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Abstract. A scalar interface is defined as the surface separating the
scalar-marked regions of a turbulent flow from the rest. The prob-
lem of determining the two-dimensional intersections of scalar in-
terfaces is examined, taking as a specific example digital images of
an axisymmetric jet visualized by laser-induced fluorescence. The
usefulness of gradient and Laplacian techniques for this purpose is
assessed, and it is shown that setting a proper threshold on the pixel
intensity works well if the signal/noise ratio is high. Two methods
of determining the proper threshold are presented, and the results
are discussed. As one application of the technique, the fractal di-
mension of the scalar interface is calculated.

1 Introduction

It is of considerable interest to be able to define and deter-
mine the vorticity interface, that is the surface separating
turbulent regions in a fluid flow from the non-turbulent
ones. Similarly, scalar interfaces, defined as surfaces sepa-
rating the scalar-marked regions from the rest, are also of
interest. Two dimensional sections of scalar interfaces — to
be called the boundary in the following — have been a central
feature of our earlier work (Sreenivasan and Meneveau
1986; Sreenivasan and Prasad 1988) on the determination of
the fractal dimension of the interface. The basis of this
work is the ability to determine properly the boundary in
digital images of the flow, and it is in this context that the
present problem arose. We examine here the determination
of the boundary in two-dimensional digital images of scalar-
marked regions in turbulent jets visualized by laser-induced
{luorescence.

Although the problem in this form has not been ad-
dressed explicitly before, the equivalent question has been
faced for a long time in the determination of outer layer
intermittency in hot or cold wire records, especially for con-
ditional measurements. Many different techniques have
been used to distinguish turbulent regions from the non-
turbulent ones. A review can be found, among other places,
in Bradshaw and Murlis (1973), Antonia and Atkinson
(1974), Kovasznay and Ali (1974), Antonia etal. (1975),
Hedley and Keffer (1974), and Antonia (1981). The most

relevant comparison here is with the work involving passive
scalars typified by Kovasznay and Ali (1974) and Antonia
et al. (1975). Kovasznay and Ali not only used a threshold
on the temperature signal to determine the interface, but
also resorted to the so-called hold-time, according to which
a region is not considered turbulent unless it spans a certain
(arbitrarily set) hold-time. Setting a proper hold-time is very
difficult, and a unique value that is satisfactory in all con-
texts is unlikely to exist. Its precise value is not very impor-
tant for determining gross features such as the intermittency
factor (that is, the fraction of time the flow is turbulent), but
its effect on small scale features could be quite profound.
Antonia et al. (1975) used a threshold without a hold-time,
but this led to some difficulties in discriminating small tur-
bulent amplitudes against spurious noise in the non-turbu-
lent regions. Sunyach and Mathieu (1969) used a threshold
on the square of the temperature gradient to overcome this
problem, but this reintroduces the need for a hold-time.

It should be quite clear from this necessarily brief discus-
sion that there are several problems in properly discrimi-
nating turbulent regions in hot and cold wire signals (rom
the non-turbulent ones, and it can be expected that similar
problems abound in two-dimensional sections. Determining
the boundary in two-dimensional images is similar in several
respects to edge detection, which is a well-understood proce-
dure (e.g., Castleman 1979; Rosenfeld and Kak 1982) when
the boundaries are sharp. This not being the case in flow
visualization pictures, some further considerations are need-
ed. This is the subject of this paper.

2 Experimental set-up

Two-dimensjonal laser-induced fluorescence visualizations
of turbulent jets in water are considered here. Briefly, the jet
is produced by allowing filtered water from a well-contoured
nozzle of circular cross-section (diameter 12 mm) to flow
into a tank of still filtered water (tank size: 80 cm square,
90 cm- high). The jet was made visible by mixing a small
amount {(on the order of 10 ppm) of a fluorescent dye (so-
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dium fluorescein) into the nozzle fluid, and exciting fluores-
cence by illuminating a two-dimensional section of the flow
with a sheet of laser radiation produced from a Nd: YAG
pulsed laser with a 10 ns pulse width (small enough to freeze
the fluid motion) and a maximum power density of 2 x 107
Js™ 7 per pulse. The laser sheet had a thickness of approxi-
mately 250 pm, as measured using a linear photodiode ar-
ray. This being on the order of the estimated Kolmogorov
scale (the smallest dynamical scale in the flow), all convolu-
tions of that order have been resolved. (The high Schmidt
number of the dye implies that the smallest concentration
scales are, however, not resolved.) The jet region, extending
from § to 24 nozzle diameters, was imaged on to a CCD
camera with a 1,300 (vertical) x 1,000 (horizontal) pixel ar-
ray, yielding a resolution of 150 pm?. Orthogonal sections at
different streamwise stations were also obtained.

