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A procedure for obtaining f(«) directly from the scaling of histograms of multifractal measures is presented, and is applied to
several measures arising in dynamical systems and fully developed turbulence. The method works well when the scaling range is
large, and useful statistical information on iso-« sets such as lacunarity can be obtained. However, if the available scaling range is
small, corrections of second order become importance and bias the f(«) curve obtained directly.

Multifractal measures can be characterized [1,2]
by the so-called “generalized dimensions” D, (re-
cently identified with a critical dimension [3]), or
by the f(«) distribution, the two being related via
a Legendre transform [4,5]. In most cases, f(«) can
be identified with a fractal dimension [4,5], and has
been used for characterizing multifractal measures
in a variety of applications, such as dynamical sys-
tems [5], onset of chaos in fluid flows [6,7], de-
veloping and fully developed turbulence [ 1,4,8-13],
growth models [14], and random resistor networks
[15]. Typically, if p is the measure in a box of size
r, the scaling of the gth “cumulant” of p with the box
size r involves the exponents D, according to

S i~ (r/ L) (1)

L being some outer length scale of the problem. Al-
ternatively, one can define [16] a Holder exponent
o as a measure of the local singularity strength by

p~(r/L)". (2)

In addition, since the set of points where « has val-
ues within a band do around « is assumed to have
a fractal dimension f(«) [4,5], one can write that
the number of boxes of size r that contain values of
o in that range scale according to

N(a)~p(a)(r/L) " da . (3)

The two sets of exponents («, f(«)) and (g, D,) are
related by

a=§&[<qw1)Dq], (42)

fla)y=qa~(g=1)D,. (4b)

Recently [9-11] these ideas have been applied to
describe the field of turbulent energy dissipation in
physical space; there p is identified with the fraction
of turbulent energy dissipation contained in a box of
size r. Then f(«) denotes the fractal dimension of
the iso-« set of the dissipation field. Assuming that
the distribution in physical space of the turbulent en-
ergy dissipation rate ¢ is related to the near-singu-
larities of the Navier—-Stokes equations, or to the sin-
gularities of the Euler equations modified benignly
by viscosity [11,16], one might say that « is the
strength of these singularities, with f(«) describing
their measure. A similar description has been used
for the dissipation of passive scalar fluctuations
[12,13].

A question that arises when analyzing experimen-
tal or numerical data is whether to obtain f(«) by
directly measuring the scaling exponents « and f(«),
or indirectly by using an intermediate step requiring
the determination of the exponents D, The f(«)
curve in the latter case is obtained via the transfor-
mations (4a), (4b). We feel that this question de-
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serves some elaboration in view of the fact that the
intermediate step involving D/’s is usually justified
by merely stating that they “smooth” the data [6].
Such smoothing effects may have unknown conse-
quences [3] and deserve careful analysis.

The idea of measuring « and f( ) using egs. (2)
and (3) directly as equalities (therefore: o=
log,/.(p) and f(a)=—log, [p(e)N(a)da]) has
been used on several occasions [17,18]. In a recent
paper, Arneodo et al. [19] covered the Hénon at-
tractor with boxes of three different sizes and fitted
numerically pre-exponential constants inegs. (2) and
(3) (with the assumption that they are independent
of «¢) in order obtain the f () curve. These methods
present difficulties when analyzing experimental or
numerical data where cut-offs terminate the power-
laws at length-scales that are not necessarily known
a priori, when there are oscillations around power-
laws [20], or when the pre-exponential terms de-
pend on «.

In this note we briefly present a method for meas-
uring [(«) directly that does not suffer from the
problems mentioned above, and that is therefore ap-
plicable in principle for analyzing experimental or
numerical data.

