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An exact relation valid for fluid turbulence at high Reynolds numbers is that the third moment
of velocity increments scales linearly with the separation distance in the inertial range. Experiments

show that this holds true also for absolute values of velocity increments.

It is argued that inertial-

range intermittency is a plausible consequence of this observation, and a model supplementing these

considerations is provided.
PACS numbers: 47.27.—i, 05.45.4+b

In high-Reynolds-number turbulent flows, velocity fluc-
tuations that occur on scales small compared to the large
scale ¢, say, are presumed to possess universal proper-
ties. Kolmogorov’s 1941 phenomenology [1], denoted
by K41 for short, has provided an appealing framework
for understanding these universal properties. Since the
time of Landau’s famous remark [2], however, it has been
recognized that intermittency is one of the important in-
gredients missing in K41. Many experiments [3] have
confirmed the existence of intermittency of dissipative
scales characterized by the so-called Kolmogorov scale r.
and various phenomenological attempts [4,5] have been
made to describe dissipation-scale intermittency. How-
ever, the situation is less clear with respect to intermit-
tency in the inertial range (roughly the range of scales
between € and r.). As we shall discuss shortly, doubts
have been expressed recently about the very existence of
inertial range intermittency. Given its fundamental im-
portance, it seems desirable to settle this question in a
rigorous way. This Letter advances the issue to some de-
gree, though it falls short of the goal.

To understand the prevailing controversy over inertial-
range intermittency, consider the so-called longitudinal
structure functions defined as ((Av,)") = ((v(x + r) —
v(x)]"), where v(x) is the x component of velocity field,
r is measured along x, and »n is a positive integer. K41
requires [6] that

(Av)") = Cp(r(e*, ey

where (e) is the global average of e, the energy dissipation
rate per unit mass, C, are universal constants, and &, =
n/3. In contrast to K41, a variety of measurements [7,8]
has consistently shown that

>3 g=1, and & <n/3foralln>3. (2)
The difference (n/3 — &,) increases with n. While the
measurements fall short of the ideal in several ways, it
is generally agreed that the results (2) are correct. This
nontrivial scaling of high-order structure functions is the
strongest argument in favor of inertial-range intermit-
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tency. One interpretation of (2) follows from Obhukov’s
[9] procedure of replacing (e) in Eq. (1) by the local av-
erage €, given by €, = V™! [edV, where V is a ball of
radius r. Because of the intermittency of €, (") # (e)"
in general. Taking (€”) to be of the form (e)"(r/€)™#3,
where the w, are the (unknown) intermittency exponents,
Eq. (1) becomes {(Av,)") = C,{(€)"/3(r/€)"/3~#» consis-
tent with Eq. (2). This relation is a consequence also of
Kolmogorov’s refined similarity hypothesis [4,10].

For some time now, it has been argued [11] that € could
essentially represent an independently intermittent field
and that the K41 result for second-order structure function
could well be exact. In addition, there are also claims [12]
that the observed deviations from K41 could arise from
artifacts of finite Reynolds numbers, finite shear, vicinity
to solid boundaries, and so forth. Some recent work [13],
which replaces the Fourier sum for velocity by a finite
subset of wave vectors—thus allowing only restricted
interaction between Fourier amplitudes to occur—shows
that the scaling exponents in Fourier space are closely
given by K41. Within the realm of their validity, these
calculations cast doubts on the existence of intermittency
in the inertial range, or Kolmogorov’s refined similarity
hypotheses, or both.

It is difficult to dispel these doubts conclusively from
experiment alone: At the least, an extensive program of
measurements in very high-Reynolds-number flows under
various combinations of shear and boundary effects is
needed. It would be more effective if the issue can
be resolved by showing, if that is indeed the case,
that intermittency in the inertial range is a necessary
consequence of the Navier-Stokes equations. Perhaps
the only inertial-range result known to follow at high
Reynolds numbers from the Navier-Stokes equations is
the so-called Kolmogorov’s %th law [14] given by

(Av,)%) = =5¢e)r. (3)
This result [15] is obtained by (justifiably) dropping the
viscous term in the full equation valid for all scales
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r <« £. The analogous equation for passive scalars, which
can be found in [16], has been studied recently in some
detail in Ref. [18].

The question now is whether inertial-range intermit-
tency is contained in Eq. (3). Some preliminaries are in
order. First, denote the generalized structure functions as
Sy(r) = (lAv,|7) = C;v?(r/€){4, where g is a real num-
ber and v, is the root-mean-square velocity. It is clear that
even-order integer moments in Eq. (1) coincide with ¢,.
Experiments ([8]; see also Table I) show that &, = ¢, for
odd n and nearly coincide for n = 3 (i.e., {3 = &3 = 1).

