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Abstract

Heat flux measurements in several specially designed turbulent flows with inhomogeneous
temperature field are presented and analyzed with the purpose of evaluating the per-
formance of the gradient transport models (GTM) as well as several of the generalizations,
and of understanding the circumstances in which the GTM works in spite of the a priori
conclusions to the contrary. One of the flows considered is a uniform grid-generated
flow; two others are shear flows with transverse homogeneity and a constant mean
velocity gradient. The fourth is the wake of a circular cylinder in which an asymmetric
temperature field is created by heating a combination of thin wires located off-axis. A GTM
with a constant turbulent diffusivity adequately describes the turbulent heat flux in all
three homogeneous flows, while in the inhomogeneous flow, forcing gradient transport to
the measured heat flux results in negative diffusivity over a part of the flow. Direct
evaluation from the present and other measurements shows that none of the generaliza-
tions of the GTM is adequate. It is suggested that the large eddy transport in inhomoge-
neous shear flows is the possible cause for the failure of the GTM, and a simple criterion
set forth here shows that its apparent success in symmetrically heated free shear flows is
largely a happenstance caused by the imposed boundary conditions.

Nomenclature

d = diameter of the cylinder u; = velocity fluctuation in the direc-

D = turbulent diffusivity tion i

h = height of the wind-tunnel test section U, = mean velocity in the direction i

lp = half the distance between half-maxi- V' = characteristic velocity scale for
mum 8’ points turbulent diffusion

! = characteristic length scale for VC = characteristic bulk convection
turbulent diffusion, = V7 velocity

L, =longitudinal integral length scale w = wake defect velocity

Lg = transverse integral length scale X; = coordinate axes;i=1 is along the

L, = half the distance between flow and i=2 is along the (trans-
anl ax/2 points verse) direction of maximum shear

= mesh size of the grid 6 = temperature fluctuation

-

M

q' =@@u)'"? = characteristic time scale for

T = mean temperature rise above the turbulent diffusion
ambient



Suffixes

0 = centreline value
max = maximum value
! = root-mean-square value

Introduction

Virtually all the “classical turbulent theories’” model turbulent transport of momentum,
heat or a passive contaminant by linear mean gradient models. This hypothesis, prob-
ably attributable to de St. Venant or to Boussinesq, has appeared in different forms —
usually incorporating an ad hoc estimate of the proportionality coefficient, the “eddy
viscosity” or “eddy diffusivity”’ (for example, {1, 2]).

In spite of the enormous development in turbulence modelling witnessed over the
last two decades (e.g., [3]), the simplicity of the gradient transport models (GTM) —
often with enough adjustable parameters — appears to be responsible for their per-
sistent use in some areas of engineering practice, especially in meteorology and oceanog-
raphy. The GTM has been used in modelling such diverse physical phenomena as the
growth and dispersal of populations [4], the solar radiation in dynamical models of ter-
restrial climate (for an extensive review, see [5]), etc. It is thus no surprise that a recur-
ring concern has been voiced on the general conditions for the validity of the GTM
[6—8). Among other things, gradient transport models require that the characteristic
scale of the turbulent transporting mechanism must be small compared with the dimen-
sion characteristic of the inhomogeneity of the mean transported quantity. It has been
pointed out several times [6—8] that nearly all turbulent flows violate this basic a
priori requirement, and yet a reasonable degree of success has been claimed for the
GTMs, especially in free shear flows. Therefore, a study directed towards determining
the reasons for this (apparent) success of the GTMs appeared to be worthwhile; this is
one of the major goals of the present study.

It is perhaps apt to quote the following from Saffman [9] here because it reflects
our current concern rather well: “The continual preaching against the eddy diffusivity
hypothesis... has not served any useful purpose. The effort would have been better
spent trying to understand the reasons for the apparent success and the circumstances
in which the hypothesis must (not ought to) fail...”’. We hoped that some light would
be shed on this issue if measurements were made in the three classes of flows in which a
priori arguments would suggest that GTM

a) ‘ought to’ and does work,
b) ought not to but does work,
¢) ought not to and does not work.