# To make sure that fluorescence intensity was directly pro-
portional to the concentration of the jet fluid, care was taken
that fluorescence was not saturated. This was ascertained,
for example, by increasing the dye concentration by a factor
of two and observing that the maximum level of intensity
also increased by a factor of two. The stray light effects were
reduced by using a fresh tank of water for each experimental
run lasting no more than necessary for obtaining an image
in the steady state of the flow, and by subtracting the back-
ground intensity (without laser sheet) from each image. Cor-
rections for nonuniformities due to optical effects and in the
laser sheet illumination were made by normalizing each
pixel intensity with the corresponding intensity obtained by
dyeing the tank fluid uniformly (with no jet running), and
illuminating it with the laser sheet.

Figure 1a and b shows typical realizations of the axial as
well as the orthogonal jet sections. Our interest in these
two-dimensional images is in determining as faithfully as
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Fig. 1a and b. Two dimensional sections of an
axisymmetric water jet visualized by laser in-
duced fluorescence: a axial and b orthogonal,
x/D =21; the two pictures do not correspond
to the same instant

possible the boundary separating the scalar-mixed areas (the
bright regions) from the background.

3 Interface determination

Gradient and Laplacian operators of two-dimensional
images are often used to provide edge enhancement (e.g.,
Rosenfeld and Kak 1982). In the context of Fig. 1, the prin-
ciple consists in computing the gradient or the Laplacian of
the pixel intensity. If the intensity change across the edges
is sharp (as would be the case if the pixel intensity is zero
within some regions and large in others), this method high-
lights edges and has been used quite extensively. However,
the intensity in actual fluid experiments is not a constant
varying between two fixed values, and this leads to compli-
cations. We have found that it takes only moderately intense
fluctuations for the squared-gradient or the Laplacian of the
pixel intensity to introduce false edges.

The problem is illustrated in Fig. 2 by taking a line inter-
section of the pixel intensity across the jet. The square of its
gradient is shown in Fig. 3. It is clear that isolating the
boundary of the mixed fluid region is not obvious. While the
intensity profile (Fig. 2) shows that the region between
pixels 500 and 850 is one region that corresponds to the jet
fluid in this profile, the squared gradient operation (Fig. 3)
does not show this fact clearly. In fact, if large values of the
gradient square are taken to correspond to interfaces, one is
forced to conclude that interfaces exist at pixels 750 and 850,
implying that the in-between region corresponds to the un-
mixed tank fluid. A glance at Fig. 2 clearly shows that this
is not the case. This problem can no doubt be handled in an
ad hoc manner by using a quantity equivalent in spirit to the
hold-time, but it should be clear that the arbitrariness in-
volved in this procedure cannot always be justified.
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Fig. 2. The pixel intensity profile corresponding to one of the rows
of the image shown in Fig. 1
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Fig. 3. Square of the gradient of the intensity profile shown in

Fig. 2

As remarked already, the Laplacian is also used for edge
detection. Again due to the large changes of intensity within
the mixed regions the interface is not clearly apparent. Our
experience is also that techniques based on spatial filtering
(e.g., Marr and Hildreth 1980; Canny 1986) have the prob-
lem of smoothing the small scale convolutions which are
very important in our considerations.

