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In this paper some results are presented on the statistical properties of zero crossings of 
turbulent velocity fluctuations in boundary layers over a wide range of Reynolds numbers. The 
earlier finding that the probability density function (pdf) of the intervals between successive 
zero crossings of the streamwise velocity fluctuation u can be approximated by two exponentials, ,* 
each with its own characteristic scale, is confirmed. The cross-stream variation of these 
characteristic scales is investigated. One of these scales, corresponding to the large zero-crossing j 
intervals, is independent of the Reynolds number, while the other for the viscous-dominated 
small-scale crossings varies with as R:l”, where Rn is the Reynolds number based on the 
Taylor microscale, il. The pdf’s for the normal velocity component u and the fluctuating part of 
the Reynolds stress uu are essentially exponential over the whole range of zero-crossing scales, 
and each possesses just one characteristic scale. The mean and the standard deviation of the 
zero-crossing scales of u and u, when normalized by their respective Taylor microscales, are 
roughly unity and essentially independent of the cross-stream position. Similar data are also 
presented for the Reynolds stress fluctuations. A brief discussion of the results as well as an 
example of the application of the zero-crossing pdf are given. 

I. INTRODUCTION 

For a stationary random process u(t) with zero mean, 
the interval between two successive up or down crossings 
of its zero (to be called zero crossings henceforth) is a 
random variable. Let us denote this variable by 5. Much 
experimental work has been devoted to determining the 
statistical properties of g for turbulent signals in several 
flows. The most detailed work on zero crossings has oc- 
curred for velocity signals in the turbulent boundary 
layer. I-3 In these papers, the temporal variable 5 has been 
converted to a spatial variable via Taylor’s frozen-flow hy- 
pothesis (which assumes that turbulence convects with the 
mean velocity without distortion), and has been divided by 
the factor 27r. Let us denote the resulting zero-crossing 
variable by 6. The following results are known about c. 

(a) At all heights within the boundary layer,‘13 the 
mean value A of the zero-crossing variable g for the 
streamwise velocity fluctuation zf is approximately equal to 
the Taylor microscale, il. The Taylor microscale is defined 
by 

/ /A \ l/2 

where the angular brackets indicate time averages, and U is 
the time average velocity at the position under consider- 
ation; by definition, the fluctuation velocity u has zero 
mean. 

(b) The pdf of the zero crossings of u in the logarith- 
mic region of the turbulent boundary layer consists3 essen- 
tially of two exponentials, one of which is characterized by 
the wall variable V/U, and the other by the outer scale 6. 
Here, Y is the kinematic viscosity of the fluid, S is the 
boundary layer thickness, and U, is the friction velocity. It 
has been pointed out2*3 that a lognormal fit to the pdf is 
possible for small zero crossings, -0.5A’ < c--A < 0.5h’, 

where A’=((c-A)2)1’2 is the root-mean-square (rms) 
value off& but that the exponential models provide a better 
overall fit. 

If we accept this conclusion, the pdf of the variable 5 
for u can be written3 as 

p&3 =exp[ - (S-AVKA’I, (2) 

where it is known that the stretching factor K assumes two 
different values in the two different scale ranges, say KL for 
large values of f and KS for small values of c. 

The contributions of this note are the following. First, 
we cover an extensive Reynolds number range to confirm 
the earlier results that the zero-crossing length scale A for 
the streamwise velocity fluctuation u is approximately 
equal to ;1, and show additionally that the ratio A/A’ z 1. 
Similar results are obtained for the normal velocity fluctu- 
ations u, as well as for the fluctuating part of the kinematic 
Reynolds shear stress UU. Second, only limited data are 
available on the Reynolds-number variation of KL, and 
nothing at all is known about the Reynolds number vari- 
ation of KS. In this paper we examine the Reynolds num- 
ber variation of KS and KL over a wide range of Reynolds 
numbers, and determines their scaling behaviors. Finally, 
the results obtained here on the pdf’s of the zero crossings 
of the normal velocity component and of the Reynolds 
shear stress are also new. 