Clearly, there are no turbulent flows in which GTM ‘ought to’ work, but homogeneous
flows offer the best possible chance of success. (We shall briefly return to this point
somewhat later.) Consequently, we set up some experiments in homogeneous shear
flows. Surprising success has often been claimed for the GTMs in free shear flows,

and so we sought to deliberately create conditions in a free shear flow in which GTM
would not work. Together, these constituted our experimental effort in this study.
Presentation of the experimental data in these flows with a view to spur possible
development of more sophisticated turbulence modelling is a secondary purpose of our
study.
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Several instances can now be quoted which, over the years, have demonstrated
the inadequacies of the GTMs [10—19]. Mindful of these inadequacies to turbulence,
several formal generalizations have been proposed [8, 20—22]. Alternatively, it has been
thought that formal generalizations do not address themselves to the heart of the
problem, and so some ad hoc ‘corrections’ (which could even be drastic), based on a
totally different physical mechanism, have also been proposed (for example [23]). How-
ever, the validity of any of these models in more than one situation remains to be
tested. This is the second major purpose of the present study. We tested these various
generalizations not only for our flow in which GTM does not work, but also in another
similar flow [23] which was selected for this purpose chiefly on the basis of the rea-
sonable degree of detail to which the appropriate data have been published.

In this paper, we shall be concerned almost exclusively with the turbulent heat
transport. The appropriate form of the diffusivity concept can then be written as

-8 = D; (3T/dx)

where Dij is the second-order diffusivity tensor. (The diffusivity tensor is not diagonal,
or even symmetric; using a combination of experiment in homogeneous shear flows,
theory and informed speculation, Tavoularis and Corrsin [24] have evaluated several
components of Dl.]..) In the simplest case with the dominant mean temperature gradient
essentially in the direction x,, the GTM gives

1,0 =D, (3T/3x,) =D (3T/dx,) , (1)

where D is the diffusivity. It is in this simple form that the GTM will concern us here.

Flow Configuration

Figure 1 shows a schematic representation of the experimental configurations used here.
The wind tunnel was of the open-return type with a nominal test section 30 cm x 30 cm,
and about 3.65 m long. Air flow was created by two axial fans in tandem. An essentially
constant pressure field was created by adjusting the vertical walls.

Three homogeneous flows and one inhomogeneous shear flow were studied. One of
the homogeneous flows was the uniform flow produced behind a square-mesh biplane
cylindrical-rod grid with 2.54 cm mesh and solidity 0.36. The mean velocity was nomi-
nally uniform across the test section. The temperature field was created by electrical-
ly heating each of the horizontal rods of the grid separately, so that a desired inhomoge-
neous mean temperature field could be created (Fig. 1a).

The two other homogeneous flows with nominally uniform positive or negative
mean velocity gradient were created by placing a shear generator 20 mesh sizes down-
stream of the turbulence-generating grid (see Fig. 1b,c). The shear generator is an array of
horizontal non-uniformly spaced cylindrical rods [25] and could be inserted in the wind-
tunnel such that dU, /dx, could be positive (Fig. 1b) or negative (Fig. 1¢). The tem-
perature field was created exactly as in the uniform flow case.

Lastly, the inhomogeneous free shear flow studied here is the wake of a circular
cylinder (d = 1.1 ¢cm) in which the temperature field was produced by heating three
thin parallel wires (diameter 0.127 mm) mounted asymmetrically with respect to the
cylinder on a wooden frame which could be inserted (see Fig. 1d) at any of the three
locations (xl/d = 1.2, 2.3, and 46) downstream of the cylinder. Also, the spacing be-
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tween the wires, their transverse location with respect to the cylinder and the heating
current in each of the wires could be adjusted independently to obtain within limits any
desired mean temperature distribution.

