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We briefly study turbulence in open flow systems in the
context of concepts developed in studies of chaotic dy-
namical systems. Although several flows have been ex-
amined, particular attention will be focussed on the
question of transition to turbulence in coiled pipes;
some degree of correspondence with the Ruelle-Takens-
Newhouse route to chaos is indicated. Using the
Grassberger-Procaccia algorithm, the dimension of the
attractor for velocity signals during and immediately
after transition to turbulence has been computed. Our
results, such as they are, indicate that the dimension
is relatively low., Brief comments will be made on the
difficulties of computing the dimension, as well as on
the relevance of strange-attractor theory to fully-
developed turbulence.

INTRODUCTION

Recent studies of the dynamics of nonlinear systems with finite (and small) num-~
ber of degrees of freedom have produced profound results with probable implica-
tions to the very notion of chaos — for example, in kinetic theory of gases in
the context of the Boltzmann equation — but the interest of fluid dynamicists in
these studies stems primarily from the notion of genericity, that is, the expec-
tation that the qualitative properties of the Navier-Stokes equations are shared
also by these simpler systems. A related dimportant (and, to our knowledge, as
yet untested) expectation is that turbulence, at least not too far away from
transition, behaves like a strange-~attractor. Without going into details, we may
restate the above supposition to mean that turbulence has a manageably small num-
ber of 'dynamically significant' degrees of freedom, despite the overwhelming
complexity it displays, or that one may be able to extract a finite-dimensional
projection out of an infinite-dimensional phase space.

As we know today, three distinct 'scenarios' of chaos have been indentified; more
will no doubt be discovered., 1In the first scenario, chaos sets in abruptly fol-
lowing very few (most probably, three) Hopf bifurcations [1,2]. In the second,
the onset of chaos occurs via an infinite cascade of period doubling [3,4,5] with
certain well-defined universal characteristics. The third, less-studied, route
envisages chaos through gradual merging of decreasingly intermittent chaotic
regions [6]. Obviously, these scenarios of chaos have at least qualitative re-
semblence to transition to turbulence in one or the other of the fluid flows; con-
siderable work [ 7-10] in the last few years has shown that the correspondence is
more than superficial in highly constrained 'closed flow systems', that is, fluid
flows which are totally confined within a closed boundary (for example, the nar-
row-gap Taylor-Couette flow, or convection in a finite box of small dimension).
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systems, are more complex than has been visualized in dynamical systems, it is
interesting that there are at least a few flows which follow these scenarios
fairly closely.

In contrast, so far as we know, the language and concepts of chaos have not pene-
trated much the domain of 'open flow systems', such as wakes, jets, boundary lay-
ers, mixing layers, pipe flows, etc., which are topologically different from the
closed flow systems. Devoid of the constraints that seem to be responsible for
nudging severely confined flows towards the dynamical-systems-type behavior, it is
an open question whether any aspects of chaotic dynamical systems are useful in
the description of transition and turbulence in open flows. This paper is a mod~
est beginning of a more ambitious enquiry into this question. In particular, we
began with the following questions:

(a) Are there any similarities between the scenarios of chaos and transition to
turbulence in open flow systems?

(b) What are the best experimentally accessible measures of strange-attractor
behavior?

(c) What is the effect of the inevitably present noise on our perception of (b)
above?

(d) What is the eventual significance of dynamical-systems approach to the down-
to-earth concerns of a proper turbulence theory based on Navier-Stokes equations?

EXPERIMENTS ON TRANSITION

Consider the flow in helically coiled pipes [11]. Briefly, the arrangement con-
sists of a long straight pipe followed by a coiled section of several turns (more
than 5). We examine transition to turbulence by observing the velocity fluctua-~
tion u in the axial direction on the pipe centerline at the end of the coil.

