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Velocity measurements made in the wake of a circular cylinder near the onset of turbulence have
been analyzed to determine various scaling exponents. One conclusion is the apparent divergence of
a correlation length as one approaches a “critical” Reynolds number. Other aspects analyzed are the
scaling of turbulent energy and energy dissipation rate, as well as the circulation around square boxes

of various sizes.
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When two distinct states of condensed matter coexist
in equilibrium, the spontaneous transition from one state
to another can be understood within the framework of a
well-developed theory. While the situation with respect to
nonequilibrium systems is far less satisfactory, one main-
tains a tantalizing hope [1] that some very similar ideas
may be useful, if only by providing analogies, for describ-
ing symmetry-breaking processes at the macroscopic level.
A comprehensive account of the recent progress made in
this direction, with particular reference to pattern formation
in fluid systems, can be found in Ref. [2]. Reference [3]
provides a nice account of the theory and phenomenology
of the structure of weak turbulence and illustrates key ideas
with model examples. Mention should also be made of
some prior experimental work done in a similar spirit on
Rayleigh-Bénard convection [4] and on capillary ripples
[5]. A more difficult problem is that involving the transi-
tion to three-dimensional “hard” turbulence; this was ex-
amined in a very preliminary fashion in Ref. [6] by noting
that turbulent “spots” in boundary layers or “slugs” in pipe
flows spread with the difference speed between the front
and the back varying as (Re — Rec;)!'/2; here Re is the
Reynolds number and the suffix cr stands for the critical
value. In this paper, we measure some exponents when
the wake behind a cylinder undergoes spontaneous tran-
sition from a laminar to a turbulent state at a “critical”
Reynolds number (to be explained later): we are, however,
well aware of the lack of formal and universal frameworks
within which such observations can be explained.

Consider the flow past a circular cylinder of diameter D
and length A > D. As the flow speed increases, a signif-
icant structural change that occurs in the wake of the cylin-
der is the appearance of vortex shedding; the onset value of
the Reynolds number, Re = UD /v, is around 47, where
U is the oncoming flow speed and » is the fluid viscosity.
With some effort [7], these vortices can be maintained es-
sentially two dimensional. Additional complexities that
can arise in this state have been described, for example, in
Refs. [8] and [9], but undoubtedly the next major transition
is the appearance of three dimensionalities in vortex struc-
tures (see, for example, Refs. [10—12])—which carry the
seed for turbulence in the form of “dislocations” or finite-
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sized spots of turbulence; the spots spread and coalesce as
they propagate downstream and bring about transition to
turbulence. This transition, which occurs at a Reynolds
number of about 150, is relevant to our study here.

Fix attention on velocity fluctuations at some finite
distance behind the cylinder, say, 100 diameters, and
measure them simultaneously at several points along the
cylinder span. Before the onset of three dimensionalities,
these fluctuations are periodic (sinusoids with superim-
posed harmonics—see, for example, Fig. 1 of Ref. [8])
and well correlated along the span. In principle, this cor-
relation extends over distances of the order of the cylinder
span itself. As three dimensionalities develop, the transla-
tional invariance along the span is broken, and the motion
on one side of a propagating spot becomes less well cor-
related with the motion on the other side. These spots
appear apparently randomly in the flow, so a length scale
defining the average extent of the spanwise correlation
can be expected to be smaller than that prior to the onset
of three dimensionalities. As the Reynolds number in-
creases, the spots become more frequent and spread more
rapidly [6], and the correlation scale decreases rapidly.

This qualitative description (while admittedly ignoring
several finer aspects) suggests that the measurement in the
vicinity of the transition Reynolds number, which we shall
call critical, would be of interest. We have especially
measured a correlation length scale, the mean-square
fluctuation energy, energy dissipation rate, exponent of
the circulation around closed contours, and extracted
“scaling exponents” for each of them.

Measurements have been made in two nominally identi-
cal wakes. First, a wake was created behind a cylinder of
diameter 0.318 cm in low-turbulence wind tunnel with a
30 cm X 30 cm working cross section, and 1 m in length.
Well-resolved single-point velocity fluctuations were ob-
tained along and (in some instances) across the wake width,
using a standard hot wire approximately 5 um in diam-
eter and 0.6 mm long, operated at constant temperature
on a DANTEC 55MO1 anemomenter. In another exper-
iment, the wake was created behind a cylinder of diam-
eter 0.48 cm placed in a water tunnel comparable in size
to the wind tunnel. In this wake, spatial data [13] in two
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dimensions were acquired by the so-called particle image
velocimetry (PIV) method. The PIV technique involves
the illumination of a plane of the seeded flow field by a
pair of laser pulses separated by a small but finite time in-
terval and capturing both pulses on a single frame of pho-
tographic film. Each particle pair on the frame conveys
information on the local velocity field. When the devel-
oped film is interrogated with a beam of He-Ne laser, the
spacing and orientation of the fringes can be converted to
velocity data; here this was done using a software from
FFD Inc. The accuracy of velocity data so obtained var-
ied between 1% and 8%, and a typical value is about 5%.
The velocity vectors were obtained on a grid size 44 X 66
pixels (a pixel was 1.36 mm in some and 1.8 mm in other
experiments); the grid was centered at 50 cylinder diam-
eters downstream [14]. The pixel resolution varied from
about 27 at the lowest Reynolds number to about 57 at the
highest Reynolds number, where 7 is the estimated Kol-
mogorov scale. Velocity data were obtained in both the
transverse (x-y) and longitudinal (x-z) planes, where x is
the flow direction upstream of the cylinder, y is the direc-
tion of maximum shear, and z is along the cylinder span.

