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Abstract. When a flow through a straight pipe is passed through a
coiled section, two stabilizing effects come into play. First, in a
certain Reynolds number range, the flow that is turbulent in the
straight pipe becomes completely laminar in the coiled section.
Sccond, the stabilization effect of the coil persists to a certain
degree even after the flow downstream of the coil has been
allowed to develop in a long straight section. In this paper, we
report briefly on aspects related to these two effects.

I Introduction

White (1929) — and several others later — made the im-
portant observation that the flow in curved pipes can be
maintained laminar for substantially higher Reynolds
numbers than is possible in straight pipes!. Consider now
a pipe with a long straight section followed by a helically
coiled section. White’s observation leads to the logical pos-
sibility that, at least in a certain range of Reynolds
numbers, the flow that is turbulent in the initial straight
section should be capable of being rendered laminar in the
coiled section. Figure I shows how remarkably complete
this process of laminarization can be: a dye streak in-
troduced into the straight section upstream of the coil
diffuses rather rapidly. indicating that the flow there is
turbulent, while that injected into the fourth coil remains
perfectly unruffled for a long distance, indicating the
laminar state of the flow there,

The history of studies relating to this interesting phe-
nomenon is very brief. however. After the first recognition
by Taylor (1929) that the phenomenon must indeed occur,
no attention seems to have been focussed on it until
Viswanath etal. (1978) reaffirmed it by setting up a simple
dye-injection experiment of the type shown in Fig. I; see
also Narasimha and Sreenivasan (1979). Not much is
known about the phenomenon beyond the [act that it
oceurs: it is this paucity of information that motivated the
present study:.

The phenomenon of laminarization demonstrated in
Fig. 1 naturally leads to several questions. For a given

I Here, we are excluding unusually smooth inlet conditions

turbulent pipe flow. can onc always set up a suitable
helical coil which inevitably leads to laminarization?
Alternatively. for a given helical coil, what is the maxi-
mum flow Reynolds number for which laminarization is
possible? What exactly is the role of the tightness of the
coil. the number of turns in the coil. ete.? Finally, we were
also itrigued by another question: how precisely does the
laminarized flow return to a turbulent state when down-
stream of the coil the flow is allowed to develop in another
Jong straight section?

This paper is devoted to a general discussion of these
questions. Obviously, the answer (o all these questions is
intimately tied down to the critical Reynolds number as a
function of position into the coil: if the flow Reynolds
number is lower than the minimum Reynolds number at’
which turbulence can be expected at the given location in
the coil, laminarization can be expected to result there.
Previously availabie information (e.g., White 1929, Adler
1934, 116 1959) on the critical Reynolds numbers in curved
pipes has been deduced by measuring a global parameter
such as the [riction factor; further, most measurements
were made in curved sections that were bent to less than
one full turn. Such measurements are of limited use for
the present purposes, and so. a sizeable part of our effort is

Fig. 1. Laminarization in coiled pipes. Pipe diameter, 2a=
191 em, radius of curvature, r=9.0cm, Reynolds number,
R =4050
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related to the measurement of critical Reynolds numbers
within the coil.

Anticipating the general nature of our results some-
what, we may comment that the flow under study is
characterized by an extraordinary richness of details. We
are here limiting ourselves to a rather brief and prelimi-
nary description of the phenomenon; a more detailed
report must be forthcoming at another time in the future.

2 Experimental Set-up

Figure 2 shows a schematic of the experimental set-up. It
consists merely of a certain length of a straight pipe with a
standard inlet, followed by a helically coiled section;
sufficient development length was allowed for the flow to
be fully developed upstream of the coil. The coil itself was
followed by another long straight section of the pipe.
Several pipe systems were used, but somewhat detailed
probing was made in two of them. The details given in
Table 1 correspond to the two set-ups, but are typical of
the several others also; the chief variation was in the
number of coils.

Our initial efforts were with glass tubing but, on subse-
quent experimentation, we found that even the most care-
fully bent glass tubes could not maintain a circular cross
section to any better accuracy than fairly thick-walled
Tygon tubing. For this reason, as well as the case with
which Tygon can be handled, we finally settled on the
latter. The worst case for which we have reported the
results here corresponded to the ratio of the maximum to
the minimum diameter of 1.04. We especially experi-
mented with pipes of varying ellipticity, and discovered
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Fig. 2. Schematic of experimental arrangement

Table 1. Some relevant dimensions of two of the pipe systems

Pipe Innerdi- Radiusof Radius L,/2a No.of L;/2a

ameter, 2a curvature, r ratio, turns

(cm) (cm) alr
1 1.905 16.51 0.058 144¢ 3 162°
I 0.635 5.47 0.058 173 20% 937

L,, Length of straight section upstream of curved section
b [, Length of straight section following the curved section
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that one effect of small departures from circularity was to

‘produce a comparable lowering of the critical Reynolds

numbers. Thus, we believe that our data on critical
Reynolds numbers may perhaps have been underestimated
by a few percent.

