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ABSTRACT. Some remarks are made on two generic properties of turbulence, namely the
scaling of the energy dissipation rate and the small-scale intermittency. The discussion pays
cursory attention to the following question: Which properties, if any, of turbulence should
be shared by coupled lattice maps in order for their study to meaningfully relate to
turbulence? Brief remarks are also made on self-organized criticality vis-a-vis turbulence.

1. Introduction

Stimulating studies of coupled lattice maps were presented at the Workshop. However, it
remains unclear how relevant such studies are to fluid turbulence (or, more properly, to
turbulent flows). A question requiring urgent answer appears to be: What properties should
such maps possess in order that conclusions drawn from their study be useful in
turbulence? A second theme of the meeting was self-organized criticality, and the question
here is: Is there any evidence that this idea is appropriate to turbulent flows? I shall discuss
preliminary thoughts on these questions.

Different turbulent flows differ among themselves in various degrees of detail, and
there have in fact been assertions that quantitative universality common to them all may not
exist. If this is true, fluid turbulence acquires a status analogous to chemistry — where
individual compounds have to be studied in isolation. The mystique of universality in
turbulence is strong, especially among physicists and mathematicians; the Kolmogorov
scenario [1] is an ingeneous characterization of possible universality. (It may be of interest
to know that several articles in the July 1991 commemorative issue of the Proc. Roy. Soc.
Lond. assess and reinterpret Kolmogorov's hypotheses.)

A turbulent flow near its source will be affected in a complex way by conditions
specific to the manner of generating the flow. For example, the flow near a cylinder
depends on the state of the boundary layer on the cylinder, on whether or not the stagnation
point is fixed, on whether or not the surface of the cylinder is smooth, on how precisely the
boundary layer on the cylinder interacts with the primary vortex-shedding mode, and so
forth. A similar remark holds for the convection turbulence in a closed box heated from
below. These are but two examples of turbulent flows that are being 'stirred' constantly
and vigorously; the coupling among various scales of motion here could be quite strong. In
contrast, in the cylinder problem, if one moves 'sufficiently far away' from the body, it is
reasonable to think that the flow does not necessarily 'feel' all the details of the generation
mechanisms of turbulence; one then believes that, in this 'far field', all details of the



cylinder except the net momentum loss produced by it, or the drag force it experiences,
become irrelevant: It does not matter whether the cylinder is square or round or triangular in
cross-section and, by inference, whether the separation point is fixed or moving; similarly,
a jet flow far away from the nozzle remembers, to a good approximation, only its net
momentum. Such flows are said to be self-similar. There is some evidence that each given
class of flows has a unique self-similar state [2]; that is, all wakes of two-dimensional
objects have a common state to which they asymptotically tend, all round jets tend to a
unique state, etc. The issue is not completely settled [3] primarily because of the following
operational difficulty: How far downstream of the turbulence-producing body should be
considered 'sufficiently far downstream"?

An understanding of turbulence, as in other branches of physics, is best acquired by
examining a limiting situation. A limit traditionally used is that of the far field where there is
no need to take into account the many details of the stirring mechanism. The far field
turbulence may be called 'mature turbulence’ — as opposed to 'nascent turbulence' such as
obtains in the 'near field' of the cylinder or in the convection box. Conversely, the nascent
turbulence is more virile and offers extraordinary richness of nonlinear phenomena
typically absent in far-field situations.

The infinite Reynolds number limit is usually invoked also, chiefly because turbulence
generally occurs at high Reynolds numbers. Again, how high a Reynolds number is 'high
enough' is by no means obvious in practice, and the answer is clearly different for different
purposes.

One generally seeks 'universal' features of turbulent flows in the 'far-field' at 'very
high' Reynolds numbers. If some universal features do exist, it is clear that the coupled
maps seeking to explain turbulence should incorporate them in some way.

A premise in turbulence studies is that the average value of the rate of energy
dissipation remains finite even when the fluid viscosity tends to zero: Viscosity, while
being essential in bringing about dissipation, does not control the rate of dissipation of
turbulent energy (as long as one stays away from solid boundaries, shock waves and the
like). So far, this has not been proven on a formal basis, and the empirical evidence will be
examined shortly. Another feature of turbulence worth the attention is the intermittent
character of small scales, which seems to become increasingly conspicuous with increasing
Reynolds number. Other potentially generic features of turbulence are believed to be the
spectral energy transfer across the wave-number space, the interchange of energy among
different directions, etc. Something can be said about each of them, but I shall restrict
myself to the scaling of the energy dissipation and intermittency.

A cursory examination reveals that in many coupled maps studied to-date there is no
well-defined analog of turbulent energy and that, ipso facto, they cannot incorporate the
notion of an energy dissipation rate which is independent of viscosity. However, most
maps do possess some kind of intermittent behavior; whether or not this is important for
turbulent energetics will be discussed briefly.