Before considering the exponents, it would be useful to
examine briefly the dramatic change occurring around a
Reynolds number of ~150. While this has been known
since the seminal measurements of Roshko [10], we may
demonstrate this explicitly in the following way. In the
Reynolds number range covered here, after an initial
adjustment for a few diameters downstream, the mean-
square velocity fluctuation monotonically decays with
distance away from the cylinder, as shown in Fig. 1 for
two typical Reynolds numbers. The decay is exponential
for Re < 150 and can be written as [15]

u = WH'? = Aexp(—/\ —;;—), (1)

where A and A are functions of the Reynolds number.
The variation of A as a function of the Reynolds number
is shown in the inset to Fig. 1. The downstream spatial
decay for Re < 150 is largely due to the fact that vortices
of opposite signs—emerging with opposite signs from
the two sides of the cylinder—annihilate each other; this
effect can be estimated to be an order of magnitude or
so stronger than the viscous effect. As the Reynolds
number increases, the rate of decay, viz. A, decreases
(presumably because the vortices become more compact).
At Re = 150, A fluctuates strongly from one experiment
to another—and depends on a variety of conditions,
not all of which are understood. For Re > 150, the
downstream development is more complex. However,
the peaks in the power spectrum at the vortex-shedding
frequency can be fitted roughly by an exponential, at least
for short distances (say, between 15 and 45 diameters at
Re = 1000), but the decay constant now increases with
Re. This is presumably so because the flow becomes
intermittently turbulent via spots, thus augmenting the

usual decay by turbulent dissipation. Thus Re = 150
marks a change in the flow character.

We shall now return to scaling exponents near this
critical Reynolds number of ~150. Figure 2 shows the
variation of four other quantities of interest for Re
between ~190 and ~1000. The correlation length L in

Fig. 2(a) is defined as

L f‘f ar, otz + ro))
0 (u(z0)%)

where ¢ is the first zero crossing of the integrand and
the separation distance r; is in the spanwise direction
z; note that z is the direction of homogeneity (away
from the walls of the flow facility), and so the integrand
depends only on r,. The data for Re < 1000 can be fitted
adequately by

(2

L/D = 40(Re — 150)7%42, 3)

The uncertainty in the exponent is of the order *0.05.
Figure 2(b) shows that u’/Uj can be fitted by [16]

u' /Uy =~ 0.2(Re — 150)7916, 4)

The uncertainty in this exponent is of the order *+0.03.
Needless to say, the square of the left-hand side of Eq. (4)
is proportional to the fluctuation kinetic energy.

Consider now the average energy dissipation rate per
unit mass (e€). For Re < 150, this quantity can be
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FIG. 1. Typical data on the spatial decay of root-mean-square
velocity fluctuation (expressed in arbitrary units) as a function
of the distance downstream of the cylinder (normalized by
its diameter); Re = 62 and 95, respectively, for the lower
and upper curves. Measurements were made along a line
where the fluctuation intensity was the largest. The spatial
decay is closely exponential, except for the vicinity of the
cylinder. The spatial decay constant A in Eq. (1), obtained
from measurements at various Reynolds numbers, is plotted
(see inset) as a function of Re. The inset shows a nearly
sudden change in flow behavior at the critical Reynolds number
of about 150. Different symbols correspond to marginally
different experimental conditions. The fluctuation energy
integrated across the wake width, obtained for a few Reynolds
numbers, also shows exponential decay; so, too, does the root-
mean-square velocity fluctuation in the direction y.
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FIG. 2. As the Reynolds number increases upward of ~150,
the length scale, velocity scale, and energy dissipation rate,
as well as the scaling exponent for mean-square circulation,
behave as shown, respectively, in (a)—-(d). All data are
obtained from PIV measurements. Detailed measurements for
Re > 1000 necessitated the use of a bigger cylinder, thus
changing (unfortunately) experimental conditions such as the
aspect ratio; they are, therefore, not included here. In general,
deviations from power laws do set in beyond Re = 1000. In
(d), A, = 2 would be a trivial value, and so only the departures
from that value would be of interest. Where explicitly not
marked, the uncertainty in the data is indicated to some degree
by the scatter; a few related issues of accuracy have been
explored in Ref. [25].