In order to extract f(«a) directly from a multi-
fractal measure using the box-counting algorithm, the
measure is divided into disjoint boxes of size ry. The
procedure outlined below will be repeated for r Qif-
ferent box-sizes, and therefore the box-size ry 18 1n-
dexed with k=1,2,..., #,. Now one defines the quan-
tity X as the logarithm of the total measure p
contained in each box,

X=log(p), (5)

which varies from box to box. For a given box size
re. let X assume values that fluctuate between
X)) and Xoax (1) Tt 1s easy to see that if one
plots the different values of X as a function of
log(r:/ L), the slope of the graph will correspond to
Q. Similarly, the slope of X, versus log(r/L)
corresponds to (. In order to obtain intermediate
values of «, the interval [ Xumin, Xoax ] is discretized
into n pieces of equal length AX (each segment 1s la-
beled with an integer index i=1,2,..., 1,88 well as with
the index k which indicates the size of the box-size
ro). Accordingly, plots of X, versus log (/L) (these
plots consisting of n, points with k=1,2,..., n,) will
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yield slopes «; which are intermediate between Qmin
and Qnax-

In order to obtain the exponent f(«;) one con-
structs raw histograms of the different values of X, «.
Suppose that one measures N(X.)AX, which is the
number of boxes of size g such that the variable X
takes on a value in the interval AX around X, ;. The
relation between N(X) and N(a) is

N(a)=— SN (6)

where the negative sign appears because X is a de-
creasing function of . For a fixed value of Ax, one
sees that N(a) is proportional 10 N(X) AX. If eq.
(3) is correct, the slope of graphs of log[ N (X)) AX]
versus log(r¢) should be —~f(a;). Again, these graphs
consist of #, points for k=1,2,.., n,. However, when
doing so, the values of () systematically exceed
the theoretically known f(c) (by as much as 10%
for measures having a scaling range of about 4 dec-
ades), converging only very slowly to the asymptotic
f(a) curve. The discrepancy can be explained by
analyzing more carefully the ansatz (3). As recog-
nized by van de Water and Schram [21], the nor-
malization of the total measure requires that

j Cp(e) (r/L)* " da=1, (7)

where (' is a normalization constant that does not
depend on «. The use of Laplace’s method (special
case of the steepest descent method ) to evaluate this
integral in the limit of small r/ L at the dominant term
(say at e=qv;) gives

CColay) [In(L/r)]7'"
) (1= C () [In(L/P)]~ )
% (r/ Ly =" =1, (8)

where the coefficients Co() and C,(«,) depend
on the functions p(«), f(a) and some of their higher
derivatives evaluated at cv;. Since ¢ =f(c,), wecan
obtain C as a function of In(L/r) and «, from eq.
(8). Therefore, the prefactor in eq. (3) has to de-
pend on In(L/r), and eq. (3) should be rewritten as

N(a) da~ [In(L/r)]'?
)1+ C () [In(L/1)]7 ]
w (r/L)~"® dac. (9)
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In this way, the prefactors depending on In{(L/r) get
cancelled when performing the integration that nor-
malizes the measure, and the term in [In(L/r)]'/?
cancels when performing the integration that leads
to the Legendre transforms (4). For sufficiently small
values of r/L, one can neglect higher order terms in
eq. (9) and write for small AX that

NX)Y | AX|=N(o) Ax
~ [ (L/F 2/ L)~ At (10)

In view of this, one may now argue that f(c)
should be measured from plots of log{N{X)AX
X [In(L/r)17"2 versus log(r/L). Note however
that the outer cut-off L now enters the expression for
N(«)de in such a way that it is no longer a simple
multiplicative prefactor, and it does affect the slope
of the log-log plots. Since one does not necessarily
know the exact value of L a priori, one needs an ad-
ditional expression for the prefactor In(L/r). From
eqs. (2) and (5) it follows that

AX/Aoc=log(r/L), (1)

meaning that | AX| is proportional to In(L/r) for a
fixed value of Aw. Since AX is measured while ob-
taining the histograms, one can use the fact that the
correction factor, from (10) and (11), is propor-
tional to |AX|!/*. The measured number of occur-
rences N(X)AX can now be divided by AX'/?, and
we conclude that graphs of log [ N( X, ,)AX'*] ver-
sus log(r./L) will yield a slope of —f(«;).