The significance of zero crossings has been discussed in 
Refs. l-3. The primary reason for our interest in the topic 
is that it provides a means for probing the distribution of 
length scales in a turbulent flow. A few additional points 
are worth noting. Figure 1 plots the average energy dissi- 
pation rate associated with various magnitudes of the ve- 
locity fluctuation U. The ordinate is normalized by the con- 
ventional average of the dissipation rate, so that the sum of 
the contributions over all possible values of u yields unity. 
The experimental conditions for the data of Fig. 1 will be 
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FIG. 1. The average value of the energy dissipation rate (measured under 
the hypothesis of local isotropy and Taylor’s frozen flow hypothesis), 
(E,), for various amplitudes of the streamwise velocity fluctuation, u. The 
velocity fluctuation is normalized by its rms value and the energy dissi- 
pation by its mean value, (E). The noteworthy feature of the plot is that 
the dissipation peaks around u=O. The boundary layer Reynolds number 
based on the momentum thickness is 3800 and yu/v= 110. 

discussed in Sec. II, but the essential details are noted in 
the caption. It is seen from Fig. 1 that the zeros of the 
velocity contribute significantly (though not entirely) to 
the energy dissipation rate. Now, from the definition of the 
fluctuating Reynolds stress, it is clear that it gets no con- 
tribution from the zero set of u (that is, the set of all zero 
crossings of u). Therefore, the zeros of the velocity signal 
constitute a part of turbulence dynamics that contributes 
most to the energy dissipation but nothing at all to the 
Reynolds stress. Second, there are several schemes4 that 
attempt to reconstruct a nonperiodic signal (in one and 
two dimensions) from the knowledge of its zero set, and so 
the information on the zero crossings of turbulence signals 
may well find its uses in this direction. Third, in a recent 
paper on drag reduction in pipe flows using riblets, Liu 
et aL5 showed that the maximum reduction in drag oc- 
curred when the spanwise spacing s of the riblets, nondi- 
mensionalized by u, and V, was between 11 and 16, and 
that this observed spacing corresponded well to the Taylor 
microscale in the spanwise direction of the fluctuating 
streamwise velocity near the wall, which, in turn, is closely 
related to the fluctuating skin friction, &/a~. From the 
result that the Taylor microscale is approximately equal to 
the mean zero-crossing scale, we interpret the Liu et al. 
result to mean that the drag reduction is largest when the 
spanwise spacing between riblets equals the mean zero- 
crossing scale. While more studies are required to substan- 
tiate this statement, this inference does not appear to be 
unreasonable because the properties of a random signal can 
be manipulated most easily through its zero-crossing scale. 
Finally, George6 points out that the power spectra of ve- 
locity fluctuations at various Reynolds numbers in grid 
turbulence can be collapsed over all wave numbers by us- 
ing the Taylor microscale. It appears that only the reinter- 
pretation of Taylor’s microscale as the mean zero-crossing 

scale helps provide some rationale for the spectral similar- 
ity claimed by George. 

These are sufficient reasons for taking a new look at the 
zero crossings of turbulent signals. In particular, we study 
the variation of the statistical properties of zero crossings 
over a wide range of Reynolds numbers, and provide an 
example showing how the pdf’s of zero crossings may be 
usefully employed. 

II. EXPERIMENTS 

The laboratory experiments were performed in a flat- 
plate boundary layer. The plate was mounted in a wind- 
tunnel of width 0.7 m and height 0.5 m. The distance 
between the test surface and the upper wall of the tunnel 
was 0.39 m, and the test section length was 2.5 m. The 
boundary layer was artificially thickened by placing strips 
of sandpaper and a circular rod at the leading edge of the 
plate. Measurements were taken at a station 1.7 m from the 
leading edge of the plate at tunnel speeds of 8.3 and 17.1 
m/set. For these conditions, it was verified that the bound- 
ary layer had a log-law region with the accepted 
constants.’ Measurements for the higher wind speed used a 
single hot-wire (0.6 mm length and 5 ,um diam), while 
those for the lower tunnel speed used a miniature X probe 
(0.5 mm length and 2.5 pm diam, with wire spacing of 0.3 
mm). The hot wires were operated on DANTEC constant- 
temperature anemometers, and the signals were linearized. 

The measurements in the atmosphere were taken at a 
height of 2 m above the roof of a four story building. One 
data segment of 800 000 points was acquired with a single 
wire. Another data segment of 250 000 points was acquired 
using an X probe ( 1.25 mm length and 5 pm diam, wire 
spacing 0.5 mm). The data were taken on different days, 
and the atmospheric turbulence levels for the X-wire data 
are estimated to be twice as strong as for the single wire 
segment. 

We also used the u data from Princeton, which were 
acquired in a wind tunnel of width 1.2 m and height be- 
tween 0.15 and 0.2 m. The test section was 5 m long and 
the flow speed was approximately 32 m/set. 

A summary of the conditions under which the data 
were acquired is given in Table I. The Taylor microscale 
was determined in all cases by the use of Eq. ( 1). 