All the data given here were obtained with 5 um DISA
hot wires (length~20.8 mm) operated at an overheat of
175 on a 55MO1 DISA constant temperature anemometer.
For several corroborative purposes, we made flow visual-
ization studies in pipes with 1.95cm and 3.18 cm inner
diameter.

3 Results

In the straight section upstream of the coil, the lower and
upper critical Reynolds numbers — i.e., the highest
Reynolds number up to which the flow remains laminar
and the lowest Reynolds number at which the flow
becomes fully turbulent, respectively — were inferred from
hot-wire measurements to be about 2050 and 2800 for
pipe I and 2400 and 3300 for pipe IL The differences in
these values simply reflect on the differences in inlet con-
ditions. In both cases, transition set in typically by the
appearance of turbulent puffs (Wygnanski and Cham-
pagne, 1973), and progressed through their coalescence.

In the coiled section, however, the nature of the
transition process is much more complex, and some
thought is required in the definition as well as the deter-
mination of the critical Reynolds numbers. To see this,
consider the oscillograms of hot-wire traces shown in
Fig. 3. The hot-wire traces correspond to about 0.25a
from the inner and outer walls respectively, both sets
taken 2% coils into the helix of pipeI. Near the outer
wall, transition occurs by the formation and coalescence of
‘bursts’ of high-frequency turbulence. Near the inside wall,
on the other hand, the process is completely different: a
disturbance at a selected frequency grows to a fairly large
amplitude before higher harmonics start to appear (the
third trace from the bottom on the left). Soon after, higher
and higher frequencies start to appear in a relatively short
span of Reynolds numbers.

The differences between transition near the inner and
outer walls in the coil are clearly apparent even at half a
turn into the coil — which is the smallest distance into the
coil that we examined here — and become more and more
pronounced until about 3 turns or so. No significant
developments occur beyond this, suggesting that some sort
of an asymptotic state is reached by the end of about three
turns.

A few words are now in order about the frequency of
the periodic signals observed near the inside wall. We
know of no prototype instability mechanism operating
here that explains this feature correctly, although (by acci-
dent) the observed frequencies agree closely with that of
the most unstable mode calculated in the small-gap limit of
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Fig. 3. T)l/plcal oscillograms of hot-wire traces during transition in
pipe I, 2% turns into the coil. The corresponding Reynolds
numbers are marked in the figure

the Taylor-Couette problem. Our measurements are not
extensive at the time of this writing, and merely indicate
the occurrence of an intermediate unsteady laminar state
of the flow.

' The large differences observed in the nature of transi-
tion near the inner and outer walls, respectively, suggest
that it may be necessary to adopt different techniques for
detemnni‘ng the upper and lower critical Reynolds num-
bers at different 19cations, typified especially by the said
locations near the inner and outer walls. The upper critical
Reynolds number near the outer wall can be determined
more or less by the conventional method of intermittency
measurement. Such methods are of no direct use near the
inner wall, however, because turbulence sets in by a con-
tinuous infusion of increasingly wider frequency bands.
Thcreforg, we approach the problem of determining the
upper g‘l(ical Reynolds numbers near the inner wall by
measuring the spectral density of the streamwise velocity
ﬂugtuamm, and determining the Reynolds number at
Whl.Ch the spectral peak corresponding to the amplified
}?erlodic disturbance more or less disappears, and no
ftq’ther change in the spectral shape could be seen; clearly
this requ.il.‘es a certain degree of judgment. However, thé
upper critical Reynolds numbers determined by either of
these~ two ways are the same to within experimental un-
certainty, suggesting that the flow becomes fully turbulent
at the same Reynolds number everywhere at a given
streamwise location. Although this fact lends some con-
fidence to the numbers determined by either method, we
sh'oluld remark here that our confidence in the u£)per
critical Reynolds number is not as high as we would liké it
to be.