Another problem in directly measuring f/ («) is the
sensitivity of the histograms on the positioning of
boxes in the box-counting procedure. For measures
on the line, one can start placing boxes at, say, x.
One can start at some x,2 0, the first box being at
[xo, #1), the second at [xo+r, Xo+2r), ete. It is
useful to average N, over several such realizations
(each corresponding to a specific x,) of the box-
counting; this eliminates the dependence on the po-
sitioning of the boxes®'.

To illustrate the points made above, we study the
binomial measure on the unit interval [0, 1], with
the parameters /,=/=0.5 and p;=1-p,=0.6. The
measure is constructed by iterating the multiplica-
tive process 2'7 times, and the unit interval is there-

*' This was suggested by Professor R.V. Jensen.
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Fig. 1. Histograms of X for the binomial measure with parame-
ters py =1 -—p,=0.6, corresponding to 4 different box-sizes. The
histograms are averages over 50 realizations of random position-
ing of the boxes (see text), and include the correction AX ~1/2,

fore divided into 2'7 pieces of length 2~'7. We use
20 different sizes for r, and the range of values of X
(or «) is divided into 14 pieces, i.e., #,=20 and
n=14, The boxes are deliberately chosen to be dif-
ferent from the natural sizes 27", in order to sim-
ulate the situation that arises when analyzing exper-
imental or numerical measures where the natural
partition, if it exists, is unknown. Also, averaging of
X, r and N, over 50 different starting positions xj,
placed randomly in the interval [0, 1077%] is
performed.

Fig. | shows the histograms for 4 different values
of the box-size. Fig. 2 shows plots of X, versus
log(r./L) for 6 different values of i==1,3,6,8,11 and
14 along with least-square linear fits. By measuring
the slopes of such curves one obtains 14 values of «
ranging from 0.74 £-0.005 to 1.30£0.01, values that
agree well with the theoretical extremes of the curve,
namely log.p ;' and log,p5'. Figs. 3a-3f shows plots
of log (N, AX'/?) versus log(r./L) for the same val-
ues as before, along with the least-square linear fits,
The slopes of these graphs correspond to —f{(«,).

We are interested in quantifying deviations from
perfect power-laws, a subject that has received at-
tention recently. The deviations occur as oscillations
around power-laws [20], or lacunarity [16]. Since
they are not the central point here, we will for sim-
plicity represent these deviations as uncertainty in
the slope of the line that one is fitting (and as “error

bars” on the exponent). Essentially, these “‘error
bars” are computed as the ratio between the stan-

105



Volume 137, number 3

| | ! '
-8 | ‘q!_[) -3.5 -3.0 -2.5 -2.0

logIO[rK/L]’ L:]..,O

Fig. 2. Scaling of the histogram elements X, , with respect to 1}1c
box-size r,. Plotted are 6 different sets of values of X, for
i=1,3,6,8,11 and 14 as applied to the binomial measure de-
scribed in the text. The slope of the different lines correspond to
the values of «,.
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dard deviation of the data around the power law, di-
vided by the scaling range. It should be kept in mind
that such oscillations are real for “lacunar fractals”
and contain additional information; as such they do
not really constitute an error. The present represen-
tation is used only for brevity and convenient com-
parison of the different methods of obtaining /().

The results of « and f () obtained by the present
method can be compared with the usual method of
measuring the cxponents D, and then applying the
Legendre transforms (4). To obtain the D,s, the
measure is divided again into boxes of size ry, and
graphs of log(2p4)'/*~1) versus log(r,/L) are plot-
ted; according to eq. (1), these plots would have a
slope equal to D,. This procedure is repeated for 29
different values of ¢ between —9 and +9. Also, the
choice of values for the box-sizes r; is exactly the same
when measuring D, as when measuring « and f{«)
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Fig. 3. Scaling of the number of occurrences of a given value of X, as gpplaed to the bmo'mxldldmcasuolsci,til;lmng Ofgmc boxgcs whome
co?rec.ti;n' averaging has been performed over 50 realizations, each of which corresponds to a random p

measure. The siope of the lines correspond to the values of —/(«,).
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directly. Once the D,’s are known, each with its cor-
responding “‘error” dp,s W€ contruct two more D,
curves, Dy =D, +0p, and D =D,—0p, The Le-
gendre transforms (4) are applied to the three curves
using centered differences on the 29 values of g. One
then obtains three f( «) curves, one of them repre-
senting the result using the mean D, curve, and the
other two representing the error incurred in the cal-
culation of f(«&) due to the “errors” Op, in meas-
uring D,.