Ill. RESULTS 

Figure 2(a) shows that the ratio of the average zero- 
crossing microscale A to the Taylor microscale d across 
the logarithmic region of the turbulent boundary layer at 
two Reynolds numbers is close to, though slightly higher 
than, unity. This result agrees well with those of Refs. 1 
and 3. The increase in the ratio A/;1 in the outer part of the 
boundary layer is attributed to the outer intermittency in 
this region. Far outside the boundary layer we expect the 
velocity signal to be dominated by noise, and we observe 
that A/;1 decreases toward unity in this region. These ob- 
servations agree well with Liepmann’s8 interpretation of 
Rice’s result’ that A =/z if u(t) and its time derivative zi (t) 
are both Gaussian and statistically independent. We also 
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TABLE I. Summary of experimental conditions. Abbreviations: na=not available; f,=sampling frequency; Ii =IuJv is sensor length I in units of v/u; 
Re=momentum thickness Reynolds number. Code for sensor type: 1, single wire and X, cross-wire probe. 

SOW% Re RA 
Sensor 

type 
Sensor 

length, If (kz, (mZec) 

Present 
(lab. data) 

R 
Present 
(atm. data) 

I, 

Ref. 3 
Princeton 

2300 100 X 22 15 0.33 

3800 150 1 22 20 0.67 
na 2cQO X 6 6 0.85 

-km 
loo0 1 40 10 0.50 
350 1 40 analog na 

13000 400 X 96 50 1.14 

note that Ylvisaker” proved that A=a for any continuous Figure 3 shows a typical probability density function of 
Gaussian signal u(t) with finite ,l. without invoking statis- the zero crossings of u at yf = 88 in the logarithmic region 
tical independence between u(t) and ri (t) . The somewhat of the turbulent boundary layer at the momentum thick- 
higher value of A/;1 toward the wall is attributable to large ness Reynolds number Ro=2300. Except for the smallest 
departures of the signal from Gaussianity. (It might be zero crossings, the pdf has two exponential regions. The 
added that high-probability events in u are governed, in a dotted line represents the region for the small-scale cross- 
rough sense, by considerations of the Central Limit Theo- ings, while the dashed line represents the large-scale cross- 
rem and that those zero crossings that correspond to such ings. The inverse slope of the log i. p&c) vs (c- A>/A’ 
high-probability events, more or less follow Gaussian re- plot in each of these regions gives log,( 10) XKS (or KL). 
sults, even though the overall pdf of u is non-Gaussian. It The products KsA’ and K,A’ are representative scales for 
takes large departures from Gaussianity to produce per- the two regions. The transition between the two regions is 
ceptible changes in zero-crossing scales. ) around unity in A’ units. 

Figure 2(b) shows the ratio of the rms zero-crossing 
scale A’ to the mean value A. This ratio is also close to 
unity across the turbulent boundary layer. Hence both the 
mean and the rms of the zero-crossing scale are close to the 
Taylor microscale. (Note that Fig. 2 uses the suffix u to 
indicate explictly that the quantities plotted there refer to 
the streamwise velocity component u. However, this prac- 
tice is not followed in the text because the meaning is 
always clear from the context.) 

Figures 4(a) and 4(b) show the variations of KS and 
KL for the pdf of zero crossings of u across the boundary 
layer at Ro=2300 and Rg=3800. In the viscous sublayer 
and the outer region the crossings are characterized by a 
unique stretching factor and is approximately unity. We 
interpret the sublayer results to mean that the pdf of the 
zero crossings in this region of intense dissipation scale 
uniquely on the Taylor microscale. The congruence toward 
the outer region simply reflects that the external stream 
does not possess any special length scale. In the large in- 
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FIG. 2. (a) Ratio of the zero-crossing scale to Taylor microscale across FIG. 3. Probability distribution function of the zero-crossing intervals of 
the turbulent boundary layer. (b) Ratio of rms of the zero-crossing scale u in the logarithmic region of the turbulent boundary layer at Ro=2300. 
to its mean, y+ =yu,/v, y being the distance from the wall. For clarity, exponential Ets are drawn through the data. 
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FIG. 4. Distribution of the stretching factors across the turbulent bound- 
ary layer at R8=23C0 and 3800: The normal distance y is expressed in 
wall variables in (a) and in outer variables in (b) . 

termediate region, as typified by Fig. 3, the stretching fac- 
tors KS and KL are different; typically, in the semilogarith- 
mic region these numbers are approximate constants 
characteristic of the layer. 