2. Energy dissipation rate

If the average energy dissipation rate <e> is independent of viscosity, it -follows on
dimensional grounds that it should depend only on the length and velocity scales of the
energy-containing motion of turbulence. The appropriate length is the correlation length
scale L. (= fdr<u(x)u(x+r)>/<u2>, r being the separation distance in the direction of the
velocity component u). The velocity scale is u = (k/p)!/2 where k is twice the kinetic



energy of turbulence; p is the fluid density. The behavior of <e>L/u3 will be examined
below with respect to the microscale Reynolds number R, = uA/v, where v is the kinematic
viscosity and A is the Taylor microscale given by <e>/k = 10v/A2; X has no obvious
physical meaning except that it is nearly equal to the average distance between two
consecutive up (or down) zero-crossings of the fluctuating velocity signal [4]. One uses A
instead of L mainly because the former is intrinsic to a turbulence signal and therefore
useful for comparing diverse flows. The data to be examined here are obtained for
turbulence far downstream (but not too far downstream) of grids of bars across which there
is a steady uniform motion. The grids are in the form of a square mesh of either circular or
square rods mounted contiguously in two neighboring planes. The solidity of the grid (that
is the fraction of the projected solid area) varies between 0.34 and 0.44. The source of
turbulence is the grid itself; in the far field the turbulence is roughly homogeneous and
isotropic. Because of viscous action, there is a monotonic (and power-law) decay of the
turbulence energy as one moves away from the source in the far field. We have considered
here this flow partly because it is relatively simple, and partly because the dissipation rates
can be measured quite accurately without having to resort to approximations of local
isotropy. For a discussion of this and other details, see [5] and references cited there.

Figure 1 shows that <e>L/u3 is sensibly independent of the Reynolds number for Ry >
50. The trend for lower R, is consistent with expectations in the limit of zero Reynolds
number for which it can be shown [5] that
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Figure 1. The average energy dissipation rate scaled on the energy-containing motion of
turbulence, plotted against the microscale Reynolds number R, (which is proportional to
the square root of the Reynolds number based on L). The data are for biplane square-mesh
grids collected from a number of sources listed in [5]. The line to the left corresponds to
equation (1), and is valid in the limit Ry — 0.



<e>L/ud = (1/2)12 (15/Ry). (1)

The quantity u?/<e> is the time scale for energy dissipation while L/u is the time scale of
the energy transfer from the large to small scales, so that <e>L/u3 can be thought of as the
ratio of the latter to the former. That the ratio is about unity suggests that the dissipation is
intrinsically tied to the process of energy transfer across scales. Equivalently, <e>L/u? can
be thought of as the ratio of the average energy dissipation rate <e> to u2/(L/u), where the
latter is the rate at which energy is being removed from large scales. The ratio is unity for
R, > 50, which suggests that the large and the small scales become sensibly decoupled
beyond that Reynolds number. It is perhaps not a coincidence that, when the extent of the
—5/3 region in the power spectral density of the so-called longitudinal velocity component
is extrapolated backwards, it vanishes around an Ry = 50.

It would have been much more satisfactory had the Reynolds number extended to an
order of magnitude or so higher in figure 1 but, even so, the conclusion seems reasonably
clear that the energy dissipation rate remains finite as the Reynolds number tends to
infinity. We therefore think that coupled maps would do well to exhibit this property.

Unfortunately, this conclusion becomes clouded if one examines measurements from
broader class of flows. Even for grid turbulence, the precise value of the quantity <e>L/u?
even in the far field seems to depend on the type of the grid. It is not clear whether these
different values converge to a common number at extremely large Reynolds numbers. It is
particularly difficult to compare different classes of flows. Part of this difficulty is merely
operational: In all flows except the grid turbulence considered here, <e> cannot be
measured in full because of instrumentation limitations; and so, traditionally, one estimates
<e> by assuming local isotropy. While the assumption may be good for certain purposes,
the level of uncertainty in estimating <e> may be different in different flows and vary with
the flow Reynolds numbers; this may well be why a previous attempt [5] was quite
inconclusive. It is deplorable that the final word is yet to be said even on this most basic
feature of turbulence!

3. Intermittency

We shall now look at the spatial distribution of the energy dissipation rate. As is well
known, Kolmogorov [1] assumed that this distribution is statistically uniform in space. In
reality, € is strongly intermittent (figure 2); perhaps no other aspect of turbulence has
attracted so much attention in recent years. Intermittency is clearly an interesting facet of
turbulence and, by its mere presence, demands an explanation. But, how justified is the
enormous preoccupation with it if our goal is a practical understanding of turbulence — for
example, the energetics of turbulent flows?