Fig. 4 shows f(«) obtained for this measure using
different procedures. The continuous line in fig. 4
corresponds to the theoretical prediction obtained
using eqs. (2.31) and (2.33) of ref. [5]. The dia-
monds represent f(«) obtained from D, and both
dashed lines were obtained from D, . The squares in
fig. 4 correspond to the direct determination of & and
S(a) from plots such as figs. 2 and 3, according to
the procedure described here. It can be seen that the
agreement between all procedures is generally good.
It is important to point out that the errors incurred
by the present method of scaling of histograms (with
the averaging over the positioning of the boxes as de-
scribed earlier) does not appear to be any worse than
in the usual method via D,. Also, the discrete points
on fig. 4 have to be interpreted as an approximation
to f(@); better approximations can be obtained by
increasing 7,

As an example from dynamical systems, we con-

Fig. 4. The f(e) curve for the binomial measure with py=0.6,
Squares are obtained using the scaling of histograms (from figs.
2 and 3). Triangles are obtained using the D, exponents, and
dashed lines represent the uncertainty involved in that method
(see text). The continuous line is the theoretical curve.,

PHYSICS LETTERS A

8§ May 1989

sider the period-doubling attractor at the accumu-
lation point of the logistic map

Xpa1 =do, (1-2x7) (12)

The map is iterated 222 times with 1., approximated
by A, (the parameter that generates a 272 perjod ),
the interval [ —1, 1] is divided into 10° pieces in or-
der to generate a discretized measure. Thirty-two
values of r, are used (n:=32). As before, n=14. Fig.
5a shows f(«) of the attractor obtained by different
methods. The continuous line is obtained by solving
for the partition function following Halsey et al. [5].
The large “error bars” on f(«) and the large “error”
incurred by the D, method are due 1o the fact that
the lacunarity of this measure is very pronounced,
and the “scatter” in all appropriate log~log plots is
therefore quite large. This leads to considerable “un-
certainty” in the measurement of power-law expo-
nents [19].

As another example from dynamical systems, we
consider the measure formed by the critical trajec-
tory of the standard circle map with golden mean
winding number

0,,+1:6,,+Q——(27r)“sin(27c6’,,) [mod 1]. (13)

The map is iterated with a bare winding number 2
equal to £2,, (i.e. there is a periodic orbit corre-
sponding to the 27th Fibonacci number ). The map
is iterated 3% 107 times. Therefore, there are several
periodic orbits, slightly biasing the results on the
rarefied regions of the attractor, but the effects else-
where are negligible. The unit interval is discretized

B A

Fig. 5. (a) The f(«) curve of the attractor of the logistic map.’
Symbols as in fig. 4. The continuous line is oblained by numeri-
cally solving for the partition function. (b) The f(«) curve of
the attractor of the circle map. The meaning of symbols and lines
is the same as in (a).
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into 10° pieces; by counting the number of iterations
that fall into each piece, a measure is generated. Fig,
5b shows f(«) for the attractor obtained by the dif-
ferent methods. The continuous curve corresponds
to the “theoretical” prediction (obtained again by
solving numerically for the partition function, fol-
lowing ref. [5]). The agreement between the results
obtained by using D, and the scaling of histograms
is good and the errors incurred in both methods are
of the same order.