Instrumentation

Mean velocity U}, along the tunnel centreline was measured with a pitot-static tube.
The mean velocity profile U, (x,) and the velocity fluctuations «; and u, were measur-
ed with a DISA 55P51 gold-plated X-wire probe, with sensing elements 5 um in diameter
and 1 mm in length, powered by two DISA 55D01 constant temperature anemometers;
dc power supplies were used to minimize the noise level. The mean temperature profile
T(x,) and the reference temperature upstream of the grid were measured with two
Fenwal Electronics GC32M21 thermistor probes. The temperature fluctuation 6 was
measured with a DISA 55P31 platinum wire probe with the wire length of 0.4 mm and
diameter 1 um. The temperature wire was positioned vertically at a distance of about
0.5 mm from the nearest wire of the X-wire probe, and was operated at a constant cur-
rent of 0.3 mA on a home-made constant current source [26]. The operating current
was low enough to render the velocity sensitivity of the temperature wire negligible.
The temperature contamination of the velocity signals was eliminated by correcting
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them with the instantaneous local temperature measured with the temperature wire
[27]. The vertical position of the probes was adjusted with a variable speed motor and a
gear mechanism.

All signals were amplified and low-pass filtered at an upper cut-off frequency of
5 kHz. The signals were also corrected for noise assuming that the noise is statistically
independent of the signal. The signals were digitized and processed on a DEC PDP 11/40
digital computer.

Results in Homogeneous Flows

Mean Velocity and Mean Temperature Distributions

Measurements were made at xl/M = 60 and 128 but, in most cases, only those made at
xI/M = 60 are reported here. In all the cases, there was a significant region of two-
dimensionality in the mean quantities.

Figure 2 shows the distribution of mean velocity and mean temperature rise for
the three homogeneous flows. For the uniform flow experiment, the mean velocity
was uniform across the test section to within about 2% of the centreline velocity of 17.2
m s™'. The grid mesh Reynolds number was about 29,100. The two other flows had
roughly linearly varying mean velocity profiles (except for the last point in each case on
the low velocity side). The centreline velocity U, in both cases was 16.0 m s, and
|dU, /dx,| was 17.9 5.

In all three cases, the mean temperature distributions were quite similar. The maxi-
mum mean temperature rise of about 2.7°C was low enough to consider heat as a pas-
sive scalar. This was also verified by noting that the measured root-mean-square velocity
intensities with and without heating were essentially the same. A measure of the in-
homogeneity of the temperature field is given by the parameter (¢7/dx ) Lg/TmaX. In
the present experiments, the highest value assumed by this parameter was about 0.5,
signifying a sizeable inhomogeneity.

U Lo
4 )
UI/Ulo o o -
1.0} 6 o © ° B 0o o © o o J
o o
ogf o °° RS
2.5F i
T
(°c) 2.0t _

>0

I.5¢ 4
o dU /ax, =0 172
s gl /dx, <0 160

1ok 1/ |

0.5} 4 Fig. 2. Transverse distributions of mean velocity and

1 1 1 1 . mean temperature
o] 2 4 6 8 10 2

100



Root-Mean-Square Intensities

Figure 3 shows the transverse distribution of the normalized root-mean-square velocity
fluctuations in the central two-thirds of the tunnel hight. For the uniform grid flow,
both u'l and u'2 are uniform to within £5%. The ratio u’l /u'2 = 1.15, quite comparable
to that in other similar flows [28]. For the shear flows, on the other hand, there is a
+12% variation in 1) / U,y and about *8% variation in u'2 /Up- For the present pur-
poses, these distributions were considered sufficiently homogeneous in the transverse
direction. On the average, u} /u’2 = 1.23. At x, /M = 128, the turbulence intensity
distributions are homogeneous to a somewhat better accuracy. Figure 4 shows the
transverse distribution of the normalized root-mean-square temperature fluctuation.
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Heat Transport in the x,-Direction

Figure 5 shows how at x; /M = 60 the correlation coefficient - u,y0 [u,0" varies with
respect to x, /M. It is seen in comparison with Fig. 2 that 527 changes sign essentially
where the mean temperature gradient vanishes. Figure 6 in which 1,0 is plotted against
the corresponding total values of d7/dx, shows this more clearly.

