
VOLUME 77, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 9 SEPTEMBER1996

1

show
estation
n be

sis of
-scale

2218
Statistical Dependence of Inertial Range Properties on Large Scales
in a High-Reynolds-Number Shear Flow
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For turbulent velocity data measured in high-Reynolds-number atmospheric surface layer, we
that the observed dependence of the inertial range statistics on large scale fluctuations is a manif
of the mixed averaging of regions of different local Reynolds number. This dependence ca
subsumed by the Obukhov conditional averaging and the second refined similarity hypothe
Kolmogorov. We identify a subset of velocity increments which seem to possess no large
dependence. [S0031-9007(96)00767-3]
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Fully turbulent flows at high Reynolds numbers cons
of a wide range of scales which are classified, somew
loosely, into “large” and “small” scales. The sma
scales include the dissipative range responsible for m
of the energy dissipation and the intermediate inerti
range scales that bridge the large scales, on the
hand, and dissipative scales, on the other hand.
phenomenology of turbulence rests principally on t
premise that, at high Reynolds numbers, the small sc
are statistically independent of the large scales. Wh
there is ample evidence that this is approximately so
has been appreciated that the picture is not correc
detail [1–4] and that the small-scale properties depend
some degree on the large scale. Despite much work,
does not understand the precise nature of this depende
The intent of the Letter is to improve this understandi
by examining conditional statistics of inertial scales
the framework of Obukhov’s pure ensemble [5] an
Kolmogorov’s refined similarity hypotheses [6].

Specifically, we were motivated by the measureme
of Praskovskyet al. [7] which showed that the inertial-
range scales are statistically correlated with the large sc
Consider the so-called longitudinal velocity incremen
Dur ; usx 1 rd 2 usxd, whereu andr, respectively, are
the velocity component and the separation distance in
directionx. If r is in the inertial range, the moments ofDur

are presumed to be purely inertial-range properties,
so one would expect them to be statistically independ
of the large-scale velocity. By conditioning the momen
of Dur on various values of (a suitable choice of) th
large-scale velocity, it was shown in Ref. [7] that statistic
independence holds at best for small magnitudes of
large-scale velocity; for magnitudes in excess of, say
standard deviation of its variation, the moments ofDur

showed a strong dependence on the large-scale velo
This coupling between the large scale and the iner
scales could come about by the explicit appearance of
large-scale velocity as a scaling factor [8,9], but it is al
likely that it may come about because of the intermitten
0031-9007y96y77(11)y2218(4)$10.00
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of the energy dissipation rate, as envisaged in the sec
refined similarity hypothesis (RSH) of Kolmogorov [6].

For present purposes, RSH can be stated as follo
Provided the local Reynolds number is high enough,the
quantity that is universal in the inertial range isnot the
velocity incrementDur but the nondimensional variabl
V given by

V ­ Durysr´rd1y3, (1)

where

´r ­
1
r

Z x1r

x
´sx0d dx0. (2)

Here, ´sxd is the energy dissipation rate at the positio
x, and the integral in Eq. (2) is taken over the distan
r; for r much smaller than the large scaleL, ´r is the
locally averaged dissipation rate. The local Reyno
number is defined asRer ­ rsr´rd1y3yn, n being the
kinematic viscosity coefficient. Obukhov [5] presume
that Kolmogorov’s [10] original theory holds exactly i
the so-called “pure regimes,” or regions of the flow whe
the energy dissipation assumes some fixed value.
averages over regions with variablé can be termed,
following Obukhov, as “mixed averages.” Because
the strong intermittency of the energy dissipation, t
local Reynolds number will vary from one pure regim
to another. Thus, mixed averages correspond to reg
with varied values of the local Reynolds number.