Finally, we apply the procedure of obtaining /()
to one-dimensional cuts through the dissipation field
of turbulent kinetic energy in fully developed tur-
bulent flows. Here, the process of eddy-breakdown
and cascade of kinetic energy to smaller scales can be
thought of as a multiplicative process giving rise to
a multifractal distribution of energy dissipation (see
refs. [9,10], and early ideas [1,2]). We consider
measurements in a constant pressure turbulent
boundary layer on a flat plate at moderate Reynolds
number and base the analysis on measured time se-
ries of the streamwise velocity component u, (¢) us-
ing hot-wire anemometry. The free-stream velocity
of the flow is 12 m/s, the boundary layer thickness
d at the measuring station is 4 cm, and the hot-wire
is located at a height above the wall of y/5=0.2. The
hot-wire 1s operated at an overheat ratio of 1.7 and
the signal is low-pass filtered (roll-off rate of 18 dB/
octave) with a DANTEC 55D26 signal conditioner.
The filter was set at 12.5 kHz (which is the noise floor
observed in the on-line power spectra taken with an
HP 3561A spectrum analyzer). The signal is digi-
tized with 12 bit resolution on 2 MASSCOMP 5500
computer at a sampling rate of 25 kHz. Ten consec-
utive data files, each consisting of 10° points, are used
for the analysis. This ensured stationarity of the
computed statistical data. The Kolmogorov micros-
cale n 15 0.016 cm and the Taylor microscale 4 1s 0.3
cm. The Reynolds number based on A is moderate
(R,=u'A/v=1085), the relatively short scaling range
available (at most between one and two orders of
magnitude) being especially suited for the present
iltustrative purposes.

As has been the practice, Taylor’s hypothesis is
used. That is, it assumed that the time series can be
considered as a linear cut through the “frozen” tur-
bulent velocity field in the streamwise direction (say
x-axis). Furthermore, it is assumed that the square
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of the gradient in only one direction is representative
of the actual dissipation consisting of 9 terms, there-
fore e~ (Ju,/dt)>. These assumptions were shown
to be satisfactory in a slightly different context in ref.,
[12]. The gradients are obtained by simple finite
differences. (More elaborate methods of evaluating
the derivatives were tested, and no difference on the
resulting scaling exponents was observed.)

In order to measure f(«) of the dissipation field
e, pofeq. (5) is replaced by E,, the total energy dis-
sipation within a box of size r.. Since multiplicative
constants do not alter the power-laws, it is conve-
nient to normalize £, as

E,.:Jedx/jedx, (14)

»

where the integral in the numerator is performed
within a segment of size r,, and that in the denom-
inator over the entire data set of 107 points
(~4Xx10*L). Therefore X=log(F,). We use 20 dif-
ferent box-sizes, ranging roughly from 10110 SL, and
perform averaging over the box positions by select-
ing randomly 50 values of x,.

A problem arises due to the entrainment of fluid
from outside the boundary layer when it occasion-
ally reaches the hot-wire in an irrotational state. One
then observes extremely low values of dissipation,
which produces very long tails on the left hand side
of the histograms of £,. This phenomenon has been
observed before in two-dimensional slices of a tur-
bulent jet [12]. Since this effect is irrelevant to the
energy cascade, and (in any case) occurs extremely
rarely at the measurement station, we eliminate such
“laminar”regions from the data by setting an appro-
priate threshold and hold-time on the dissipation.
This elimination procedure could bias the results on
the low-intensity regions of the measure (right-most
part of the f( @) curve), but it was verified that there
is no influence on the rest of the curve when doing
this. More details on this issue will be reported else-
where [23].