We have shown earlier [6] that € can be described by a multifractal, and argued [7] that
the volume V occupied by regions contributing to the average value <e> of € tends to zero
as the Reynolds number approaches infinity. (This volume is formally that of the measure-
theoretic support of the measure €.) This implies that the original idea of Kolmogorov,
which envisages € to be statistically uniform, is incorrect in principle and that intermittency
should play a very vital role. This is especially so because, from a theorist's point of view,
the appropriate question to ask is: "What happens in the infinite Reynolds number limit?" If
the answer to this question becomes clear, the finite Reynolds number cases can perhaps be
understood as finite size effects. In this view, the right physics does not correspond to a
statistically uniform distribution of € (with implied only corrections for intermittency), but



something different; the appropriate first approximation is one in which the energy
dissipation occurs on a set of zero volume and is singular (though not strongly so). The
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Figure 2. The quantity (du/0x)?2 is a surrogate for the energy dissipation, €. It is computed
by measuring a velocity component u as a function of time t and treating the time derivative
as space derivative under the assumption that turbulence is being convected unchanged at a
constant velocity. This is the so-called Taylor's hypothesis. Also, (du/dx)? is but one
component of €. We do not fully understand the limitations of these approximations/
hypotheses in inferring the intermittent properties of € from those of (du/ox)2. However,
for a passive scalar mixed by turbulence, we have measured elsewhere (Prasad &
Sreenivasan, J. Fluid Mech. 216, 1-34, 1990) all the components of its dissipation
without the use of Taylor's hypothesis, and shown that similar approximations have no
serious effects on the scaling properties of the type dicussed here. The untested hope is that
the same conclusion will also hold for €.

issue of cascades and spectral transfer of energy will then have to be discarded; it is not
good physics to think of small ‘corrections' modifying an inherently incorrect picture. (The
fact that the intermittency 'corrections' are indeed small in practice should not diminish this
asymptotic point of view.)

In practice, however, the situation is much less sharp. Figure 3 shows that the volume
V goes to zero at a very slow rate. (One can work out this rate exactly for the binomial
multifractal model such as used in [6].) The figure is adapted from [7] but has been
redrawn under the assumption that the volume is unity at an R, of 50; a different
assumption would merely shift the curve parallel to itself (see figure 6 of [7]) but would not
change the qualitative conclusion. Note that it takes an Ry= O(1019) for the volume V to
reach a 'small enough' value of order 0.1. Such high Reynolds numbers are never found in
practice — not even in the outer convection zone in the Sun. In geophysical flows, one



typically observes microscale Reynolds numbers ranging between several thousands to
(perhaps) several ten thousands. The highest Reynolds number measurements we are
aware of correspond to an Ry = O(104) for which V = 0.5. For most flows on Earth, V is
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Figure 3. The volume V occupied by &,, the part of € that contributes to the mean value <e>
of &. The circles are not experimental data, but computed according to the multifractal data
obtained in [6]. For details of how the curve was obtained, and of what is involved in this
interpretation, see [7]. The curve is drawn by adjusting (essentially arbitrarily) the volume
to be unity at an R; of 50.

larger and closer to unity. One might say that the dissipation (in so far as its average value
is concerned) is approximately space-filling and that, in practice, Kolmogorov's original
assumption is not a bad representation.

In fact, this argument can be made somewhat stronger. It can be shown [8] that, while
the energy dissipation is highly intermittent and consists of huge spikes (see figure 2), €,,
the part of € that contributes most to its average value is not too spiky; in fact, € = €,. The
basis for this conclusion is simply that, asymptotically, all the contribution to the average
value of a multifractal measure comes from the set for which f = o, where f(o) is its
multifractal spectrum. From measurement [6], this occurs for € when f = ¢« = 2.87, which
is not far from 3. Thus, €, is only marginally singular and the set on which it lives is only
marginally non-space- flllmg

The conclusion, then, is that for most practical Reynolds numbers, a non- -intermittent
energy distribution is not a bad approximation, and the influence of deviations from this
approximation on the energy dynamics is essentially small.

4. Do turbulent flows organize themselves to be at a 'critical' state?

An old idea in turbulence literature (see, for example, [9]) is that fully turbulent flows may
be marginally stable; that, in some sense, they are always on the verge of being unstable or
‘critical’. What is marginally stable is a suitably coarse-grained version of the real flow; the
'critical' Reynolds number of the latter, with the fluid viscosity replaced by a renormalized
eddy viscosity, is the same as that of the relevant laminar state. The large structures are then



viewed to result from the instability of this renormalized flow. This last-mentioned idea has
been expressed explicitly in [10], although some version of this view appears to have been
held by several others.

A more detailed version of self-organization of a turbulent flow is due to Malkus and
Smith [11]. They investigate whether the observed turbulent state is the result of optimizing
a certain functional of the flow properties, and indeed seem to have discovered one such for
the plane Couette flow as well as the plane Poiseuille flow. The physical reasons for why
their functional is the appropriate one is not fully understood.

5. Concluding remarks

Are there universal features shared by all turbulent flows at all high Reynolds numbers?
The definitive answer remains elusive. Yet, in some restricted but practical sense, some
degree of universality is manifest in turbulence. See, for example, [12]. It is therefore
useful for some coupled maps to exhibit such 'universal' features. Preliminary remarks
expanding this view have been made here. Unfortunately, a more serious effort will have to
wait another occasion.
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* It is embarrassing to refer to my own work so much, and I beg the reader's indulgence.
My excuse is that this is an informal paper.