We shall now consider tests that shed some light
the issue of whether the observed statistical depende
is subsumed by the RSH and Obukhov’s mixed averag
We do this by analyzing the turbulent velocity data
the atmospheric surface layer measured at a few me
height above the ground, at a Taylor microscale Reyno
number of about 2000. These data have been analy
for various purposes in Refs. [11,12], where more deta
can be found. The data consisted of a contiguous rec
of approximately2.5 3 106 h, whereh ­ sn3yk´ld1y4 is
the Kolmogorov length scale, obtained under steady w
conditions with a mean velocity of6.7 ms21. The inertial
© 1996 The American Physical Society
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range, as judged from the linear behavior of the third-or
structure function [13], can be said to extend from ab
40h to about800h. (The scaling range from the powe
spectrum is more extensive). We have used Tayl
frozen flow hypothesis, and replaced the energy dissipa
by the components≠uy≠xd2. Even though the nature o
these approximations is not clear, there are indicati
[14] that they are reasonably benign for present purpo
With one exception, all the following figures have be
presented for fixed inertial-range separation distancesr ­
560h, but we have verified that the results are essenti
the same for half that separation distance.

Before proceeding further, it is necessary to choos
quantity that serves as an appropriate surrogate of
large-scale velocity,uL. The first consideration in thi
respect is that the very largest scale velocity fluctuati
(containing, say, about 20% of the kinetic energy)
flow dependent. However, if we filter out those larg
scales we free ourselves from flow dependent effects.
results to be presented below use velocity data in wh
the signal below 1 Hz has been filtered out; we treat
filtered signal as our velocityusxd. The effects of this
filtering will be discussed below briefly. Two natur
choices for the large scale (with the caveat mentio
above) areuL ­ usxd and uL ­ usx 1 ry2d. The first
choice is suggested by Kolmogorov’s definition of loc
homogeneity [10] (see also [1], Sec. 21.2), according
which, for a fixed value ofusx0, t0d ­ up, the probability
density function ofusx0 1 r , t0d 2 up is dependent oft0,
x0, andup. The second choice, namely,uL ­ usx 1 ry2d,
is appealing because of the symmetry with respect to
interval sx, x 1 rd, as well as for a deeper reason. To s
this latter, consider the equivalent effect for a station
Gaussian random functiongstd (assumed without loss o
generality to have zero mean). It is well known that t
statistics of such functions are completely determined
the correlation functionrstd ­ kgst 1 tdgstdlys2, where
s2 ­ kg2l. For this class of random functions, it can
shown that

kfgst 1 td 2 gstdg2jgst 1 t0dl

­ s2h2f1 2 rstdg 2 frst 2 t0d 2 rst0dg2j

1 frst 2 t0d 2 rst0dg2gst 1 t0d2. (3)

Equation (3) shows that there is a strong statistical
pendence betweengst 1 td 2 gstd and gst 1 t0d when
t0 ­ 0, but that this dependence vanishes whent0 ­ ty2.
This result, which can be called “kinematical,” sugge
that the interaction between small and large scales is
studied by conditioning on the velocity at the center of
interval, rather than on that at its edges.

The continuous curve in Fig. 1 shows the conditio
variance ofDur for fixed u0 as a function ofu0, where
u0 ; uyu0; u ­ usx 1 ry2d is taken as the representatio
large-scale velocityuL. The curve is roughly parabolic
and only whenju0j is small may one considerDur to
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FIG. 1. The conditional expectation ofDu2
r for a given u0,

plotted as a function ofu0. u0 ­ uyu0, where u is the
turbulent velocity fluctuation (see text) at the midpoint of t
interval sx, x 1 rd. Crosses and the continuous line correspo
to the average over the entire domain; circles to the ra
0 # Rer , 2800; squares to2800 # Rer , 5600; rhomboids
to 5600 # Rer , 9300; triangles toRer $ 9300.

be roughly independent ofu. This result is in agreemen
with that of Ref. [7]. We note that a different definitio
of u0 as the average ofusxd and usx 1 rd, or as the
integrated average velocity over the intervalsx, x 1 rd,
would not alter this behavior. We also note that t
unfiltered data yield essentially the same results except
filtering restores greater symmetry to the curves of Fig
Further, the removal of the very largest scales ma
the results of Fig. 1 both qualitatively and quantitative
similar for a variety of flows (which otherwise show som
differences). The figure suggests that local sweep
unless it is small, makes inertial-range quantities dep
on large-scales. As we showed above, this depende
would vanish for Gaussian fields.