Figure 1 shows the power spectral density of u at several Reynolds numbers; sam-
ple time traces are also shown. The first stages of transition are characterized
by the appearance of a dominant periodic component f modulated by a low frequency
motion f.; the uppermost set (a) of figure 1, Re = 5&40, corresponds to the end of
this stage. Clearly, neither peak is really sharp, presumably because of the many
non-linear interactions possible between the f -band and the f,-band. For Re

= 6360 (figure 1b), the low frequency modulation has grown in relative size but,
more interestingly, a third frequency £, (also not sharp), barely visible in fig-
ure la, has grown. When this peak reac%es a sufficiently large amplitude, the
peak at f, diminishes in amplitude and a broad-band spectrum begins to develop
(figure 1€); this is followed very quickly by the disappearance altogether of
peaks f, and £, (figure 1d), and eventually also of f. (figure le); at the same
time, tae broaé band component grows continuously. The key to the transformation
from an essentially quasiperiodic state as in (a) to an essentially aperiodic
state as in (d) is the appearance of the third frequency £, of sizeable magnitude.
(We may note that the spectra in figures 1 are actually avéraged over several re-
cords, and that unaveraged spectra show much sharper peaks.) The situation is
reminiscent of the Ruelle-Takens-Newhouse picture of transition, and underscores
the possible presence of a strange attractor.

IS TURBULENCE A 'STRANGE ATTRACTOR'?

The most direct attribute of a strange attractor is the sensitivity to initial con-
ditions; while this seems "obviously' the case in turbulence, it is not easy to
quantify it directly. One way of doing this is by evaluating the Lyapunov numbers,
but, in practice, this is not viable (at least, it has not so far been possible

for us) because of the finite precision with which the required Jacobians can be
evaluated from the experimental data. Yet another characteristic is the relative-
1y small dimensionality of the attractor despite the bewildering complexity. The
relevant dimension, as has been pointed out by Mandelbrot [12], is the so~called

Turbulence and Chaotic Dynamical Systems 193

20y

n L
' {WL el (a) Re =5940

T
e

(b) Re = 6360

WA VJVV"' / ﬁv !W! (c) Re = 6570

Re = 6625

, % 1] il ‘;,vi v;(,{.] @

| ‘ :\Awf:mﬂJv*AﬁAﬁ«\A¢wwx

° o0 4000 =

|
',

N

T (e) Re = 6890

. 1000 e el

frequency, Hz

Flgure 1. Time traces (duration 15 ms) and power spectral densities of the fluctu-
at}ng ve}ocity u on the pipe centerline of a coiled pipe; pipe diameter ='3.18 mm
c0¥l'rad1us = 42 mm. Same gain for all cases. Note that the spectral ordinates do,
not all have the same scale. In general, open systems are characterized by the
presence of sizeable noise in the initial conditions, which is why we have chosen
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fractal dimension D, an adaptation of the Hausdorff dimension. (The fractal di-
mension may be viewed as a measure of the information necessary to specify the
location of a fractal set. For classical cases with self-similarity, it coin-
cides with the usual notion of dimension.) Calculating D using box-counting al-
gorithms is not practical if D 2 2 (see [13]), as is surely the case for turbu-
lence (see below). Another dimension V, related to the fractal dimension

D(v < D), as well as the information-theoretic entropy, has been proposed [14].
If y is the n-dimensional vector in time domain,one computes first the quantity
C(r) given by

N
_ lim 1 .
e = 4 L2 e - vyl (1)
N i,ji=1
where v, = y(it'), T' being the sampling interval, and H is the Heaviside step

function. For r not too large, it can be shown that c(r) v rV. Grassberger &
Procaccia [ 14] have shown that v = D for several chaotic attractors commonly dis-
cussed in the literature on dynamical systems, and have argued that, where it is
smaller than D, v is in fact the more appropriate quantity to consider. We shall
not discuss this further but only note that D is a quantity related to geometry,
while v has a probablistic content in it. In our computations of v, we used real-
time data of the axial velocity component to construct a multidimensional vector
using the delay coordinates (u_, u_ ., «+:s U g 1y.) with increasing values of
d, and evaluated Vv as indicated abévé; T is an £ntéé%al multiple of 1'. Initial-
1y, Vv increases with d but settles down eventually. It is this asymptotic value
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Figure 2. The quantity log, C(r) vs log, r, ¥ in arbitrary units. Re
Different curves correspond”to different d. From left to right, d=1, 5
15, 20, 25, 30, 20, 50 and 70,