A conservative estimate of the lower critical Reynolds
‘number can be identified with the appearance of the first
burst’ near the outer wall; below this, the flow is laminar
every\yhere at the specified cross section of the pipe. How-
ever, since most of the flow, especially towards the inner

wall, remains non-turbulent until a much higher Reynolds
number is reached, it appears that to identify lower critical

Reynolds number uniquely with the first appearance of
the bursts is perhaps too restrictive. To reflect this fact in
some overall manner, we have also defined a libera]
estimate for the lower critical Reynolds number to cor-
respond to the first appearance of turbulence everywhere at
the ch‘osen cross section. In practice, we identify this latter
quantity with the first appearance of the second harmonic
near the inner wall, the justification being the empirically
observed fact that the breakdown to turbulence of the flow
there quickly follows the onset of this second harmonic.

For both pipes1 and II, the three critical Reynolds
numbers determined in the manner discussed above have
been plotted in Fig. 4 as a function of streamwise position
in the coils. The data are normalized by the lower critical
RCynf)ldS number R, at the entrance to the curved section.
The figure shows that the two sets of data collapse rather
wcll It appears that the flow somehow remembers the
1‘mual critical Reynolds numbers (recall that R, was dif-
ferent for the two pipes) in the straight section, as well as
thg‘ number of turns it has gone through into the helical
coil. All critical Reynolds numbers increase as the flow
moves 1h¥‘ough the coil, with the upper two curves showing
steeper rise. It is clear that the total extent of transition
— i.e., the distance between the lowermost and the upper-
most curves — increases with distance into the coil until
ab.out three or so turns beyond which it remains constant.
It is also clear that the second harmonic in velocity signals
near‘lhc inner wall appears closer to the completion of
tran&pon than to the onset of bursts near the outer wall.

It is now easy to see that the maximum flow Reynolds
number for which complete laminarization is possible cor-
responds to the conservative lower critical Reynolds num-
ber. In the Reynolds number range bounded by the
uppermost and lowermost curves such as shown in Fig. 4
01\1‘1y partial laminarization is observable, while no such’
effect may be expected for Reynolds numbers above the
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Fig: 4. Critical Reynolds number R normalized by the lower
critical Reynolds number Ry, just before entering the coil. Radius
ratio=0.058. Circles, pipe I; Squares, pipe II
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Fig. 5. Typical oscillograms of hot-wire traces during laminariza-
tion. R=23450, radius ratio=0.058, pipel Thc corresponding
number of turns into the coil are marked alongside the traces

upper curve. Figure 5 shows oscil.loscopc traces‘for‘a flow
undergoing complete laminarization by the enq of about
two turns into the coil. It is seen that near the inner \yzlll,
flow loses most traces of turbulence only half a turn into
the coil. ' o
The data of Fig. 4 correspond to a radius ratio (1.0.,‘
the ratio of the radius of the pipe to the radius of
curvature of the coil) of 0.058. For this radius ratio, a flow
with a Reynolds number R can be lzunixymzed completgly
i R<2 R, and partially if R<3 R,. An important qucshon
is whether these limits can be increased indeﬁn‘llely by
increasing the radius ratio. To that end, we experlm.en.ted
with several coils of varying radius ratios — this variation
was obtained in the present experiments solf—:ly b}/ tight-
ening the coil more and more, keeplgg the pipe diameter
fixed — and determined the asymptotic values of the three
critical Reynolds numbers (Fig. 4). Figure 6 shows the
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Fig. 6. Asymptotic values of the critical Reynolds'nufnbers R erin
the curved section, measured at the end of 20 coils for all radius
ratios. Pipe diameter=6.35 mm
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data. While the upper critical Reynolds number is seen (o
increase monotonically — at least up to the I:adIUS' I‘leUO of
about 0.12, beyond which the pipe cross section within th.e
coil deviates significantly from circularity — the two esti-
mates of the lower critical Reynolds number reach their
respective maximum values and drop! It is clear that
complete laminarization is possible only for ﬂow Reyr}olds
numbers below 5200 (corresponding to a radius re‘mo‘of
about 0.039), and can be partially lamin'arizcd .for in-
creasingly higher Reynolds numbers by increasing the
radius ratio (at least within the range we have examined).
Notice the extended gap between the onset and theAcom—‘
pletion of transition for coiled pipes with radius ratios Qi
the order of 0.1. An explanation for the non-t.nonotonw
behavior of the lower critical Reynolds numbers 1s urgently
needed. .