Second, we shall also use the generalized sign-structure
functions defined as

Si(r) = (|Av,|*sgn{Av,}) = Cuf(r/0)%.  (4)

where sgn{x} =1if x >0, =0if x =0, and = —1 if
x < 0. Clearly, both the absolute value signs and the
sgn{x} function can be omitted for odd g.

Finally, define Av-(x,r) = 3[|Av,(x)| = Av,(x)] = 0,
and consider Av,(x) at the cutoff scale, r = r., where
velocity and vorticity fluctuations are smoothed out by
viscosity. It is clear that Av, (x) = d,v(x)r«, so that
Av,,(x) corresponds to a velocity derivative (same as vor-
ticity, in one dimension). Thus, Ad+(x) = Av.(x,r) =
%[IAU,,(x)I + Av, (x)] would be two distributions (non-
negative functions), representing positive and negative
parts of the d,v(x) process. We can therefore consider
separately the two distributions A¥+(x) instead of the dis-
tribution |9, v (x)].

Consider a unit interval and divide it into boxes
of size r’. The number of boxes is N = 1/r. De-
fine t,he measures of ith subinterval, u-(r') = (AD)™' X
fi:“ Ad+(x)dx. Here, we have used the fact that
(3,v) = 0, wl,1i0h means {(Av+) = (Av-) = (AD). Denot-
ing r'~! ffi“ AD+(x)dx by Av«(r"), we have, according
to [19],

(AD(r)7) = C(ADYI(r' /)~ 7PID 1 (5)

where D, are the generalized dimensions for positive and
negative parts of the process d,v(x).

Note that the two sets Ao+ = 0 (and Ad- = 0) and
Av_ =0 (and A9, = 0) do not intersect. Averaging

TABLE I. The odd-order scaling exponents for classical
structure functions and generalized structure functions. For a
discussion of the convergence of data and error estimates, see
Zubair [8] for where these numbers have been obtained. Al-
though the error bars on both ¢ and ¢ are substantial and in-
crease with the order of the moment, the two sets of exponents
are consistently different as shown.

Odd-order exponents

n §’l g"l
3 1.00 0.97
5 1.53 1.48
7 1.96 1.89
9 2.40 2.30

11 2.82 2.67
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over these two sets separately, we obtain the formula
(9.vl*sgn{a v}y = (ADL) = QAD)}r 7 (6)

Then, the use of Eq. (5) considered at r’ = r.. together
with Eq. (6), yields

,r*

~0-D, g 1)
ool sgnta.oh = @oyre| ¢; ()

¢
o ~(1=D, Mg~
-<(%) ]
(7)
This formula should yield (d,v) = 0 for g = 1, thus im-

plying that C;” = C;. However, it could give nontrivial
results for g # 1, e.g., for odd moments.

It is not possible to determine the relative magnitudes
of C; and C, in Eq. (7) for general g, but a plausible
assumption is that they are of the same order of magni-
tude. This assumption is tantamount to neglecting inter-
mittency in the energy-containing eddies of size £. We
shall assume their equality, but note that the conclusions
to follow are not sensitive to the assumption—at least for
high-order moments. It then follows that Eq. (7) vanishes
if Dq: = 1; it also vanishes if these two distributions have
identical multifractal structure, D; =D, # 1. Only if,
say, D, < D, = 1, can the first term on the right-hand
side of (7) be neglected, allowing us to write nontrivial
power laws for the moments as

(lo,vl4sgnfo, v}y = —C (A r 4 (r./ €)1 7P7,

()
If D; <D, =1, the first term in Eq. (7) will prevail
and the moments are again nontrivial. The implication
is that 9, v, which is dominated by one of the two terms
in Eq. (7), has nontrivial scaling given by the exponents
D, or D, . This is the essence of intermittency.

The physical meaning of this result can be explained
in the framework of a ramp model, e.g., Ref. [20]. If the
velocity field has ramplike structure (Fig. 1), its derivative
has the form depicted in Fig. 2. It is clear that we have
(d,v) = 0 while ((8,v)®) # 0. It is also obvious that
the negative part of the structure in Fig. 2 occupies less
volume than the positive. In other words, the negative
part is “more intermittent,” or its flatness factor is larger.
If the ramp is steep enough, then the dimensions D < I,
whereas D; = 1. In a statistical ensemble, this structure

=
<

FIG. 1. The ramp structure. The arrows indicate the direc-
tions of motion. The left part of the ramp is moving to the
right and the right part to the left, approaching the stagnation
point at the origin.
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FIG. 2. The derivative of the ramp.

presumably occurs more often than the “antiramp” for
which the motion is away from the steep part. In this
model, the term in Eq. (7) corresponding to D, should
prevail in the limit, thus accounting for the nonvanishing
of odd-order structure functions. In particular, the case
with ¢ = 3 accounts for nonvanishing skewness.