Data are presented for both x, /M = 60 and 128. A 6th order polynomial was fitted
to the measured mean temperature distribution to obtain a'T/dxz. The estimated error
bounds for both quantities are shown in the figure. It is clear that in all three cases
L@_ is zero when dT/dx, is zero, and a gradient transport model with constant diffusivity
is quite satisfactory.
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Table 1. The turbulent diffusivity, and the characteristic length and
time scales of turbulent diffusion in the present homogeneous flows

dU, /dx, D/y I[cm] 7 [ms] L,
>0 36.6 0.42 22.8 0.11
=0 305 0.36 20.1 0.35
<0 25.5 0.29 15.8 ——

Table 2. The turbulent diffusivity, and the characteristic length and
time scales of turbulent diffusion in the Tavoularis-Corrsin flow [27]

x /h D/y I [cm] 7 [ms] l/Lg
6 59.5 0.44 15.4 0.11
7.5 72.5 0.48 15.2 0.11
9.5 93.0 0.53 14.6 0.10

11.0 114.0 0.59 14.5 0.10
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The diffusivities evaluated from slopes of the straight lines in Fig. 6 are given in
Table 1 (the molecular diffusivity ¥ = 0.21 x 10™ m? s™). Interestingly, the turbulent
transport in the case with dU, /dx2 > 0 is more efficient, and that in the case with
dU,/dx, < O is less efficient, than that in the uniform velocity flow. The reason for
this is not immediately apparent (for example, from the equation for @(7, since the mean
velocity gradient does not appear explicitly in such an equation).

For the case of constant diffusivity, we can write [29]

D=Vi=V?r . 2)

Presumably, ¥ and 7 must respectively be the root-mean-square velocity and integral
time scale of velocity following a material point. However, we shall assume that V' =

u'2 (this is strictly true only for stationary homogeneous turbulence), and compute the
values of / and 7 from the measured diffusivity. These are also shown in Table 1.

In the present flow with d U1 /alx2 > 0, the measured (Eulerian) transverse integral
scale of turbulence L e at x, /M =70 was about 40 mm. (The integral length scales her.e
and elsewhere in this paper were obtained by evaluating the area up to the first crossing
under the appropriate correlation curve. For a discussion of this point, see [30]). It
should be remarked that the integral length scale in this flow is one order of magnitude
larger than the length scale / characteristic of turbulent diffusion. No measurements of
L, were made for the flow with dU,; /a’x2 < 0, but the same conclusion can be expected
to hold here also. The implication is that for homogeneous uniformly sheared flows,
the eddies most effective in turbulent transport are not of the order of the integral
scale, but an order of magnitude smaller. On the other hand, for the homogeneous non-
sheared turbulence (dU; [dx, =0), L g estimated from the relation [31]

L,/M =0.065 (x,;/M-3)"4

is about 8.3 mm, which is only about 212 times as large as /.

Asymmetrically Heated Wake

Measurements were made for several configurations of the heating wires and the wake
generator, but results are presented here only for that shown in Fig. 7. Measurements
were made only at one station (x; /d = 100). It would have been desirable to have made
the measurements further downstream (where the flow would be self-preserving to a bet-
ter degree of approximation), but the limitations of accuracy in heat transport measure-
ments for small 7 led to this choice. Figure 7 shows transverse profiles of normalized
velocity defect w/w, (wy = 1.78 ms™), 4 /wy, T, 0'/T_ . and L;/d; here Ly was ob-
tained by evaluating the area up to the first crossing under the auto-correlation function
of u; and converting the resulting integral time scale to a length scale via Taylor ’s
“frozen field”” approximation. It is seen that even at x, /d = 100, the presence of the
wires in the wake results in a slight asymmetry in the velocity near the maximum defect
region, and stronger asymmetries in u'2 and L; profiles. )

Figure 8a shows a plot of the heat flux —ﬁ2—0 and the mean temperature gradient
0T/dx, at several points across the wake. Clearly, there is a small but finite region (the
shaded region in the figure) in which the heat flux and the mean temperature gradient
are of opposite sign implying negative diffusivity, or heat transport against the mean
temperature gradient.
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A more direct demonstration of the inadequacy of the GTMs is given in Fig. 8b
which shows that ~ W when plotted against 97/dx, forms a closed loop. (If a GTM
were applicable, the loop would collapse on to a single curve through the origin; if the
diffusivity were also constant, the curve would be a straight line.) For the discussion to
follow, the rough correspondence between the various key points of this loop and
their physical location is indicated by the use of the same letters A, B, C, D and E in
Fig. 8a, b, and the inset to Fig. 8b. Large negative x, /d (say, around A in the inset)
correspond to the vicinity of the origin in Fig. 8b. As x, /d increases (algebraically),
both a7/ 6x2 and -112_9 increase until at B the (positive) maximum value of 37/ ax2
is reached. Beyond B, 87/0x, decreases but - 527 does not keep pace with a7/dx,
and is finite and large even in the vicinity of C where 07/ 0x, is small. For even larger
x2/d , 0T/ 6x2 is negative (path CD) until the negative maximum of the temperature
gradient is attained at D; around D, - 527 is still decreasing (see Fig. 8a), however.
The path DE constitutes the return to 97/0x, = 0 as x, /d approaches large positive
values.