Looking at the intensity profile of Fig. 2, and the image
of the flow (Fig. 1), itis fairly obvious that the pixel intensity
is large for regions inside the jet and small for regions out-

side the jet. From such an intuitive feel comes the idea of

using a threshold on the pixel intensity as a means of deter-
mining the boundary. The pixel intensity in a two-dimen-
sional image such as Fig. 1 is proportional to the concen-
tration of the jet fluid. For a brief discussion of this point
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Fig. 4. Histogram ol intensities calculated from the image shown in
Fig. 1a; the ordinate is truncated at a pixel count of 5,000 to display
clearly regions of higher intensity; the bimodal distribution has a
local minimum at pixel intensity of 585

Fig. 5. Computer generated interface (marked by white) of the jet
scction of Fig. 1a; the interface was generated using the threshold
determined from Fig. 4

and relevant references sce e.g. Dimotakis et al. (1983). A
threshold that generates a boundary that circumscribes all
the bright areas of the image (Fig. 1) may be chosen by
trying a series of different thresholds until the most satisfac-
tory one is found. This method is not new and has been used
successfully for data compaction of large images (e.g., Hes-
selink 1988), but it has the disadvantage of being subjective.
Methods of rendering this procedure somewhat objective
are now considered.
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Fig. 6. Two-dimensional laser-induced fluorescence visualization of
a plane section of the jet laken one diameter off-axis
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Fig. 7. Flistogram of intensities calculated from the image shown in
Fig. 6; the ordinate is truncated at a pixel count of 5,000 to display
with clarity regions of higher intensity; note that the peaks have
merged into one making it impossible to determine the correct
threshold by identifying a local minimum

It is clear from Fig. 1 that it contains primarily bright
and dark regions, indicating that a histogram of intensities
over the entire image could be bimodal (e.g., Rosenfeld and
Kak 1982). The peak at the low intensity would correspond
to the tank fluid, and that at the high intensity to the jet
fluid. Of course, it is to be expected that both peaks would
be broadened, the lower one by convolution with back-
ground noise and the higher one because of the shades of
grey in the mixed fluid, but if a local minimum between the
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Fig. 8. Thresholded average intensity calculated from the image
shown in Fig. 6; note that the slope of the curve changes at a
threshold of about 225

two maxima exists, it could then be a possible threshold.
This idea can be made more formal following the general
scheme proposed by Bilger et al. (1977) (see also Sreenivasan
et al. 1978) for outer layer intermittency determination but
the result is effectively the same.

Figure 4 shows the histogram of intensities calculated
from the image in Fig. 1a. The distribution is sufficiently
bimodal in character that the threshold corresponding to the
local minimum can be determined unambiguously and ap-
plied to the jet. Figure 5 shows that this threshold is ade-
quate. This method was used for several images, and in each
case where bimodality is present, it worked well without
need for further qualification.

However, histograms of pixel intensity are not always
bimodal. Figure 6 shows a visualization of a plane in the
axisymmetric jet that is 1 diameter off-axis. It is fairly clear
that the darker regions dominate the image, as compared to
Fig. 1. The histogram of intensities calculated from this
image is shown in Fig. 7. The bright part of the image is a
smaller fraction of the entire jet, and the peak in the histo-
gram corresponding to the jet fluid is much smaller than that
for the tank fluid. The histogram is not unambiguously
bimodal as in Fig. 4. In such cases the threshold can be
determined in an objective manner by a different technique
consisting of computing the thresholded average intensity
(that is, the average intensity over the entire image calcu-
lated using only those pixels of intensity above a set thresh-
old) as a function of the threshold. Figure 8 shows this
thresholded average intensity curve for the image of Fig. 6.
The curve can be seen to have two slopes, with the change
occurring at a threshold of 225. This threshold may be ob-
tained numerically by finding the zero crossing of the La-
placian of the thresholded average intensity curve. Figure 9,
which marks the boundary computed using this procedure,
shows that this is indeed the appropriate threshold.
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Fig. 9. Computer generated interface (marked white) of the jet sec-
tion shown in Fig. 6; the interface was generated using the threshold
found from the slope change of the thresholded average intensity
curve of Fig. 8
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Fig. 10. Log-log plot of the number of boxes N (&) containing the
boundary vs the size of the box & from the straight line portion of
the graph the fractal dimension is found to be 1.36