evaluated easily from the exponential decay illustrated in
Fig. 1 and can be shown to be rather small. The decay
rate for Re > 150 has been measured in several different
ways. First, the hot-wire data have been used to get the
time derivative of velocity, which itself was converted
to spatial derivative by the use of Taylor’s hypothesis,
and the dissipation was obtained using the assumption of
local isotropy [viz.,{(€) = 152{(du/dx)?)]. Second, the
PIV data were also used to obtain dissipation. While
the PIV data obviate the need for Taylor’s hypothesis,
the resolution of velocity measurements was not adequate,
and so (€) was obtained as follows. A crude estimate was
first obtained by calculating the velocity derivative from
the insufficiently resolved data. Assuming a universal
form of the dissipation spectrum [17], an assessment
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was made of the amount by which the dissipation was
underestimated due to insufficient resolution, and a new
estimate was obtained. The procedure was repeated once
more. The final dissipation estimates were comparable to
those obtained using good-resolution hot wires in the wind
tunnel and to those obtained from Kolmogorov’s %th law
[18]. Figure 2(c) suggests that the dissipation rate can be
fitted moderately well as

(e)D/UZ =~ 4 X 107 *(Re — 150)7%3, (5)

with an uncertainty in the exponent of the order =0.05.
Finally, we consider the scaling exponent A, of the
mean-square circulation around a box of side r, defined as

TP~ r, (©)
where the line integral
I fu-a @

is the circulation around a box of size ». The exponents
Ay (as well as higher-order moments) were measured

for a range of Reynolds numbers in Ref. [19]. Data in
Fig. 2(d) show that
Ay — 2 =7 X 1073(Re — 150)04° (8)

is a reasonable fit. (Note that the circulation scaling
exponent can be defined with less ambiguity than those
for structure functions; see Refs. [19] and [20].)

Note must be made of some unsatisfactory aspects of
the results just summarized. The length scale data are
vulnerable to several uncertainties, indicated partially by
the scatter: the difficulties in exercising precise control
on transitional wakes, large amounts of data needed to
compute the integrand in Eq. (2), the very definition of
the length scale when the covariance becomes negative for
large separation distances, and so forth. The numerical
values of the exponents show some dependence on the
precise value of the critical Reynolds number assumed.
While we made efforts to determine an optimal value
for the critical Reynolds number by requiring the best
power-law fits, we finally thought it better to determine
the critical Reynolds number independently (as in Fig. 1)
and retain that value throughout.

In conclusion, we have shown that near the critical
Reynolds number of ~150 in the cylinder wake, various
quantities of interest follow power laws over a nontrivial
Reynolds number range. Of particular interest is the
apparent divergence of a correlation length scale. This
feature is by no means unique to the wake and has already
been noted in two other flows [4,5]. As an additional
illustration, consider a jet of fluid exiting a circular orifice,
and fix attention on the flow at a distance of, say, one or two
orifice diameters. When the Reynolds number is small, the
flow rolls up in the form of vortex rings and the velocity
fluctuations are correlated over the entire azimuthal angle
of 27r, but the correlation diminishes as the Reynolds
number is increased because of the irregular appearance
of turbulence activity [21].
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It may well be true that the present observations do not
have a simple interpretation in terms of critical phenom-
ena. This issue will not be clear until an appropriate theory
based on the fluid equations has been advanced. We be-
lieve, however, that the present line of inquiry is useful at
least in the following context. The scaling exponents tra-
ditionally explored in the turbulence literature correspond
to high Reynolds numbers with Re = o assumed to be
the “critical point” [22]. However, all varieties of high-
Reynolds-number scaling have an upper cutoff at the so-
called integral length scale, which is closely related to the
correlation scale defined by Eq. (2). This cutoff scale, in
conjunction with an appropriate velocity scale, is respon-
sible for much of the turbulent transport. In fully devel-
oped turbulence, these are, in fact, the scales which con-
trol the rate of energy dissipation. A natural question to
ask, then, is: What sets these length and velocity scales?
If one views that they are related in some way to their
counterparts at the onset of turbulence, the question to ask
is:  How do the length and velocity scales near the onset
vary with the Reynolds number? This is precisely the is-
sue explored here.

To illustrate the usefulness of these measurements, note
by extrapolation of Eq. (8) that A, reaches the Kolmogorov
value of ; at a Reynolds number of about 2 X 10%. This
should be treated as a rough estimate for the asymptotic
Reynolds number for which circulation (and perhaps other
quantities as well) approach Kolmogorov characteristics.
It follows from Egs. (3) and (4) that u'L = 0.026UyD
at this Reynolds number. This should be compared with
the asymptotic result that u’L = 0.021UyD, obtained by
self-preservation analysis [23] in the wake. Further, at
this same Reynolds number, we obtain from Eqgs. (3)—(5)
that (e)L/u’> = 0.26, which should be compared with the
asymptotic result, obtained empirically, that (e)L/u"* =
0.4 for this flow [24]. We believe that the reasonable
agreement observed here is not fortuitous.
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Suri and David Olinger. Anurag Juneja did some data
processing. At various times, Gustavo Stolovitzky, Leslie
Smith, Ramamurti Shankar, Walter Goldburg, Detlef
Lohse, and Eric Siggia have made useful comments or
offered encouragement when the will to pursue this line of
inquiry was found flagging. The research was supported
by the Air Force Office of Scientific Research. I am
grateful to them all.
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