Corresponding regions in which the turbulent momentum transport - u; %, occurs
against the direction of mean velocity gradient have been observed in many different
flow situations [10—20]. These regions have been called regions of “energy reversal”
[13] or, more commonly in the later literature, as regions of “negative production”,
although the appropriateness of either term has been questioned. For example, it has
been pointed out [32] that the total production terms are given by - @]_ ou;/ ax].,
and that in the regions where - Z{E (0 U1 / axl ) is negative, the other production terms
- (u, . u22) oU, [ox| ~ uqu, 0U,/dx, are positive and (though small) of the right
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magnitude to counteract locally the negative values of - uyu, U, /0x,. However, this
conclusion is negated by other measurements {14, 33] in which all the production terms
except - uTu; (o U, / axl ) were measured. (However, in these two latter cases, the
magnitude of the negative values of the total production is very small.) Lastly, we
mention Hinze’s [20] conclusion that even if the sum-total of production terms is neg-
ative, it does not imply energy transfer back to the mean flow.

In the heat transfer case, there are fewer measurements of the 62 -production terms
[18, 23, 34], but the balance of evidence does suggest that the total thermal production
terms

-G T/ox, + 0 dT/ox,

add up to negative values in some small flow region. In the present wake, mean tem-
perature profiles were not measured sufficiently closely to evaluate 37/dx; accurately,
but rough estimates suggest that the inclusion of - &1_0 T/ axl) does not alter the sign
of total production in any substantial way.

‘Generalizations’ of GTM

One obvious way to generalize the GTM for inhomogeneous situations is to replace the
constant diffusivity by a space-dependent diffusivity. Corrsin [8] has noted that this is
not a self-consistent generalization to adopt. Using a heuristic analogy based on gen-
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eralized one-dimensional random walks, he inferred an alternative expression for the
mean flux I of a passive scalar contaminant (concentration I') with a dominant mean con-
centration gradient (81'/dx, ). Corrsin’s analysis is based essentially on a Taylor ex-
pansion for inhomogeneities and unsteadiness in the transport, with (effectively) the
characteristic length scale / as the small parameter. His analysis shows that to O (*)in
steady transport

- F =D (3T/dx,) +IT (3V/dx,) . (3)

The expression is valid for unsteady transport also, but to O ().

Another generalization of simple GTM has been proposed by Lumley [21], based
on the power series expansion of a continuous probability density function for dis-
placement of tagged particles. The formulation appears to be in much the same spirit
as a “Kramers-Moyal expansion”. Keeping only the first two terms of this infinite
series, Lumley showed that the net integrated flux is given by:

_ _d@x) 1 ) d(mzl 4
F=T =4 '2‘572[PX2) at ' @

Lumley argued that for an almost homogeneous situation

so that Eq. (4) becomes

_p=pdl_ 4+ lp D (5)
ax, 27 oy

where we have used the simple result from the Brownian motion theory that the dif-
fusivity D is given by

| d(ax,)
=2 dt
For a homogeneous situation, d (A—xz) /dt = 0, so that Eq. (4) reduces to the classical GTM.
Kranenburg [22] derived an alternative expression based on the Lagrangian formula-
tion of particle dispersion. If one neglects viscosity, the concentration of a passive
scalar quantity is conserved along a fluid particle trajectory, and one can then write:

I3
T 0-Tx- [ V({EIx,0dt' t-1,)=0

tTK

where V (t'lx, t) is the time (+') dependent Lagrangian velocity of the fluid particle
passing through x at time ¢. Kranenberg applied the mean value theorem to the integral
in the above equation, and took the analysis through the following steps. First, he as-
sumed that 7, was small enough to permit the particle trajectories to be approximated
by straight lines (with the stochasticity entering into the problem through the sto-
chasticity in TK). Then, using the Eulerian conservation equation for the scalar function
I'" evaluated in the preceding steps, he obtained, in the limit of large diffusion times,
the result that
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= 0
~F =D (al'/ox,) +1 E (Dal'/ox,) . (6)

The self-consistency of the assumptions is not immediately obvious.