Using Eq. (6) with + instead of —, one obtains,
analogous to Eq. (7),

r\~0-P)a=D
Qo.l%) = woyre| o7 (%)

o \~1=D;)g=1)
+Cq_<?> :| ®

Again the first term can be neglected for D, < D, =1,
yielding an expression that coincides with (8). This might

explain the experimental fact (see Table II) that the ratio

_ K@l _
(ol =

for odd values of n, whereas, in principle, it could have
been much smaller than unity. Table II also shows that R
tends to unity for large n (although the approach is slow),
consistent with the physics of the ramp model. Note that
the expression (9) contains only one power law. This is
obvious for D = D, . Otherwise only the dominant term
prevails; for example, if D, < D, one would have

(9,017 = C (ADY r 9(r, /@)~ 7PI@ D (11)

We now replace (Ad)r, ! by (|a,vl|) in Eq. (11) and
note that

R 1, (10)

(oxvl) = (ve/O(re/O)". 12)

This defines the so-called cancellation exponent « [21].
In addition, we note that (|3, v|?) = Sq(r*)/rf and sup-

TABLE II. The ratio R [see Eq. (10)] for a typical scale in
the inertial range. This ratio approaches unity as the order of
the moment increases, but the approach is slow.

Ratio of moments
n R

0

0.17
0.35
0.49
0.59
0.63

=0 N W W

pose that there is only one range of scaling, correspond-
ing to the inertial range where Eq. (3) is fulfilled, and that
is 7« = r < €. Then, there is only one scaling that fits
Sq(6) = qu? on the one end and (11) and (12) on the
other [22]. This scaling is given by

Sq(r) = C;vi(r/€) 7<= (=Pa=D, (13)

an expression obtained in [23].
Similar calculations in regard to Eq. (8) yield
r )(l—x)q

(18w, 17 sgnav,}) = vi(

F\~1=Dg-D)
<[ (%)

—(1-D;)g—1)
_ c;(%) o ] (14)
Thus, again, in order to have nonvanishing (14)—or, in
particular, nonvanishing odd moments—one of the terms
on the right-hand side of Eq. (14) should prevail. This is
equivalent to the intermittency in either the positive or the
negative part of the structure function in the inertial range.
It was assumed earlier that Cq+ ~ C,; this detail was not
important for the estimation of (8) from Eq. (7). The
situation is different with Eq. (14), however. The ratio
r /€ is not necessarily small and approaches unity towards
the upper end of the inertial range. It implies that this
expression has poorer scaling, as r — ¢, in comparison
with generalized structure functions (13). The second
power law in (14) could also explain the depletion of odd-
order structure function exponents, see Table I. Indeed,
attempting a power law with a single exponent results in a
decrease of the slope due to the second term in Eq. (14).
We might now reiterate our arguments to support
the connection between inertial-range intermittency and
Kolmogorov’s gth law. We have shown that the nonzero
value of the generalized third-order structure function
implies that either negative or positive part of Av,
possesses scaling at all scales of the inertial range and
that the scaling exponents are nontrivial. In a formal
sense, this is intermittency. We have argued that this
picture is consistent with the nonzero values of the
skewness and the ramp model for turbulence structure.
The physical picture can be expanded as follows. The
ramp depicted in Fig. 1 could result from the steepening
of the velocity profile, analogous to the steepening of
a shock front. We may then say that in Fig. 1 the
two shocks [24] are moving in opposite directions to
meet at the origin, which is the stagnation point. It is
at the stagnation point that the steepening occurs. Not
only does the nonvanishing of the third-order structure
function imply turbulent cascade but it also implies the
presence of sharpening structures. In other words, along
with local interaction resulting in large eddies decaying
into smaller ones, the vortex structures are stretched out
and compressed into sheets and filaments (analogous to
the steepening of the front). This later decreases the
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FIG. 3. Formation of intermittent structures due to the inter-
action of the two fluid thick parabolic lines. This leads to the
formation of ramp structures in velocity distribution and sharp-
ened vorticity distribution.

dimensions of the turbulence or, equivalently, increases
the intermittency. A conjectural scenario of a filament
formation in incompressible flow, corresponding to the
formation of the ramp in Fig. 1, is depicted in Fig. 3. The
figure corresponds to two eddies which are approaching
each other. The front is steepened at the stagnation point
between them, and the occurrence of the large strain
rates near the stagnation point could produce intermittent
structures.
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These are the matching conditions for two ranges of
turbulence, inertial and viscous. Technically, the inertial
range does not reach r* but only up to a multiple of
it. This, however, makes no difference to the scaling
behavior of interest here and may only influence the
cutoff scale.
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