4 Fractal dimension of interfaces

As already remarked, one of our reasons for marking the
boundary is the calculation of the fractal dimension (Man-
delbrot 1983) of the interface. The reason for expecting the
interface to be a fractal is that it is convoluted and fragment-
ed over a wide range of self-similar scales. A primary atiri-
bute of fractals is the fractal dimension. The fractal dimen-
sion of the surface is rather simply related to that of the
boundary in two-dimensional sections if the latter is inde-
pendent of the orientation of the intersecting plane (Man-
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Fig. 11. Histogram of the inferred fractal dimension of the interface
obtained from 70 visualizations in sections shown in Fig. 1a and b;
the mean value is 2.36+0.03

delbrot 1983, and references cited there): the dimension of
the boundary in intersections is one less than that of the
surface itself.

The algorithm for computing the fractal dimension has
been described elsewhere (e.g., Sreenivasan and Meneveau
1986), and is only briefly outlined here. The entire image is
covered with boxes of a given size ¢, and the number of
boxes that contain the boundary N (g) is counted. The pro-
cedure is repeated for many different values of ¢. The num-
ber of boxes containing the interface in general increases
with increasing resolution, following a power law N(g) ~
¢, where D is the fractal dimension of the boundary. The
value of D as determined from the negative slope of a log-log
plot of N (&) vs & (a typical one is shown in Fig.10) turns out
to be 1.36. Orthogonal sections also yielded 1.36 within the
experimental error, showing the independence of the result
on the orientation of the intersecting plane. Figure11 shows
a histogram of the inferred fractal dimension of the interface
obtained from 70 visualizations in two orthogonal direc-
tions. The mean value from this histogram was found to be
2.36+0.03.

Another measure of the fractal dimension can be ob-
tained from line intersections of the surface. In this case
the dimension of the set of points where the line intersects
the surface is 2 less than the dimension of the surface. The
dimension of the surface determined from such intersections
was also found to be 2.36, within experimental error.

5 Summary and discussion

It has been shown here that setting a proper threshold pro-
vides an adequate means for marking the scalar interface in
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two-dimensional digital images of a turbulent flow. This
threshold can be determined by one of two methods de-
scribed in the text: Where the histogram of the pixel intensity
is essentially bimodal, the threshold corresponding to the
local minimum is the appropriate one, while in all other
cases the one corresponding to the change in slope of the
thresholded average intensity curve provides an adequate
value. The use of the gradient and Laplacian operators,
which intuitively can be thought of as sharpening the edges,
do not work well primarily because of the large intensity
variations within the scalar-marked region itself. To make
these methods work, introduction of artificial parameters
akin to the hold-time in one-dimensional time cuts becomes
necessary.

The threshold determination becomes increasingly uncer-
tain with increasing background noise level. Since it was
shown above that it can be determined unambiguously for
images obtained in the present system, it is helpful to pro-
vide an estimate of its overall noise level as a guide to what
may be considered tolerable. Noise in instrumentation

systems such as the one used here comes from a number of

sources such as stray light scattered by particles in the am-
bient tank fluid (even though minimized by the use of an
optical filter as well as several filters for tank water) and
finite digital resolution both of pixel size and intensity. A
direct and accurate estimate of the effective noise level is
difficult. Here, it is estimated according to the procedure set
forth by Bilger etal. (1977) in the context of cold wire
signals.

Itis clear that the histogram peak in Fig. 4 corresponding
to the background intensity would be a Dirac delta function
in the total absence of noise, but in practice it acquires a
finite width by virtue of convolution with the superimposed
noise. Bilger ctal. showed that the peak region could be
fitted by a Gaussian whose standard deviation would be a
measure of the noise level. In the present example, it was
indeed possible to fit a Gaussian roughly to this peak with
a standard.deviation of about 65 in the same units in which
the maximum variability in the pixel intensity is 4,096. This
gives a noise/signal ratio of about 1.3%. This noise level is
not small compared to that attained in many cold wire
signals. It is therefore believed that, if anything, the methods
proposed here for choosing the threshold must work better
in the cold wire records of temperature fluctuations in
heated turbulent flows.
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