All these three models share a few things in common. They introduce no additional
adjustable constants into the respective expressions and seek to obtain (in a more or less
rational framework) corrections necessitated by inhomogenities in a process that is
basically gradient-transport type;in some sense, the departures from the GTM are per-
ceived to be small.

There is general awareness that in turbulent shear flows, transport occurs not only
by the diffusive motion of the small eddies (as envisaged in the GTMs) but also by the
motion of large eddies comparable in size to the flow width. It appears unlikely that
the transport due to these bulk motions will be proportional to the local concentration
gradient; if the large-scale motion is potent in its transport characteristics, it appears
equally unlikely that the total transport can be successfully evaluated by applying
small corrections to the gradient transport type mechanism. Motivated by these consid-
erations, Townsend [35] made a rough model for the total transport. In its simplest
sense, the model can be represented by

-F =D (3T /ox,) + V,T (7

max
where Vc is a bulk convection velocity (to be determined externally) and l"max is the
maximum concentration difference within the flow field.

Motivated essentially by these considerations, Beguier et al. [23] proposed a some-
what more specific model for the bulk convection. Their model is no more than a
straightforward analogy to Beguier’s [36] momentum transport model, whose brief de-
scription is therefore approximate. Let A and B be the two points in the flow where
oy, / 0x, = 0 and #;u, = 0, respectively, and [, be the distance between A and B.

Region AB is the negative production region. Since this region is generally thin, the mean
concentration gradient at B can be written as

()= (5
dx, B m 0x; A

Beguier then models the momentum transport due to bulk motion by

oU. % U.
o (24, <ot (329

where D is the momentum eddy diffusivity which itself is assumed to be given by

aq’
D_ =K W? (—-)
m m ax2 A
with W as the ‘width’ of the flow and K as a free constant. In analogy to this model,
the total heat transport can be written as

-u,0 =D (3T/3x,) + Kyl (3q'[0x,) (3> T/3x3) (8)

where KB is a constant and (0% T/ axf) is to be evaluated at the point where (37/ axz)
= 0. This is effectively the model given in [23].
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Test of Generalized Models

All expressions for the models briefly discussed above are given to the first order of
‘correction’. A knowledge of the Lagrangian root-mean-square velocity and integral
time scales across the shear flows under consideration is now needed, but is at the
moment not available. For the specific purposes of testing these models, we shall re-
place I by the Eulerian integral scale L, V' by the Eulerian root-mean-square velocity
uy and the diffusivity D by L;u’,. A more appropriate definition based on Lagrangian
scales would presumably differ from the present one, but would not lead to qualita-
tively different conclusions. Particularizing the various models to heat transport (i.e.,
replacing the concentration I' by the temperature T), we have:

-8 =D (3T/3x,) =R ‘ (9a)
- 1,0 =D (3T/dx,) + L, T (du} [9x,) =R, (9b)
~,0 =D (3T/dx,) +(T/2) (3D/dx,) =R, (9¢)
~uy0 =D (3T/dx,) + L; 3/3x, (D 8T/0x,) =Ry (9d)
~uy0 =D (0T/3x,) + Kylp® (3q'[3x,) (32 T/dx,2) =R, (9e)
~u,0 =D@T/3x,)) + V. T . =Ry (9f)