= 6625,
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of v that is of interest to us. If V is relatively small, the concept of strange
attractors may be very useful in turbulence; otherwise, it is hard to assess its
significance.

As a check on our computational procedure, we may note that Vv was found to be 1
for a sine wave and 0.63 for a Cantor set, as expected. Since a purely random
signal, such as the output of a white-noise generator, has a space-filling attrac-
tor, v = d for all d.

Figure 2 shows several curves of log C(x) vs log r, computed with increasing val-
ues of d, from the velocity data for Re = 6625 just after the onset of the broad-
band spectral behavior. Typically, these curves have a linear region; the level-
ling off of the curves for large r is the result of the finiteness of the attrac-
tor, while deviation from linearity towards the very low end of the curves arises
from resolution problems. The slope of the linear region increases with d ini-
tially but appears to settle down to a constant beyond a certain d. This can be
seen more directly from figure 3. The asymptotic velue of v is around 6.

Figure 3; The slope v of the
straight regions of curves in
figure 2, vs the dimension of
the phase space, d. The asymp-
totic value is around 6.
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The data presented in figures 2 and 3 are typical of our computations,which extend
to Reynolds numbers on elther side of 6625. However, they are not sufficiently
systematic at this point to be included here as conclusive results. This is so
chiefly because we have not yet made the various sensitivity tests on V. First,
before the signal is digitized, some low-pass filtering is necessary; we have not
investigated the effect of varying this cut-off on v, We have also not investi~
gated very thoroughly the effect of varying T on V. Typically, however, this lat-
ter effect is not significant over a fairly wide range of 7. With these reserv-
ations noted, we may mention that, for Re < 6625, the value of v is less than 6,
while being a rather strongly increasing function of Re at higher Re; in fact, at
the highest Reynolds number of our computations, we have not yet seen V settle
down even for d as large as 100. (Our initial results presented at the meeting in
Kyoto were necessarily at lower Reynolds numbers than 6625.)

DISCUSSION AND CONCLUSIONS
The results of the previous two sections represent only a small part of a largely

unyielding investigation. In relation to transition and the scenarios of chaos,
our experience is that none of the above-mentioned routes to chaos occurs during
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transition to turbulence in open systems like iets or wakes. While it is of course
possible that more than one of the above scenarios operate simultaneously, it looks
certain that turbulence, unless constrained severely, does not behave like a simple
dynamical system. On the other hand, we would like to make a specific mention of
the fact that our initial experience with coiled pipes was disappointing too; it
was only after some modifications of the flow were made, primarily in the form of

a smoother inlet to the upstream straight section, that we could observe the evol-
ution discussed earlier., Can we then make the sweeping generalization that, by
making 'appropriate' changes to the flow, perhaps by way of restricting initial
conditions to a suitable (but unknown) 'basin of attraction', we can nudge trans-
ition to follow some well-defined scenario of chaos?

What specifically has our work shown in relation to fully developed, or, at least,
'nascent' turbulence? While much work needs to be done, it suggests that, at least
at Reynolds numbers not too far above the transition value, the attractor for tur-
bulent signals is relatively low-dimensional. It may thus justify attempts at
extracting for the Navier~Stokes equations a finite-dimensional projection out of
the seemingly infinite-dimensional phase space. We should, however, note that the
dynamical systems approach will at best represent a small part of the total pict-
ure in turbulence unless the spatial chaos and order, as well as the relation
between these latter characteristics and temporal behavior, are discussed.
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