Fig. 6 shows the resulting histograms for several
values of the box-size. Here, instead of discretizing
the histograms in equal pieces between X,,;, and X,
the portion between X,,,., and the maximum of N(X)
is divided into 10 parts, and that between the max-
imum and X,,;, is divided into another 10 parts. This

Fig. 7. The scaling of £, with res
is larger for i <8 (high intensity
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Fig. 6. Histogxzams of_iog (E,) (without including the logarithmic
'C()rrecuon) of linear intersections through the dissipation field ¢
in the laboratory boundary layer for different box sizes: r/n=20

(circles), r/n=60 (squares), r/n=200 (di 5), 1
o) ) (diamonds), r/n=800

e
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Is necessary because the curves become asymmetric
for small box-sizes, with the left part becoming longer
I comparison with the right,

Figs. 7 and 8 show plots whose slopes are « and

—f( ). For small r, the behavior of the curves in fig.
7 is the same as those of ref, [9] in the D, mea-
surgmem: the results for the low intensity otf{ dissi-
patl‘on are influenced by noise (digitizer and oth-
erwise) gnd perhaps also by the undetected laminar
regxpns interspersed in the turbulent ones. The
straight lines are least-square fits to points in the
range between 307 and 1000# for the high intensity
regions (/< 11), and between 1007 and 1000x for
the low—'intensity regions (/= 11). Oscillations are
presgxﬂ n fig. 8, especially for low values of fa).
'The1r amplitude may be related to the Iacunaﬁty of
180-cx sets, which increases near the tails of the f(a)
curves for the sparser iso-cv sets, ‘

T T T " T

b
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d
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logyp(r/n)

;();jct‘to the box-size I‘/ﬂ.' Tk'le slope of the different lines corresponds to the va
1ssipation ), but gets significantly worse for /> § (low intensity regions)

logiglr/n)

luesof «w,. The scaling range
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Fig. 8. The scaling of the number of occurrences of a given value

50 realizations of random positioning of :
values of @, suggesting that these iso-« sets are highly lacunar.

The squares in fig. 9 show the resulting values of
« and f(a). The continuous curve corresponds. to
the average result obtained by the D, method using
many data sets [9], each of length equal to about

f o)

0.0

110

the boxes for the dissipa

of X=log(E,), including the logarithmic correction and averaging over
tion field. Strong oscillations can be seen corresponding t

o the extreme

30L. The circles correspond to the Dy method using
107 point long data file contiguously. In the latter
case, 2. E¢ is calculated using the histograms as

T Ef~ 3 (10%4) IN(Xy) AX

j=1

<« Fig. 9. The f(«) curve of one-dimensional sections through the

dissipation field of fully developed turbulent flows. The contin-
uous line corresponds to the /() curve obtained from the aver-
age D, curve measured in a variety of fully turbult?nt ﬂowsv (see
ref. [9]) using many data of short length (about 30 integral scales
for the laboratory flows ). The circles correspond to the /() curve
obtained from the D, method applied to the very long data set in
the boundary layer (see text). The squares correspond to the val-
ues of @ and /() obtained by the direct method from the siopes
in figs. 7 and 8. The significant discrepancy is due to the vsmall
scaling range available at the moderate Reynolds numper in the
boundary layer. Terms of order (In(L/r)]~* become important

and bias f(«a).
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for g ranging from —4 to +4. (Note that the log-log
plots used to obtain D, from long-time averages, show
less extensive linear regions than similar curves for
shorter-time averages of ref. [9], but we prefer to
relegate a detailed discussion to a later date [24].)
The circles and the continuous curves agree reason-
ably well, except for the large « region where there
is an overshoot in the long-time average results. This
is due to the problems encountered in the low-intes-
ity regions of the histograms, as explained before. In
spite of this difference, it is clear that our earlier re-
sults [9] are generally confirmed; in particular, the
Sf(«) curve for one-dimensional cuts through the
dissipation field falls between «,,;,~0.5 and
Wmax~ 1.75, and [ (&) ma = 1.0.

In contrast, the directly obtained values of f(«)
(squares) systematically fall below the expected
curve by as much as 20% in the central portion. The
explanation for this discrepancy lies in the fact that
the scaling range of this experimental measure is very
small (about one decade). In such a case, the higher
order terms that were neglected in eq. (8) become
important. Taking the derivative of the natural log-
arithm of eq. (8) with respect to In(r/L), one obtains

din[N(a) da]
din(r/L)

=—fla)=[2In(L/r)]"!
+C () [In(L/r)] 2+, (15)

which would correspond to the slope of log-log plots
if no finite scale-range corrections are made. The
correction procedure for AX'/? cancels the term of
order [In(L/r)]~", butif L/ris not sufficiently large,
[In(L/r)]~?* cannot be neglected. Eq. (15) is an-
other way of showing that we would correct for the
first order term by knowing In(L/r), but not for the
second order term because C, («,) is unknown. For
one decade of scaling, [In(L/r)]~? is of the order
0.2 - evidently quite large.