Referring now to Fig. 8b, any improved alternative to the GTM must be capable of
collapsing the closed loop on to a single curve or nearly so. This is the simple criterion
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that we shall adopt as a measure of success of any given model. From both Figs. 9 and
10, the models due to Corrsin [8] and Lumley [21] appear to aggravate rather than im-
prove the situation. The Kranenburg model appears to work reasonably well for the
mixing layer data [23], but has poor performance in the present flow. For testing Eq.
(9¢) using the present flow data, we have replaced ¢’ by [3(u§ +_u§ }/2]. This and
other assumptions implied in Eq. (8) introduce an uncertainty in the precise value of
K@' We tried several values of Kg, and the best value (Fig. 9¢) was found to be 0.015.
Note that in contrast to the suggestion of [23], this constant assumed a positive value:
the significance of a model whose constant changes sign from one flow to another is not
clear. In the simple version of Townsend’s model, the correction due to the bulk transport
is a constant number on the right-hand side, and this can only translate the closed loop
without either shrinking or enlarging it. The effect is shown in Figure 9f for two values
of the correction, and in Figure 10f for one.

Discussion

In the homogeneous shear flows examined here, the length scale characteristic of the
eddies most effective in transporting heat were found to be small compared with the in-
tegral scale of turbulence (Table 1), or the scale of inhomogeneity of the temperature
field. The transport is thus mainly a diffusive effect due to these small eddies and it
comes as no surprise that the GTM works as well as it does. This can be shown also for-
mally by noting that all the criteria listed by Corrsin [8] as being necessary for the GTM
to work are satisfied in these flows. The only one requiring some comment is the condi-
tion that

p (@3T/0x3)

2 00 (10)
24 (3aT/ox,)
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0.10 T T Fig. 11. A test of validity of the GTM for turbulent
transport in the homogeneous flow with dUj /dx; =0,

2 83T/8X3 Note that the required condition (10) is violated in
1 2 a very localized region, which is thus of no con-
24 BT/E)X2 sequence
0.05F
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X 2 M

This is effectively a size limitation on the “mean free path’ / of the diffusion process.
Clearly, there is always a region in the flow where the above inequality is not satisfied,
but this is such a local aberrant (see Fig. 11) that its effects do not manifest significantly.

Our experiments have emphasized that the GTM which appears perfectly adequate
with a constant diffusivity for the homogeneous flows cannot handle inhomogeneous
flows even qualitatively. The chief difference between the homogeneous and inhomo-
geneous shear flows is the dominance of the large structures in the latter; it appears that
the large structures are responsible for a sizeable fraction of the transport process, and
it is in the modelling of these effects that none of the generalizations of the GTM
discussed earlier has had reliable success. One of the currently held views is that a tur-
bulent shear flow is essentially a consequence (and not the cause) of these transport-
efficient large structures and their mutuai interactions. If this view is correct, an al-
togetherly different approach, which does not even invoke a mean field, is necessary
before the problem can be resolved.
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Fig. 13. The variation of turbulent momentum
flux with the mean velocity gradient in an axi-
symmetric jet [38]. Notice how the introduction
of the intermittency factor ‘over-corrects’ the
heat flux values

Fig. 12. The variation of turbulent heat flux )
with mean temperature gradient in a symmetrical-
ly heated co-flowing jet [37]
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Finally, we examine briefly the reason why GTM has often been claimed to work
well in some free shear flows. Figure 12 shows a plot of @5 vs (3T/8x,) — now ap-
propriately normalized — for one half of a symmetrically heated co-flowing jet [37]). It is
again seen that the data form a loop instead of a single curve. However, the flow sym-
metry about the centreline forces both @F and 07/ 0x, to be zero at the same point, so
that the return part of the loop is now constrained to go through the origin. This
results in a much smaller loop than would be the case if asymmetries existed. This is
the reason for the apparent success of the GTM in symmetric flows; the large eddies are
no less effective in transporting heat in these flows.

So far, we have concentrated on the heat transport, but the present conclusions
should be relevant also for the momentum transport. We may now briefly consider the
momentum transport in an axisymmetric jet [38], and examine the applicability of the
GTM in the context of the smallness or otherwise of the appropriate loop. Figure 13
shows that a plot of u;u, as a function of 30 /dx, indeed forms a loop that is not too
wide, again for reasons of imposed boundary conditions; GTM should thus work rea-
sonably, as indeed it does. If one took account of the outer intermittency of the jet, it
is seen from Fig. 13 that no qualitative changes in the conclusions result. Towards the outer
edge, the intermittency ‘over-corrects’ the expectation from the GTM.
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