We have so far not paid attention to whether or not
local Reynolds number is high. Figure 1 also shows
conditional variance ofDur for several ranges of loca
Reynolds numbers. Narrower windows on the Reyno
number—which is to say, narrower windows ońr —
would have been desirable, but convergence difficul
due to finite data record prevented this refinement. T
windows are chosen such that convergence errors do
mask data trends. The results, shown in Fig. 1, lead
two conclusions. First, when the local Reynolds num
is large, say, greater than about 5600, the dependenc
u0 of the conditional variance vanishes entirely. Thu
the dependence apparent from the continuous curve se
to be the result of ignoring the requirement that the lo
Reynolds be sufficiently high. A second conclusion fro
the lower Reynolds number ranges—namely, Re# 2800,
and 2800 # Re # 5600—is that, even for these case
there is less dependence onu0 than for the continuous
curve. This may seem counterintuitive because these
local Reynolds numbers are lower than that for the en
data. Note, however, that each data set corresponds,
rough sense, to Obukhov’s pure regimes, whereas ave
ing over the entire data corresponds to the mixed regi
Therefore, the data suggest that statistical independ
holds better in pure regimes (as approximated by the
striction to a band of local Reynolds numbers) than
2219
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FIG. 2. The conditional expectation ofsr´r d2y3. Symbols as
in Fig. 1.

mixed ones. An explanation for this can again be th
for inertial range scales, the statistics ofDur for fixed ´r

is nearly Gaussian [11,12]. The dependence observe
small Rer can probably be ascribed to the fact that
conditioning windows onRer are a bit too wide. While
this width does not affect the highRer regimes, the depen
dence ofV onRer for smaller values ofRer makes a wide
window effectively a mixed regime [15]. The conjectur
then, is that the finer the conditioning, the less the lar
scale dependence in each pure regime, even ifRer is not
especially large.

Figure 2 shows similar conditional expectations
sr´rd2y3 for the same inertial-range distancer as in Fig. 1.
The continuous curve for the mixed case is rather sim
to the mixed case of Fig. 1. It is also apparent, perh
with greater clarity than in Fig. 1, that the dependen
vanishes nearly entirely when the averaging is restric
to pure regimes.

Since the variances of bothDur and sr´r d1y3 in the
mixed regimes show similar dependence onu0, it might
be surmised that the ratioV ­ Durysr´r d1y3 would show
substantially smaller dependence onu0. Recalling [11,12]
that the quantityV for fixed Rer and inertial ranger is
nearly Gaussian (albeit skewed), one might expect that
near Gaussianity will restore the large-scale independe
to the inertial-range variableV. This is to be expected
because the ensemble of pure regimes coincides
with the ensemble of an appropriate fractional Brown
motion, which is a Gaussian process. Figure 3 bears
this expectation. The significant aspect of this figure
that the variance of the variableV is independent ofu0
not only for high local Reynolds numbers, but also for t
mixed case. Interestingly, in pure regimes where the lo
Reynolds number is less than about 5600, the conditio

FIG. 3. The conditional expectation ofV 2. Symbols as in
Fig. 1.
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FIG. 4. Same quantities as in Fig. 2, except thatu is now
defined as the velocity at the positionx. The resulting graphs
are very similar to those of Fig. 2.

expectation shows non-negligible dependence on the la
scale. As explained above, we attribute this to the finit
sized windows on the conditioning variable. The pictur
is entirely consistent with RSH.