We now turn to a brief discussion of the flow in thc‘
straight section downstream of the coil: several fcatur.es of
this development are shown in Fig. 7. .All. the critical
Reynolds numbers drop with distance within about the
first 100 diameters; however, the critical Reynolds nqm-
bers do not asymptote to values appropriate to 'thc strjcught
section upstream of the coil, but stay substantially hlghef
(~5200) no matter how far downstream one measures:
(We have measured the critical Reynolds number up to
937 diameters downstream of the coil, but shown the data
only up to about 300 diameters.) Further, the distanc'e
between the lower and upper critical Reynold.s.numbers is
negligible (only about 0.5% of th.e' lower cr:1t10al value).
Lastly, we may remark that transition here is marked b(y
the appearance of slugs (e.g. Pantulu 1962 Lindgren 1969,
also a series of articles in Arkiv Fysik bet\yeen 1954 and
1963; Wygnanski and Champagne 1973) in contrast to
puffs upstream of the coil: slugs are regions of turbulence
filling the entire pipe section comparable in lcnth. to the
pipe length itself, characterized by sharp (ransitions (0
turbulence both at the front and the back.
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Fig. 7. Critical Reynolds numbers in the downstream straight
section, for pipe II
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[t is of interest to determine the downstream straight
section asymptotic Reynolds numbers (compare Fig.7 for
radius ratio of 0.058) as a function of the radius ratio.
Since the difference between the lower and upper critical
Reynolds numbers is small, we present these data in Fig. §
as a single Reynolds number. The data closely follow the
asymptotic lower critical Reynolds numbers in the coiled
section (Fig.6), and are only fractionally smaller in
magnitude.
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Fig. 8. Asymptotic values of the critical Reynolds numbers R in
the downstream straight section, measured about 780 diameters
downstream of the coil for all radius ratios. Data normalized by
Ro. Pipe diameter=6.35 mm

4 Discussion and Closure

Some explanation for the stabilizing effects of the coiled
section is obviously called for. It is known that the convex
curvature (associated with the inside wall) inhibits turbu-
lence, but this explanation cannot clearly be complete
because the concave curvature associated with the outer
wall is known to promote turbulence. The clues for the
somewhat subtle explanation of the phenomenon can be
found in Lighthill (1970) and were elaborated upon by
Narasimha and Sreenivasan (1979); see also Viswanath
etal. (1978). Essentially, in the curved section, the peak of
the velocity profile moves to the outside; typically for a
radius ratio of 0.058, the peak occurs at a distance from
the outer wall of a tenth of the pipe diameter. Over the
bulk of the profile from the inside to this peak, the sense
of the mean flow vorticity is the same as that of the
‘angular velocity’ in the pipe, so that, by Rayleigh’s
criterion — for a statement of the criterion most appro-
priate in this context, see Coles (1965) — the flow is stable.
There is, however, a small region near the outer wall
where the mean vorticity and the ‘angular velocity’ are
oppositely aligned. But this region is quite thin for fairly
large curvatures, and the governing instability here is of
the boundary layer type. This ‘boundary layer’ too will be
stable unless the Reynolds number based on its thickness
exceeds a critical value; then and only then will the onset

of instability and further transition to turbulence occur.
This global stabilization is also the explanation for the
occurrence of laminarization, perhaps after the process of
‘destruction’ of turbulence described by Narasimha &
Sreenivasan (1979).
Finally, we may remark briefly on the fact that the flow
in the downstream straight section remains laminar for
Reynolds numbers higher than the inlet critical Reynolds
numbers (see Fig. 8). This seemed surprising at first, but is
natural upon recollection that the critical Reynolds num-
ber for a pipe flow (i.c.. Poiseuille flow), as determined
theoretically for /inear disturbances is strictly infinity. In
practice, the pipe flow undergoes transition at finite but
variable Reynolds numbers either because the distur-
bances are not infinitesimal, or the perturbations not
axisymmetric or because the boundary layer in the devel-
oping region undergoes instability and transition; the
actual spectral content of the disturbance is also important
in determining the critical Reynolds number. It is possible
that the curved section somehow acts as a filter that
removes the most critical disturbances, or at least dimin-
ishes their amplitude, alter the frequency or both, in such
a way that the remainder of the disturbances does not
become unstable until after a fairly high value of Reynolds
number is attained. The picture is made more complicated
by the fact that the return of the mean velocity distribu-
tion to an axisymmetric form in the downstream section is
slow, and is probably characterized by non-monotonic
behavior.

In this paper, we have only briefly touched upon some
aspects of the flow and not at all on several related
aspects. The most obvious gap in our discussion relates to
the absence of mean velocity data both inside and down-
stream of the coil. Although we have indeed made such
velocity measurements in pipe I, they are not sufficiently
comprehensive and accurate (chiefly because of the three-
dimensional velocity field) to merit presentation. Another
aspect we have briefly examined relates to the effect due
to a second coil downstream of the first, wound in the same
or opposite direction as the first, on the critical Reynolds
numbers R, (Fig. 8), but the details are too complex
and are best postponed to a later date.
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