of velocity
increments by considering their positive and negative
parts separately. We consider this aspect briefly in Fig. 7,
where the variances ofu,” = Au, = 0 and Au, =

60 Au, < 0 are plotted against, as before. FoAu, the
5 ' ’ ’ ‘ dependence is unchanged from that of fallk, when
< 1201 b . uy < 0, but vanishes entirely whemy = 0. Just the
T gol . ] opposite is true foAu, . Whether this result is kinematic
Ni a0l " 1 or dynamical, the observation suggests that the variéble
N P < B S defined as
%00 40 20 00 20 40 60 & = Au whenu = 0 andAu, whenu < 0

u - o .

o is likely to respect statistical independence without excep-
FIG. 6. Same quantities as Fig. 3, withas the velocity ak. ~ tion. The consequences of this statement are being ex-
(a) Corresponds te/n = 560, and (b) tor/n = 280. Forthe plored currently and will be reported elsewhere.

mixed regime, the variabl¥ shows a weaker dependence on We thank Vadim Borue. Brindesh Dhruva. Robert
uo than doesAu,. This dependence diminishes with increasing ! ’

Reynolds number, and is especially negligible for the rang&raiChnan' Marqelo Magnasco, Mark Nelkin,' Sasha

Re, = 9300, r/n = 280. Polyakov, and Victor Yakhot for helpful discussions or
comments on the draft. We thank Robert Antonia for
his atmospheric data on which we performed various re-
peatability checks. K.R.S. thanks the Sloan Foundation

where the assumption of a weak correlation betweemnd Air Force Office of Scientific Research for financial
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