From considerations already discussed, we may exp
that the results would be different if the large-scal
velocity were identified with the velocity at the end o
the intervalsx, x 1 rd. The new conditional expectation
of sr´d2y3 (Fig. 4) shows no differences from Fig. 2 and
needs no further comment. Figures 5 and 6 correspo
to Dur and V, respectively. The common feature o
Figs. 2 and 5 is the statistical dependence for the mix
case—which, as already mentioned, seems to be a rob
result. It is, however, seen from Fig. 5 thatDur possesses
nontrivial statistical dependence on the large scale
matter what the local Reynolds number (except, perhap
for the lowest Reynolds number cases). This strikin
departure from Fig. 1 can be understood by recalling th
an equivalent dependence persists even for a Gauss
process, indicating that this effect is mainly kinematica
in origin. This dependence is expected in general [16],
can be seen by expanding the conditional expectationDu2

r
in terms ofu0,

kfusx 1 rd 2 usxdg2jusxdl

­ fkusx 1 rd2jusxdl 2 2kusx 1 rdjusxdlusxd

1 usxd2g ø u02 1 usxd2 , (4)

FIG. 5. Same quantities as in Fig. 1, withu as the velocity
at positionx. Except for the lowest Reynolds number rang
for which statistical dependence seems to vanish foru0 , 0,
the conditional variance depends strongly onu0 for all cases.
The thick grey line corresponds to Eq. (4), after appropria
normalization.
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FIG. 6. Same quantities as Fig. 3, withu as the velocity atx.
(a) Corresponds toryh ­ 560, and (b) toryh ­ 280. For the
mixed regime, the variableV shows a weaker dependence o
u0 than doesDur . This dependence diminishes with increasi
Reynolds number, and is especially negligible for the ran
Rer $ 9300, ryh ­ 280.

where the assumption of a weak correlation betwe
usx 1 rd and usxd was used in the second approxima
equality. The parabolic dependence with respect tou0,
expected from Eq. (4), corresponds to the thick grey l
in Fig. 5. Thus, a flat curve in Fig. 1 may well transfor
itself in principle to the parabola of Fig. 5. Similarly
Fig. 6(a) shows thatV in the mixed regime has a weake
(though non-negligible) dependence, but becomes wea
still if Rer is high enough. This is particularly so i
Fig. 6(b) for r ­ 280h. In any case, the persistence
the dependence ofV on the large scale is apparent, b
again, its origin is kinematical.

In short, the statistical dependence vanishes in pure
sembles and the variableV is close to being statistically
independent of the large scales—at least when the lo
Reynolds number is sufficiently high. This is in agre
ment with RSH. The need for large local Reynolds nu
ber is not surprising: for, otherwise, the scale separat
between the large and small scales becomes narrow.

FIG. 7. The conditional variances ofDur (crosses and full
line), Du1

r (circles and dotted line), andDu2
r (squares and

dashed line) for a givenu0, plotted as a function ofu0, with
u taken as the velocity atx. Note that the conditional varianc
of Du1

r is independent ofu0 when the latter is positive, and
that of Du2

r is similarly independent ofu0 when the latter is
negative.
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Other interesting observations can also be made.
example, it was suggested in Ref. [17] that one c
get better insight into the scaling properties of veloc
increments by considering their positive and negat
parts separately. We consider this aspect briefly in Fig
where the variances ofDu1

r ; Dur $ 0 and Du2
r ;

Dur , 0 are plotted againstu0 as before. ForDu1
r , the

dependence is unchanged from that of fullDur when
u0 , 0, but vanishes entirely whenu0 $ 0. Just the
opposite is true forDu2

r . Whether this result is kinematic
or dynamical, the observation suggests that the variabj

defined as

j ­ Du1
r whenu $ 0 andDu2

r whenu , 0

is likely to respect statistical independence without exc
tion. The consequences of this statement are being
plored currently and will be reported elsewhere.
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