Figure 5 shows the Reynolds number effects on the 
characteristic values of the stretching factors KS and KL. 
We attempted to correlate the laboratory data against var- 
ious Reynolds numbers, and found that the best collapse 
was obtained when the microscale Reynolds number Rn 

I.0 I-------- 
2 0.5 73 
- L 
? .-+ _ 0.0 

I I (Jl,ll,l I ,,I,llJ 

102 103 104 

Loa, 

FIG. 5. Dependence of the stretching factors KS and KL on Reynolds 
number Rn .-,Ksa R,‘“;---, K,. Present data: laboratory boundary 
layer, 0, R,=2300; 0, Re=3800; atmospheric surface layer: X, 800 K 
points; V, 250 K points. Other data: 0, Sreenivasan et al. (1983), labo- 
ratory boundary layer, R6=4.9 X 104; +, Princeton data, laboratory 
boundary layer, Rg= 13 000. 
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FIG. 6. Mean properties of zero crossings of u in turbulent boundary 
layers. (a) Ratio of the mean zero-crossing scale to the corresponding 
Taylor microscale across the boundary layer. (b) Ratio of the rms zero- 
crossing scale to the mean value. 

(based on the root-mean-square u’ of the streamwise ve- 
locity and the Taylor microscale il) was used. In any case, 
the only other measurable Reynolds number for the atmo- 
spheric data is that based on the rms velocity and the 
integral scale L, but this Reynolds number is simply 
related” to R,. On the whole, therefore, we believe that 
the best choice is Rn. The stretching factor KL is clearly 
independent of Rjh and KS= Rhln. The characteristic 
length of the large-scale crossings should be independent of 
viscous effects, and hence KL should be independent of the 
Reynolds number. If the small crossings are dominated by 
viscous effects, we expect KS to be such that 

KS= q/A’ z r]/A z q//z a R, In, (3) 

as verified by the data. Here, 7 is the Kolmogorov scale. 
Notice that these simple fits to RL and KS intersect at an 
RA of about 50, which, according to Ref. 12, is the mini- 
mum Reynolds number required for the fully turbulent 
scaling to hold for the energy dissipation rate. The varia- 
tion of the stretching constant KS can also be expressed in 
terms of the Reynolds number u&v by noting that in the 
logarithmic regions of a high-Reynolds-number boundary 
layer,13 u’~2r.f~) and that US a/z/L aRh*. Thus we 
have, after trivial algebra, that 

KS a (u&v) -1’4. (4) 

We now extend our study to the velocity fluctuation v 
normal to the wall and to the Reynolds stress UV. We have 
confined this study to the turbulent boundary layer at 
Ro=2300 (primarily because the scale resolution of the X 
probe was deemed unacceptable at the higher Reynolds 
number). Figure 6(a) shows the ratio of the mean zero- 
crossing scale to the Taylor microscale for v. This ratio is 
also close to unity over most of the boundary layer. Figure 
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FIG. 7. Probability density function of the zero-crossing intervals in the 
logarithmic region of the turbulent boundary layer, Rs=2300; (a) for v 
and (b) for uv. 

6(b) shows that the ratio of the root-mean-square zero- 
crossing scale to its mean is approximately 0.7 for u. Recall 
that this ratio for u is approximately unity. The difference 
between the two cases is a reflection of differences in the 
pdf’s of u and u in the boundary layer; as a rough rule, v is 
farther from Gaussianity than U. 

Figures 7(a) and 7(b) show that the pdf’s of zero 
crossings of u and uu possess, unlike the case of U, more or 
less a single exponential. It is known14 that the peak loca- 
tion in the rms profile u’(y) of the transverse velocity fluc- 
tuation and in the mean profile (uv) of the Reynolds shear 
stress are strong functions of the Reynolds number U&V, 
while the peak in the rms profile u’(y) of the streamwise 
velocity fluctuation is essentially independent of u,.WY. 
Also, the u’ peak is sharp (i.e., it occurs over a narrow 
range in y+ units), while those for U’ and (uv) are rela- 
tively flat. This suggests that an interplay of small and 
large scales is important to u, while perhaps only the large 
scales are relevant for u and uu in the logarithmic and outer 
regions. This may well be reflected in the single exponential 
region in the zero crossings for v and uv. 

To show that the exponential distributions for the zero 
crossings for v and uv are, in fact, related to large crossings, 
we show in Fig. 8 a comparison of the stretching factor KL 
for the u and uv crossings with that for u. It is seen that 
they are all comparable, indicative of their common origin. 
Further, the KL values for u and uu are essentially inde- 
pendent of the distance from the wall. Recall that, in con- 

1.4 t -I 
t -I 1.2 0 000 0 

y” o 1.0 8 @ 
x x X 

0.8 

II/ IL*, Kyy;,iL2 , , ‘ ,,,jo3 
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FIG. 8. Comparison of the stretching factor K, for the zero crossings of 
v and uv with that for the u in the logarithmic region of the boundary 
layer. Here Rg=2300. 

trast, KL for u is approximately independent of the dis- 
tance normal to the wall only in the logarithmic region. 