These results illustrate that the method of obtain-
ing f(«) through histograms works for measures with
large scaling range, and that the values of f(«) re-
sulting from the present method of scaling of his-
tograms with logarithmic corrections have to be in-
terpreted as an effective exponent accurate only up
to order [In(L/r)]~2 If we had not included the
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correction AX'/?, the results would be accurate only
up to order [In(L/r)] " which, even for 10 decades
of scaling, is about 5%. This explains the overshoot-
ing of f (&)« that was observed in ref. [18].

It should be noted that one can in principle in-
crease the accuracy of the method to higher orders
in In(L/r) using the Richardson extrapolation. One
essentially expands the function g[In(L/r)]=
In[N(X)AX] in terms of In(L/r), and uses the g’s
evaluated at different length scales to calculate con-
stants such as C,(«,) in eq. (15). However, this is
inaccurate in practice, since g is not always suffi-
ciently smooth (see fig. 8). Yet another comment on
fig. 9 relates to the few data points where f(«) is
negative. That part of f(«) probably corresponds to
“latent singularities” [3] that occur very rarely, de-
tected by this method because it is based on very long
samples. More details on both issues will be reported
in the future [24]. It should be noted that we could
not have detected these singularities had we used
much less data although, for the present Reynolds
number, 5% 10° points or so would have reproduced
the positive part of the curve quite adequately.

We conclude that if one includes the first order
logarithmic correction, performs sufficient smooth-
ing over different box positions, and has a scaling
range that is sufficiently large, the present method of
obtaining directly the f(«) curve is a useful alter-
native to the usual method via D,. Furthermore, the
histograms allow better insight into the statistics of
«, and oscillations in log-log plots can give useful
information on the lacunarity of iso-a sets. It must
be stressed, however, that for measures possesing less
than about 3 decades of scaling, the D, method gives

f(«) curves that converge much faster to the asymp-

totic results.

The procedure introduced in this note could have
been implemented equally well using discrete prob-
ability densities instead of histograms (fraction of
boxes instead of number of boxes). In that case, one
measures d—f («) instead of —f(«), d being the di-
mensionality of the embedding space. (The quantity
d—f(a) is called —p(«) in ref. [3]). It is well
known that box-counting methods are extremely time
consuming when applied to measures embedded in
spaces of dimension greater than 2. The alternative
is to use correction exponents [8], return times [6],
nearest neighbour distances [21,24], etc. General-
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izing the present procedure involves expressing « in
terms of these quantities and counting the occur-
rences of a given number of points falling in a ball
of certain radius, range of return times, nearest
neighbour distances, etc. This has to be repeated for
varying length scales. The quantities « and f(«) can
then be determined from the appropriate log-log
plots. Recently [25,26], efforts have been made to
determine f(«) directly using the notion of “crowd-
ing indices”, without using regression (log-log) plots.
We repeat that in experimental situations, where the
status of power-laws is not necessarily clear, it is im-
portant to inspect the log-log plots. Finally, we point
out that Chhabra and Jensen [27] have very re-
cently proposed a method to measure « and f(«)
directly as weighted averages over the distribution of
a. This method has also been applied to turbulence
[28], with satisfactory results.

Useful discussions with Professor R. Jensen, A.
Chhabra and Professor P. Jones are gratefully ac-
knowledged. The authors have benefited from Pro-
fessor Mandelbrot’s comments on an earlier version
of this manuscript and from his lectures presented at
Yale, in which the importance of the direct deter-
mination of f(«) was mentioned repeatedly. This
work was performed with financial support {rom
DARPA (URI).
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