From the closeness of the zero-crossing scale to the 
Taylor microscale and the known empirical data on the 
Taylor microscales for u and u in the logarithmic region of 
the boundary layer,” one can easily show that Au/AU~0.5. 
Figure 9 shows that this is approximately true. It also 
shows that the ratio of the mean zero-crossing scale for uu 
to A, is about 0.35. This is clearly related to the rms values 
of the Reynolds stress and its derivative, but, so far, we do 
not have a simple explanation for the measured numerical 
value. 
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FIG. 9. Ratio of mean zero-crossing scale of v and tlu to the mean zero- 
crossing scale for u in the logarithmic region of the boundary layer. 
Re=2300. 
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IV. CONCLUDING REMARKS 
It has been shown that the pdf of the zero-crossing 

intervals for the streamwise velocity fluctuation u can be 
approximated by two exponentials. The stretching expo- 
nent K, for the large scales is a constant independent of the 
Reynolds number, while KS varies according to the inverse 
half-power of the microscale Reynolds number. These facts 
together suggest that the variation of KS is related to vis- 
cous effects. The two stretching factors are comparable at 
microscale Reynolds numbers of the order 50, and become 
increasingly disparate with increasing Reynolds numbers. 

A rough interpretation of the two parts in the pdf of 
the zero crossings is as follows. The long intervals are a 
result of the passing of large-scale structures, each passing 
being independent of the next. The short intervals are due 
to the small-scale dissipative structures riding on the large 
structures. The passing of these small-scale structures is 
independent of the previous small-scale structure. This pic- 
ture suggests that both the small-scale and the large-scale 
crossings would be distributed exponentially. 

For the fluctuation velocity u and the Reynolds shear 
stress uu, the pdf of the zero-crossing intervals is essentially 
a single exponential, and is characterized by a unique 
stretching factor that is independent of the distance from 
the wall over most of the boundary layer thickness. Be- 
cause it is characteristic of large scales, it follows that this 
stretching factor must be essentially independent of the 
Reynolds number also. 

The mean zero-crossing scale for each signal is approx- 
imately equal to its Taylor microscale. The ratio of the 
mean zero-crossing scale to its rms value is approximately 
constant over most parts of the boundary layer. 

As remarked in the Introduction, we believe that the 
data on zero crossings are useful in a variety of contexts. 
An application in the context of Townsend’s attached eddy 
hypothesisi will now be described briefly. The hypothesis 
is that the boundary layer consists of a hierarchy of 
hairpin-type structures attached to the wall and inclined to 
the downstream direction at 45”. The mean velocity gradi- 
ent (mean spanwise vorticity) at any given distance y from 
the wall is assumed to get contributions primarily from a 
range of scales of the attached hairpins. The model has 
been substantially developed by Perry and collaborators 
(e.g., Ref. 17 and references to the previous work cited 
there). In the recent form of this development, the contri- 
bution to the mean spanwise vorticity w from one attached 
eddy of scale 1 is written as 

w= (uq-A)fCv/l>, (5) 

where f (y/l ) is a unique function of the distance from the 
wall normalized by the length scale 1. For a range of geo- 
metrically similar eddies between a length lmin and l,,,, 
the total contribution to the mean velocity gradient is 

w(lMl, (6) 

where p( 1) is the probability density function for the 
length scales. Townsend assumed p( 1) to be continuous 
and of the form 

p(l)=(M/l), (7) 

where M is a constant. It is easy to show that these as- 
sumptions lead to a region of constant turbulent stresses 
for l,, <y < l,,, . The constant M is determined by re- 
quiring that the velocity gradient in the logarithmic region 
be given by l/~, where K is the von K&man constant equal 
to about 0.41. The defect velocity proflle itself can also be 
computed from the same line of reasoning. 

Returning to zero crossings, recall the interpretation 
that their pdf is also the pdf of length scales. This would 
suggest replacing the form (7) guessed by Townsend by 
the exponential form found experimentally. All further cal- 
culations can now be carried through quite simply. l8 These 
calculations are of specialized interest and are not repeated 
here, but it suffices to say that the results from these cal- 
culations are comparable to those obtained by Perry et al. l7 
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